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Total-energy global optimizations using nonorthogonal localized orbitals
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An energy functional for orbital-based O(N) calculations is proposed, which depends on a number
of nonorthogonal, localized orbitals larger than the number of occupied states in the system, and on
a parameter, the electronic chemical potential, determining the number of electrons. We show that
the minimization of the functional with respect to overlapping localized orbitals can be performed
so as to attain directly the ground-state energy, without being trapped at local minima. The
present approach overcomes the multiple-minima problem present within the original formulation
of orbital-based Q(N) methods; it therefore makes it possible to perform Q(N) calculations for an
arbitrary system, without including any information about the system bonding properties in the
construction of the input wave functions. Furthermore, while retaining the same computational
cost as the original approach, our formulation allows one to improve the variational estimate of
the ground-state energy, and the energy conservation during a molecular dynamics run. Several
numerical examples for surfaces, bulk systems, and clusters are presented and discussed.

I. IN TROD U CTIQN

Most electronic structure calculations performed nowa-
days in condensed matter physics are based on a single-
particle orbital formulation. Within this framework, the
ground-state energy (Ep) of a multiatomic system is ob-
tained by solving a set of eigenvalue equations. Until
recently, this was accomplished by searching directly the
eigenstates of the single-particle Hamiltonian (II), which,
in general, are extended states, e.g. , Bloch states in a pe-
riodic system.

In the last few years, methods for electronic structure
(ES) calculations have been introduced, which are based
on a Wannier-like representation of the electronic wave
functions. The main motivation for choosing such a
representation was the search for methods for which
the computational effort scales linearly with system size
[O(K) methodsj. Very recently, real space Wannier-like
formulations were also used to describe the response of an
insulator to an external electric field. Within these ap-
proaches, a suitably defined total-energy functional (E)
is minimized with respect to orbitals constrained to be
localized in Rnite regions of real space, called localiza-
tion regions. The minimization of the energy functional
does not require the computation of either eigenvalues or
eigenstates of H.

In the absence of localization constraints, one can
prove4 that the absolute minimum of E (Eo) coincides
with Eo. In the presence of localization constraints, a
variational approximation to the electronic wave func-
tions is introduced and therefore Eo lies above Eo. How-
ever, the difference between Eo and Eo can be reduced in
a systematic way, by increasing the size of the localization
regions. We note that localization constraints do not in-

troduce any approximation when the resulting localized
orbitals can be obtained by a unitary transformation of
the occupied eigenstates. Therefore, the use of local-
ized orbitals is well justified for, e.g. , periodic insulators,
for which exponentially localized Wannier functions can
be constructed by a unitary transformation of occupied
Bloch states.

The minimization of the functional E with respect to
extended states can be easily performed so as to lead di-
rectly to the ground-state energy Eo, without traps at
local minima or metastable configurations. On the con-
trary, the minimization of E with respect to localized
orbitals can lead to a variety of minima. ' In order to
attain the minimum representing the ground state, infor-
mation about the bonding properties of the system has
to be included in the input wave functions. This implies
a knowledge of the system that may be available only in
particular cases, and it constitutes the major drawback
of the orbital-based O(%) method, which has otherwise
been shown to be an effective framework for large-scale
quantum simulations.

In this paper, we propose a functional for orbital-
based O(%) calculations, whose minimization with re-
spect to localized orbitals leads directly to a physical ap-
proximation of the ground state, without traps at local
minima. This overcomes the multiple-minima problem
present within the original formulation ' and makes it
possible to perform O(N) calculations for an arbitrary
system, with totally unknown bonding properties. The
present formulation has also other advantages with re-
spect to the original one. While retaining the same com-
putational cost, it allows one to decrease the error in the
variational estimate of Eo, for a given size of the local-
ization regions, and to improve the energy conservation
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during a molecular dynamics run.
The functional depends on a number of electronic or-

bitals (M) larger than the number of occupied states
(N/2) of the N-electron system, and contains a param-
eter g determining the total charge. During the func-
tional minimization, g is varied until the total charge of
the system equals the total number of electrons; thus
when convergence is achieved, i.e., the ground state is
attained, the value of g coincides with that of the elec-
tronic chemical potential p, . Once the ground state is
obtained for a given ionic configuration, the correspond-
ing wave functions and ionic positions can be used as a
starting point for molecular dynamics simulations, which
are then performed at Axed chemical potential. This is
at variance with conventional ES calculations based on
orbital formulations, where 1V is always 6xed, e.g. , by im-
posing orthonormality constraints. Similar to the present
approach, O(N) calculations based on a density matrix
formulation are performed at fixed chemical potential.
Consistently, the functional describing the total energy
does not have multiple minima in the subspace of local-
ized density matrices. However, whereas a density matrix
approach presupposes the use of all the occupied and un-
occupied states (i.e. , a number of states equal to nb „„
where nb „, is the number of basis functions), in our
formulation only a limited number of unoccupied states
needs to be added to the set of occupied states, regardless
of the basis set size. Therefore, the present formulation
can be eFiciently applied also in computations where the
number of basis functions is much larger than the num-
ber of occupied states in the system (e.g. , first-principles
plane wave calculations).

The rest of the paper is organized as follows: In
Sec. II, we present a generalization of the original for-
mulation of orbital-based O(N) approaches; we first in-
troduce an energy functional that depends on a number
of orbitals larger than the number of occupied states,
and we then discuss its properties and the role of the
chemical potential. In Sec. III, we present the results
of tight-binding calculations based on the generalized
O(N) method, showing that the approach overcomes the
multiple-minima problem, and allows one to improve on
variational estimates of the ground-state properties and
on the eKciency of molecular dynamics simulations. Con-
clusions are given in Sec. IV.

M

E[(y), &, M] = 2) q,, (y, [H —~~y, )+~N.
ij=1

Here (P) is a set of M overlapping orbitals, H is the
single-particle Hamiltonian, il is a parameter, and Q is a
(M x M) matrix:

Q =2I —S. (2)

p(r) = 2 ).(&.Ir)(rl&')Q*.

For M = N/2, one recovers the original energy functional
for O(N) calculations.

We note that the energy functional in Eq. (1) can be
expressed in terms of a density matrix a [(P)]:

E[(P),g, M] = 2 Tr[(H —g) o] + gN. (4)

Here the trace is computed over the nb „, functions
used for the expansion of the (P) and 0 [(P)]

ij=l & U 2

Before discussing the use of the functional of Eq. (1)
within a localized orbital formulation, it is useful to assess
some of its general properties.

(i) E[(P), il, M] is invariant under unitary transforma
tions of the type P'; = P. i U,~P~, where U is a (M x M)
unitary matrix.

(ii) Orbitals ivith vanishing norms do not give any con-
tribution to the energy functional E[(@),q, M]. If the
overlap matrix S entering Eq. (1) has (M —M') eigen-
values equal to zero, then a unitary transformation U
exists, such that (P') satisfies the condition

(P';~/';) = 0 for i = M'+ 1, ..., M.

Under this condition,

E[(&) n M] =E[(&') ~, M']

S is the overlap matrix: S;~ = (P, ~P~) and I is the iden-
tity matrix. This definition of the Q matrix corresponds
to truncate the series expansion of the inverse of the over-
lap matrix to the first order (JV = 1, in the notation of
Ref. 5). The charge density is defined as

II. ELECTRONIC STRUCTURE CALCULATIONS
AT A GIVEN

CHEMICAL POTENT'IAL

A. De6nition of the functional

We consider the energy functional E defined in Ref. 5,
which depends on N/2 occupied orbitals, for a N-electron
system. We generalize E so as to depend on an arbitrary
number M of orbitals, which can be larger than the num-
ber of occupied states N/2. For simplicity, we consider a
non-self-consistent Hamiltonian. The energy functional
is written as

We note that if Q is replaced by S in the definition
of E[(P),q, M] [Eq. (1)], then orbitals with a vanishing
norm give a nonzero contribution to the total energy,
since for (P, [P;) —+ 0 the eigenvalues of S go to infinity.
Therefore, the functional E[(P), il, M], with Q replaced
by S, does not satisfy property (ii).

(iii) The ground state energy -E0 is a stationary point
of E[(P),g, M]. In order to prove this statement, we
consider the following set of orbitals ($0):

~P,. ) = ~y;) for i, = 1,N/2

[0) for i = N/2 + 1, M,

where ~yy) are the nb „, eigenvectors of H with eigen-
value ei, . Hereafter we assume that (yg[yi„.) = 1 and
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The set {P ) fulfills Eq. (5); therefore,
E[{p ), rl, M] = E[{p ), rt, N/2] = Eo. In addition,
the set (gP) is a stationary point of E[(p), rl, M], since
bE/bgi, l(~o) = 0, where

(8)

(iv) The stationary point Eo is a minimum of
E[(P), il, M] if rl is equal to the electronic chemical poten-
tial p. We will only consider electrons at zero tempera-
ture; therefore, we choose p such that eN/2 & p ( eN/2+1.
This property will be proved in the next section.

B. Role of the chemical potential

now choose g so that p is equal to the actual number
of electrons in the system. This is accomplished by
setting eN/2 ( g ( eN/2+1, i.e., by choosing g equal
to the electronic chemical potential p. We then have
p~., ——2M' = m and E;„=Eo.

In order to give a general proof of property (iv)
(Sec. IIA), we show that the Hessian matrix (h) of the
functional E[(P), rl, M] at the ground state is positive
definite, if g = p. The computation of the eigenvalues of
6 follows closely the procedure used in Ref. 5 to calculate
the Hessian matrix of E[(P), rl, W/2] at the ground state.
Since the functional E[(P),g, M] is invariant under uni-
tary rotations of the (P), we can write a generic variation
of the wave function with respect to the ground state as

Iy, &
= Iy, &+ I&;& «r i = 1, ~/2

lo) + IA;& for i = K/2+ 1,M,

where

Before giving a proof of property (iv) stated in
Sec. IIA, we discuss a simple example, which is useful
to illustrate the role played by g in the minimization of
the energy functional E. For this purpose, we evaluate
the functional E[(P), rl, M] for a set of M eigenstates of
the Hamiltonian. In particular, we choose a set (P) such
that Ig, &

= a;Iy;&, with arbitrary a, . In this case, the
energy functional becomes

(12)

By inserting Eq. (11) into Eq. (1), it is straightforward to
show that the first-order term in the (c) coefficients van-
ishes for any value of the parameter g, consistently with
property (iii) stated in Sec. II A. The remaining second-
order term can be written as follows:

E[(a), il, M] = 2 ) (e, —rl) (2 —a, )a; + r11V.

As illustrated in Fig. 1, the function (e; —g)(2 —a2)a2
has a minimum at a; = 0 if e; & g, and a minimum at
a, = 1 if e; & rl. Thus, the functional E[(a),g, M] has a
minimum for a set (ao) such that ao = 1 if e; & q, and
a, = 0 if e; ) rl. At the minimum, Eq. (9) becomes

M'

N/2 nbasis
E(') = ) ) 2[e —e,](c* )'

i=1 m=N/2+1

N/2

+ ) 8 rl — ' ' (c,*+c,')(e;+ e, ) 1

22 =1
~basis

i =N/2+1 m=N/2+1

- 2

E;„=2 ) e; + rl(N —2M'),

where eM ( g ( eM +1 and the total charge of the
system is p«~ —2 P,. i(2 —a2)a2 = 2M'. We can

The eigenvalues 2[e —e;] are independent of il and always
positive, whereas the eigenvalues 8[g —(e; + e~)/2] and
4[e —rl] are positive, if and only if g coincides with
the chemical potential p. This proves property (iv) of
Sec. II A.

III. O(1V) CALCULATIONS W'ITH
OVERLAPPING LOCALIZED ORBITALS

A. Localization of orbitals
and practical implementation

a.

FIG. 1. Plot of the function f(a;, g) = (e, —g)a, (2 —a, )
for a positive and a negative value of (e, —rj).

We now turn to the discussion of the functional de-
fined in Sec. IIA within a localized orbital formulation.
The use of localized orbitals is a key feature to achieve
linear system-size scaling calculations. Orbitals are con-
strained to be localized in appropriate regions of space,
called localization regions, i.e. , they have nonzero com-
ponents only inside a given localization region, whereas
they are zero outside the localization region. The choice
of the number of localization regions and of their centers
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is arbitrary. In the calculations that will be discussed in
the next sections, we chose a number of localization re-
gions equal to the number of atoms, each centered at an
atomic site (I). We then associated an equal number of
localized orbitals (n, ) to a localization region, e.g. , two
and three localized orbitals for M = N/2 and M = 3N/4,
respectively. (M = Nn, /n ~, where n„ i is the number
of valence electrons per atoin. )

We will present electronic structure calculations and
molecular dynamics simulations of various carbon sys-
tems, carried out within a tight-binding (TB) approach.
We adopted the TB Hamiltonian proposed by Xu et
al. , ' 4 which includes nonzero hopping terms only be-
tween the first-nearest neighbors. In a tight-binding pic-
ture, a localization region centered on the atomic site I
can be identified with the set (LRI) of atoms belonging
to the localization region. Atoms are included in (LRI),
if they belong to the Kh nearest neighbor of the center
atom. Then, the localized orbital ]P; ), whose center is
the Ith atom, is expressed as

(14)

where [n~~)'s are the atomic basis functions of the atom
J and the index 1 indicates the atomic components
(s, p, p„, or p, ). In our computations, the generalized
energy functional was minimized with respect to the lo-
calized orbitals (P+) by performing a conjugate gradient
(CG) procedure, both for structural optimizations and
molecular dynamics simulations. For some calculations
it was necessary to use a nonzero Hubbard-like term to
prevent unphysical charge transfers. In this case, the line
minimization required in a CG procedure reduces to the
minimization of a polynomial of eighth degree in the vari-
ation of the wave function along the conjugate direction.
We performed an exact line minimization by evaluating
the coefBcients of the polynomial.

B. The multiple-minima problem

As mentioned in the Introduction, the major drawback
of the original formulation of orbital-based O(N) calcu-
lations is the so-called multiple-minima problem. Expe-
rience has shown that the minimization of E[(P), rl, N/2]
with respect to localized orbitals usually leads to a va-
riety of minima, ' and that the physical properties of
the minimum reached during a functional minimization
depend upon the choice for the input wave functions. If
the input wave functions are constructed by taking ad-
vantage of bonding information about the ground state,
then a minimum representing a physical approximation
to the ground state may be reached, after an iterative
minimization. On the contrary, if no information on the
ground state is included in the localized orbitals &om
the start, the functional minimization usually leads to a
local minimum, which is characterized by an unphysical
charge density distribution.

This is illustrated for a particular case in Table I and
Fig. 2, where we present the results of a series of TB

TABLE I. Cohesive energy E, (eV) of a 256 carbon atom
slab. The slab, consisting of 16 layers, represents bulk dia-
mond terminated by a C(ill)-2 x 1 Pandey reconstructed
surface on each side. E was obtained by performing local-
ized orbital calculations with two and three states (n, ) per
atom (see text), and with three difFerent inputs for the start-
ing wave functions. Totally random input: The wave function
expansion coefBcients [Cz„see Eq. (14)] on each site of a lo-
calization region (LR) are random numbers, and orbitals be-
longing to the same LR are orthonormalized at the beginning
of the calculations. Atom by atom input: Each orbital has a
nonzero t J& only on the atomic site to which it is associated,
and for each atomic site this coeKcient is chosen to be the
same. Layer by layer input: Each orbital has a nonzero Cz&
only on the atomic site to which it is associated, and the value
of this coefficient is chosen to be the same for each equivalent
atom in a layer. In the case of atom by atom and layer by layer
inputs, the initial wave functions are an orthonormal set. The
calculations were performed with g=7.5 eV and g=3.1 eV for
n, =2 and n, =3, respectively, and with LR's extending up to
second neighbors (Nq=2, amounting at most to 17 atoms per
LR). The value for E, obtained by direct diagonalization is
7.04 eV. (See also Fig. 1). The highest occupied and lowest
unoccupied eigenvalues are 2.85 and 3.42 eV, respectively. In
all calculations the Hubbard-like term was set at zero.

Wave function input
Totally random
Atom by atom
Layer by layer

E,[n, = 2]
6.837
6.721
6.930

E.[n. = 3]
6.978
6.978
6.978

calculations using localized orbitals, for a 256 carbon
atom slab. The slab, consisting of 16 layers, represents
bulk diamond terminated by a C(ill)-2 x 1 Pandey
reconstructed surface on each side. We considered lo-
calization regions (LR s) extending up to second neigh-
bors (N~=2). We performed conjugate gradient mini-
mizations of the electronic structure using two localized
orbitals per LR (n, =2), which correspond to the case
M = N/2 in Eq. (1), i.e. , to the original formulation
of O(N) calculations. These minimizations were carried
out by starting from di8'erent wave function inputs. The
only calculation that leads to a physical minimum was
the one started with orbitals containing symmetry infor-
mation about the system, as shown by comparing the
results of Fig. 2(c) with those of direct diagonalization,
reported in Fig. 3(b). The other calculations lead to un-
physical minima: when starting with a totally random
input [Fig. 2(a)], we found a local minimum with charged
sites, located predominantly in the surface layers and in
the middle of the slab. When starting &om an atom by
atom input [Fig. 2(b)], we obtained a local minimum cor-
responding to two diEerently charged surfaces, one posi-
tively and the other negatively charged.

The local minima problem present in the original
O(N) formulation can be illustrated with a simple one-
dimensional model. We consider a linear chain with¹tsites and 2N„q electrons in a uniform electric 6eld
of magnitude F, with Hamiltonian:



JEONGNIM KIM, FRANCESCO MAURI, AND GIUI.IA GALI.I 52

pp

(A) Random
Nsite

H=). [E.-, I )( I

R=1
—+It (lelc) (el' I

+ Igloo) (g~ I)]

-1.0

0.0

-1.0

(B) Atom by Atom

(C) Layer by Layer

Here lelt) and Iglc) are the highest and the lowest level
of the isolated site K, respectively, and Eg p is the split-
ting between these two levels. Since the hopping terms
between different sites are set at zero, Ielt-) and lg~) are
also eigenfunctions of the linear chain Hamiltonian. We
now study the ground state of the system as a function of
the electric field I". If 0 & I' & Eg p/(N„t, —1), the total
energy of the system is minimized by the set of orbitals
lg, ) given by

l&g) = Ig;) for 1 = 1,N„t, . (i6)

0.0

-1.0

Ionic Index 256

If Eg p/(N„t, —1) & I" & Eg p/(N„t, —2), the eigenvalue
of Igi) is higher than that of le~„,.), and therefore the
total energy of the system is minimized by the following
set of orbitals l&g):

FIG. 2. DifFerential atomic charge (Ap) on each atomic
site of a 256 carbon atom slab. The slab, consisting of 16
layers, represents bulk diamond terminated by a C(111)-2 x
1 Pandey reconstructed surface on each side. The ionic index
indicates individual atomic sites belonging to the slab, which
are ordered layer by layer, starting from the uppermost sur-
face. The arrow indicates the slab center. Ap~ ——p~ —p,
where pJc = 2g, . P, (P;Inrcr)Q, ~(orcrlg~), p = 4, and K
is the atomic site. In (A), (B), (C) we show the results of
calculations performed with two orbitals per atomic site, and
with the three different wave function inputs listed in Table
I, respectively.

1 0 (A) n, =3

lg,') = Ig;+i) f» i= 1, N.;t. —I
Ie;) for i = N„t, .

In both cases, the total energy of the linear chain system
can be obtained exactly within a localized orbital picture,
by considering ¹&,LR s centered on atomic sites, which
extend up to the first neighbors of a given site.

We erst describe the total energy of the system with
the functional E[($),iI, N/2). Within this framework,
the set IP;), vrhich minimizes E[(P), rl, N/2] in the pres-
ence of a small field, i.e. , when 0 & F & Eg p/(N„t, —1),
is also a local minimum of E[(P), rl, N/2] in the pres-
ence of a large field, i.e. , when Eg p/(N„t, —1) & I"
Eg p/(N„t, —2). This can be easily seen from the second-
order expansion (E( )) of E[(P),q, N/2] around the set
of orbitals defined in Eq. (16):

0.0

-1.0

(B) Diagonalization

E(2) = ) ) 2[E...—F(m —')](.' )'
i=1 ~q(LR;)

+) ) 8 rI+E
i=1 j &(LR

0.0 x (g,
' + g~)

2

-1 0

Ionic Index 256

FIG. 3. Differential atomic charge (Ap) on each atomic site
for the same system as in Fig. 2. The ionic index is the same
as in Fig. 2. In the upper panel we report the results of a cal-
culation carried out with three orbitals (n, ) per atomic site,
and with a totally random input for the initial wave functions
(see Table I). Contrary to the calculation started from a to-
tally random input and performed with n, =2 [see Fig. 2(a)l,
the calculation with n, =3 gives a ground-state charge density
very close to that obtained by direct diagonalization, shown
in the lower panel.

where grc and el' are the projection of the vector IP,)—
lg ) on the state lgR. ) and leIc), respectively. If the or-
bital are extended, the difFerence (m —i) can be as large
as (N„.t, —1) and the eigenvalues [Eg p

—E(m —i)] can
be negative when Eg p/(N»t, —1) & P & Egap/(N»«—
2). However, if the orbital are localized the difFer-
ence (m —i) is smaller than (N„.t, —1) and the eigen-
values [Eg p

—F(m —i)] are always positive also for
Egap/(Nsite I) & + & Egap/(Nsite )

We now turn to a description of the total energy of
the linear chain system with the functional E[(P),p, M],
where M is larger than the number of occupied states
N/2, e.g. , M = 2N„t, . It is straightforward to show
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that contrary to a description with E[(P), rI, N/2], when
using E[(gj,p, M] the set of orbitals of Eq. (16) is not a
local minimum of the system in the presence of a large
field. Indeed, according to Eq. (13), the second-order
expansion E~ ~ is now given by

Naite

E( ) = ) ) 2[Es p
—F(m —i)](e' )2

i=1 m6(LR, )
N. ;t

+) ) 8 p+F
'=& ~q(I,R;3

- 2 2Nsite

x (g,'+g,') + ) )
i=N„t +& mF (IR, )

x4[Eg —Fm, —p](g' )2.

Here the localized orbitals (LO's) with indices i and
i + N„t, are a.ssigned to the localization region (LR;'1.
Both within an extended and a localized orbital pic-
ture, the eigenvalue 4[Eg —FN„t, —p] is negative when
E.../(N. ;,.—1) & F & E.../(N. ;,.—2).

This simple model shows that the extremum proper-
ties of the functionals E[(P),g, N/2] and E[(Pj,p, M] are
in general difFerent, and in particular that local minima
of E[(P},rI, N/2] are not necessarily so for E[(P),p, , M].
This suggests that the use of the functional E[(P), p, , M]
may overcome the multiple-minima problem encountered
within a formulation based on E[(P),rl, N/2]. This sim-
ple model suggests also the reason why the multiple-
minirna problem should be overcome: the minimization
of E[(P),p, M] is performed by adjusting p until the to-
tal charge equals the total number of electrons in the
system; this means that the appropriate filling of the or-
bitals is determined by the global variable p. This allows
for long-range charge transfers in the minimization pro-
cess, irrespective of the extent of the localization in the
wave functions. Therefore, the presence of the global vari-
able p, together with the augmented variational &eedom
of extra orbitals added to the definition of the functional,
is expected to account for global changes taking place in
the system.

C. Overcoming the multiple-minima problem

We now present a series of numerical examples, show-
ing that the minimization of the generalized functional
E[(P),rl, M] [Eq. (1)] with respect to localized orbitals
can be performed without traps at local minima, as
indicated by the simple model discussed in the previ-
ous section. We performed calculations for various car-
bon systems (bulk solids, surfaces, clusters, and liquids),
by using again LR's extending up to second neighbors
(Ng=2). We considered three LO's per site (n, =3), i.e. ,
M = 3N/4 in Eq. (1). In all cases, using n, =3 was suK-
cient to overcome the multiple-minima problem present
in the original formulation. We note that the general-
ized functional, although it includes a number of local-
ized orbitals larger than the number of occupied states,

0
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FIG. 4. Total energy Ea q (upper panel) and total charge
(lower panel) per atom, as a function of the number of it-
erations, for an electronic minimization of the same system
as in Figs. 1, 2, and Table I. Eq o

——E[{P},rl, M] (see text).
The minimization was carried out with three states per atom
(n, =3) and was started from a totally random input. The
chemical potential (g) was varied from 20 to 3.1 eV during
the minimization. The final value of g was chosen so that the
total charge eventually be equal to the number of electrons
in the system. In the upper panel, the inset shows Et t as a
function of 500 iterations, converging to the value reported in
Table I, and indicated as a dotted line.

still allows one to carry out electronic minimizations and
molecular dynamics simulations with a computational ef-
fort scaling linearly with system size.

In Fig. 4, we show the energy and the charge
per atom during a conjugate gradient minimization of
E[(P), rl, M], for a 256 carbon atom slab, starting &om
a totally random input. The system is the same as the
one studied in the previous section with n, =2. The min-
imization was started with g = 20 eV; the parameter
was then decreased every 20 iterations, and finally set
at 3.1 eV, which corresponds to the value of the chem-
ical potential. As discussed in Sec. IIB, for a given g
the integral of the charge density converges to a value
that corresponds to filling all the orbitals with energies
smaller than g. For example, for g = 20 eV the total
charge per atom is equal to 6, i.e., all the 3N/4 orbitals
are filled. Eventually, when g = p the total charge be-
comes equal to the number of electrons in the system.
The way g is varied during a minimization is not unique;
however, the final value of g must be always adjusted so
as to obtain the correct charge in the system. It is seen
in Table I that all the minimizations with n, =a converge
to the same value, irrespective of the input chosen for
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TABLE II. Cohesive energy (eV) and length (A. ) of the double and single bonds of Cpp, as ob-
tained from structural optimizations using localized (LO) and extended orbitals. In all calculations,
the Hubbard-like term was set at zero. For comparison, cohesive energies obtained by direct diago-
nalization are given in parentheses. Computations with LO were performed by including two shells
in a localization region (Nq=2, amounting to ten atoms per localization region), and by considering
two and three orbitals (n, ) per atom (see text).

Physical properties Cohesive energy/atom Double-bond distance Single-bond distance

LO[Ng=2, n, =2]
LO[Ng=2, n, =3]
Extended orbitals

6.69 (6.89)
6.81 (6.91)

6.91

1.358—1.407
1.386-1.388

1.393

l.420-1.512
1.445—1.453

1.440

the wave function. This value corresponds to a physi-
cal minimum, as shown in Fig. 3 where we compare the
charge density distribution with that obtained by direct
diagonaliz ation.

D. Improvement on variational estimates
of the ground-state properties

The use of the generalized functional and LO's not
only overcomes the problem of multiple minima, but it
also improves the variational estimate of Ep, for a given
size of the LR's. This is shown in Tables II and III,
where we compare the results of calculations using the
same LR's but difFerent number of orbitals (n, =2 and
3), for various carbon systems. The improvement is par-
ticularly impressive in the case of C6p, where we also
performed an optimization of the ionic structure. The
error on the cohesive energy is decreased from 3 to 1.5%
by increasing n, from 2 to 3. Most importantly the opti-
mized ionic structure obtained with n, =3 is in excellent
agreement with that obtained with an extended orbital
calculation. We note that localization constraints intro-
duce a symmetry breaking in the system, i.e., LO's do
not satisfy all the symmetry properties of the Hamilto-
nian eigenstates. In C6p the symmetry breaking is large

when using n, =2; the deviation of the double and single
bond lengths with respect to their average values are 3.5
and 6.3%, respectively. On the contrary, in the optimized
geometry obtained with n, =3, the symmetry breaking is
very small (0.1 and 0.5%, for the double and single bonds,
respectively), compared to the icosahedral structure.

When using n, =2, the ground-state LO's are nearly
orthonormal, whereas minimizations with n, =3 yield
overlapping LO's. Indeed when using n, =3, at the min-
imum the overlap matrix S has 2n, eigenvalues close to
1 and n, eigenvalues close to 0, and this condition can
be satisfied with a nondiagonal S matrix. We define a
quantity measuring the orthogonality of the orbitals as

= [P, i(h;z —S,z) ]/M. In the case of Ceo, A is

2.5 x 10 and 0.17 for n, =2 and n, =3, respectively. We
also note that for various systems, the centers of the LO's
(r ), defined as

(20)

were always found to be located at distances shorter than
one bond length &om the center of their own LR's, when
using n, =3. In the case of n, =2, we instead found cases,
e.g. the C6p molecule where some orbitals were centered

TABLE III. Cohesive energy E, (eV) of di8'erent forms of solid carbon computed at a given bond
length ro. The calculations were performed with supercells containing 216, 128, and 100 atoms for
diamond, two-dimensional (2D) graphite, and the linear chain, respectively. In calculations with
localized orbitals we used two and three orbitals per atom (n„see text). The LR's included two
shells of neighbors (Ng=2), amounting to 17, 10, and 5 atoms per LR in the case of diamond,
two-dimensional graphite, and the linear chain, respectively.

Crystal structure Diamond
(rp = 1.54 A)

2D graphite
(rp ——1.42 A. )

1D chain
(rp = 125k)

E, [¹=2,n, =2]
E [N), =2, n, =3]
E, [Np, =oo]

7.16
7.19
7.26

7.09
7.12
7.28

5.62
5.67
5.93
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far &om their atomic sites and close to the border of their
I.R's.

E. Molecular dynamics simulations -5.2

In order to investigate the performances of the gener-
alized functional [Eq. (1)] for molecular dynamics (MD)
simulations, we carried out MD runs for liquid carbon at
low density (2 grcm ) andat 5000 K. We useda64atom
cell with simple cubic periodic boundary conditions and
only the I' point to sample the Brillouin zone. We used a
cutofF radius of 2.45 A. for the hopping parameters enter-
ing the TB Hamiltonian and for the two-body repulsive
potential and U = 8 eV. In the case of l-C it was neces-
sary to add a Hubbard-like term to the Hamiltonian, in
order to prevent unphysical charge transfers during the
simulations. Equilibration of the system was performed
in the canonical ensemble by using a Nose thermostat.

Within the original O(N) approach, MD runs for 1-C
were found to be particularly demanding from the com-
putational point of view, since they required many iter-
ations (N;t«) per ionic move (e.g. , N;i„——300 for Qt=30
a.u. ), in order to minimize the energy functional. Most
importantly, during the simulation the system could be
trapped at a local minimum, evolve adiabatically from
that minimum for some time, and suddenly jump to an-
other minimum lower in energy. This shows up as a spike
in the constant of motion of the system (E, „,i), as can
be seen in line (c) of Fig. 5, which displays E, „,t for a
run performed with n, =2. Because of local minima, a
perfect conservation of energy could never be achieved
with n, =2, even by increasing N;&, to a very large num-
ber.

When MD runs are performed with n, =3, the prob-
lem of local minima is overcome; furthermore a signifi-
cant improvement in the conservation of energy can be
achieved at the same computational cost as simulations
with n, =2. This is seen in Fig. 5 by comparing lines

(b) and (c). When the generalized functional is used,
the accuracy of the energy conservation during a MD
run is related only to the convergence of the electronic
minimization scheme: a good conservation of energy can
be obtained just by increasing N;&, . This is shown by
line (a) in Fig. 5. We note that the behavior of E, „,q
observed for all the simulations was not affected by the
presence of the thermostat. This was checked by repeat-
ing all MD runs with three different masses (Q, ) for the
Nose thermostat (Q,=l,4,100 in the same units). The
structural properties of l-C computed &om the MD runs
with n, =3 showed a very good agreement with those pre-
viously obtained with n, =2.

IV. CONCLUSIONS

0

0
LU

-5.6

(c) ns= 2, N;is, = 110

0.00 0.32 0.24 0.36

FIG. 5. Energy per atom (E o,t) as a function of the
simulation time (t) for constant temperature (T) molecular
dynamics (MD) simulations of liquid C. E,o~,q

——Ei,;„+
E[{P),q, M] + Eth, ~„where Eq;„ is the ionic kinetic energy,
E[{/),q, M] is the ground-state value of the electronic energy
functional (see text), and Eqi„, is the sum of the potential
and kinetic energies associated to the Nose thermostat. The
LR's extend up to second neighbors. (Nh, =2, amounting on
average to 18 atoms per LR.) (a) and (b) correspond to MD
runs with three states per atom (n, =3), whereas (c) corre-
sponds to a simulation with n, =2. The time step used in
the three MD runs was 30 a.u. (0.73 fs). At each step, the
electronic structure was minimized by a conjugate gradient
procedure with a fixed number of iterations (N;i, ). The sim-
ulations represented by lines (b) and (c) require the same
computational cost.

for the wave functions. In this way, the multiple-minima
problem present in the original formulation is overcome,
and O(N) computations can be performed for an arbi-
trary system, without knowing any bonding properties of
the system for the calculation input. We have also pre-
sented a series of tight-binding calculations for various
carbon systems, showing that the generalized O(N) ap-
proach allows one to decrease the error in the variational
estimate of the ground-state properties, and to improve
energy conservation, i.e. , eKciency, during a molecular
dynamics run. This can be accomplished at the same
computational cost as within the original formulation.
At variance from O(N) density matrix approaches, our
formulation requires that only a limited number of un-
occupied states be included in the energy functional, re-
gardless of the basis set size. Therefore, the present for-
mulation can be eKciently applied also in computations
where the number of basis functions is much larger than
the number of occupied states in the system (e.g. , first-
principles plane wave calculations).

We have presented a generalization of orbital-based
O(N) approaches, which relies upon a functional, de-
pending on a number of localized states larger than the
number of occupied states, and on a parameter that de-
termines the total number of electrons in the system. We
have shown that the minimization of this functional with
respect to localized orbitals can be carried out without
traps at local minima, irrespective of the input chosen
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