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W«e potential of a charged particle in a strongly coupled two-dimensional electron gas
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The wake potential, the induced electron density, and the stopping power for a charged particle mov-
ing through a strongly coupled two-dimensional electron gas have been investigated within the frame-
work of linear-response dielectric theory. The influence of the exchange-correlation interaction of elec-
trons on the above quantities has been considered by using a local-field-corrected dielectric function.

I. INTRODUCTION

The interaction between charged particles and the elec-
tron gas in solids gives rise to a screened potential, with a
wake dragging behind the particle. For a three-
dimensional (3D) electron gas, several authors have inves-
tigated the wake potential within the framework of
linear-response dielectric theory. A calculation of the
wake potential was made by Neufeld and Ritchie' using a
simple local dielectric function. A more detailed study of
the wake potential within the plasmon-pole approxima-
tion was given by Ritchie, Brandt, and Echenique and by
Echenique, Ritchie, and Brandt. Going beyond the
plasmon-pole approximation, Mazarro, Echenique, and
Ritchie" calculated the wake potential and the electron-
gas density fluctuation in terms of the full random-phase
approximation (RPA) dielectric function. In a recent pa-
per, the wake potential in the vicinity of a solid surface
has been considered.

Although much literature has been devoted to the
physics of the wake potential for a 3D electron gas in
past decades, to the best of our knowledge, the wake po-
tential for a charge particle moving in an ideal two-
dimensional (2D) electron gas has not been considered.
In fact, a 2D electron gas can model many new materials
such as copper oxide planes in high-temperature super-
conductors, the interface between GaAs and
Cra, „Al As, and the metal-oxide-semiconductor (MOS)
interfaces. In recent years, some physical properties,
such as the ground-state energy, correlation effects, and
collective excitations for a 2D electron gas have been
considered by several authors. In view of the impor-
tance and relevance of the 2D electron system in current
experimental physics, it would be useful to investigate the
interaction of the charged particles with the 2D electron
system. This interaction may serve not only as a diagnos-
tic tool for the 2D electron gas, but also as a method of
changing composition of the system, such as by ion im-
plantation.

In general, the 2D electron gas encountered in experi-
ments in a strongly coupled system. In a recent paper, '

we have investigated the stopping power for ions moving
through a 2D electron gas. It was shown that the effect
of the exchange-correlation interaction in the 2D electron
gas on the stopping power could be very important. It
thus appears of interest to examine its effect on the wake
potential.

This paper is organized in the following way. In Sec.
II general formulas for the wake potential, the induced
electron density, and the stopping power in a 2D electron
gas are derived in the framework of linear-response
dielectric theory and an expression of a local-field-
corrected (LFC) dielectric function" is introduced for
considering the effect of the exchange-correlation interac-
tion. In Sec. III, numerical results of the wake potential,
the induced electron density, and the stopping power are
presented, and the results predicted by the LFC dielectric
function are compared with those given by the RPA
dielectric function. In Sec. IV, a brief summary of our re-
sults is given. In the following sections, atomic units
(a.u. ) with e =m, = th' = 1 will be used.

II. GENERAL FORMULAS

We consider a point charge Z, moving with a constant
velocity v through a homogeneous 2D electron gas of
density no. In the present work, the quantities we are in-
terested in are (i) the induced electric potential, the so-
called wake potential, generated by the motion of the
point charge, (ii) the spatial distribution of the induced
electron-gas density, and (iii) the stopping power, i.e., the
retarding force acting on the projectile.

Similar to the 3D case, the wake potential is given by

according to the linear-response dielectric theory, where
co=k v and e(k, co) is the dielectric function of the 2D
electron gas. Assuming the direction of the projectile ve-
locity v to be along the x axis and employing 2D polar
coordinates (k, tp), Eq. (1) can be reduced to
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e(k, co) = 1 P(k, co)—/[1+ G(k)P(k, co)], (3)

where P (k, co) is the polarizability of the free-electron gas
and 6 (k) is the LFC function, which includes the effect
of the exchange-correlation interaction. Using the di-
mensionless variables z=k/2k~ and u =co/kvF, where
kF=(2mno)' is the Fermi wave number and vF=kF is
the Fermi velocity, an analytical expression of the polari-
zability P (k, co ) in RPA has been given by Stern, '

P (z, u ) = (X /4z ) [f, (z, u ) +if~ (z, )u],

where

(4)

f, (z, u)= —2m. [2z —C [(z —u) —1]'
—C [(z+u) —1]'/ ],

where a.=+k —to Iv, x =x vt—, Fz(k, co)
=Re[a '(k, co) —1], and Ft(k, co) =Im[e '(k, cu) 1—].
Here we have used the property of the dielectric function
E*(k,co)=e(k, —co). One can see from Eq. (2) that the
spatial distribution of the wake potential is symmetrical
about the y axis.

To show the inhuence of the exchange-correlation in-
teraction of the electrons in the 2D system on the wake
potential, a LFC dielectric function will be used in the
following discussions,

f~(z, u)= —2n [D [1—(z —u) ]'/

D—[1—(z+u) ]'/ j, (6)

C =(z+u)/Iz+u I,
Dg=0, (7)

C~ =0,
for Iz+u

I
& 1, (8)

andy =1/(mk~).
Using a sum-rule version of the self-consistent ap-

proach, Gold and Calmels" presented a parametrized ex-
pression for the LFC function 6 (z) of the 2D electron
gas,

for Iz+u I »,

6(z)= 1.982r,'/ z /[2. 644C,2(r, )

+2r —2 /3 C ( r )2z 2
]

1 /2

where r, =(1/vrno)' is the electron-gas density parame-
ter and the coeificients C,z(r, ) and C22(r, ) can be found
in Ref. 11.

When the projectile velocity is much less than the
Fermi velocity (v « vF ), we can make the following
approximations f&(z, u) = —4m.z and f2(z, u)
= —4m.zu /+1 —z . In this case, the wake potential
along the axis of motion (y =0) can be simplified to

p;„q(X,O) = —2Zi f dz [J ( 0zX)/ D(z) +(v/ v)Fz J(zoX)/[D (z)}~1—z ]],0

where X=2k~x, Jo(zX) is the zero-order Bessel function, Jo(x) =dJo(x)/dx, and

D(z)=z+nX [1—6(z)] .

(10)

From Eq. (10) one sees that the first term on the right-hand side is symmetrical with respect to X, while the second term
is asymmetrical.

Similarly, the corresponding induced electron density can be expressed as

oo kv dQ) CO . COn;„z(x,y)= — f k dk f cos(ay) cos —X Ftt(k, co) —sin —x Ft(k, ~)
&V 0 0 K V V

(12)

2Z2
dE/dx = f —dk f Im

0 0 K

1

e(k, co)

(13)

A retarding force given by F=Z, dp;„~/dx will act on
the projectile at (x =vt, y =0) and cause it to lose kinetic
energy. Over the length dx, the energy loss or the stop-
ping power is given by'

In general, contributions to Eqs. (2), (12), and (13)
come from two sources: (1) the single-particle excitations
in the electron gas in which fz(z, u)%0, and (2) the col-
lective excitations in which fz(z, u) =0. In fact, our cal-
culations show that the latter are much smaller than the
former. In the next section, some numerical results of the
wake potential, the induced electron-gas density, and the
stopping power will be presented according to Eqs. (2),
(12), and (13), respectively.
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FIG. 1. The variation of the wake potential measured from a
frame of reference moving with a proton (ZI = 1) along the axis
of motion (y =0) for U =0.SUF and for various values of r, . The
labels "RPA" and "LFC" in the curves represent that the corre-
sponding results are obtained by the RPA and LFC dielectric
functions, respectively.

FIG. 3. The variation of the electron-gas density induced by
a proton along the axis of motion for the conditions of Fig. 1.
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FICx. 2. The variation of the wake potential of a proton along
the axis of motion for r, =5 and for various values of the projec-
tile velocity.

FICx. 4. The variation of the electron-gas density induced by
a proton along the axis of motion for the conditions of Fig. 2.
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FIG. 5. The dependence of the wake potential at the origin

with velocity U for r, =2. The labels "2D (LFC)," "2D (RPA),"
and "3D {RPA)" in the curves represent that the corresponding
results are obtained by the LFC and the RPA dielectric func-
tions of the 2D electron gas, and the RPA dielectric function of
the 3D electron gas, respectively.
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III. NUMERICAL RESULTS

In Fig. 1 we plot the spatial distribution of the wake
potential along the axis of motion (y =0) measured from
a frame of reference of a proton (Z, = 1) moving with ve-
locity U =0.8U+ in 2D electron gases with r, =0.1, 1.0,
and 5.0. The labels "RPA" and "LFC" in the figure refer
to the results obtained by using the RPA and LFC dielec-
tric functions, respectively. Clearly, the exchange-
correlation interaction in the electron gas enhances the
values of the wake potential around X=O, increasing
with r, . In the low-velocity case (u &uz) of Fig. 1, the
asymmetry in the wake potential along the axis of motion
is relatively small. In the high-velocity case (v )vF)
shown in Fig. 2, however, the asymmetry in the wake po-
tential increases as the velocity increases, with oscilla-
tions in the wake potential developing in the region
behind the projectile (X & 0).

Figures 3 and 4 show the induced electron-gas density
along the axis of motion for the situations considered
above. The main features observed in the wake potential
are reproduced in the induced electron-gas density. In
the low-velocity case, the values of the induced electron-
gas density are enhanced by the exchange-correlation in-
teraction. In the high-velocity case, the induced
electron-gas density exhibits a strong asyrnrnetry. Here,
we also see that the induced electron-gas density is con-
centrated mainly in the neighborhood of the projectile
(X=0). Similar to the 3D case, there are small oscilla-
tions in front of the particle, which arise mainly from the
single-particle response of the medium.

In Fig. S we display the dependence of the wake poten-
tial at the origin with velocity for a given r, =2 and com-
pare with the 3D case. One can see that in the low-
velocity case (u & uF), the values of the wake potential in

FIG. 6. The stopping power on a proton as a function of
v IvF for various values of r, .

the 2D case are obviously larger than that in the 3D case.
The asymmetry in the wake potential, and in particu-

lar, its gradient along the axis of motion at the projectile
site, is the source of the stopping power. Using the RPA
dielectric function, Horing, Tso, and Gumbs' first evalu-
ated the stopping power for a fast particle moving paral-
lel to a 2D electron gas and at a height H above it. Simi-
lar calculations have also been presented by Bret and
Deutsch' ' for a 2D electron gas at finite temperatures.
In a recent paper, ' we have presented some analytical
expressions of the stopping power in both the low- arid
high-velocity limits. In particular, the stopping power in
the high-velocity limit decreases as 1/u, unlike the well-
known form dE/dx ~(lnv)/u predicted by the Bethe-
Bloch formula' in the 3D case. In Fig. 6, we display the
stopping power for a proton as a function of v/Uz for
r, =0.5, 1.0, and 5.0. We observe that, in the lower-
velocity regime the exchange-correlation interaction has
a larger effect on the values of the stopping power for
larger r, . In the high-velocity limit, however, the
exchange-correlation interaction is found to have little
inhuence on the stopping power.

IV. SUMMARY

General formulas for the wake potential, the induced
electron density, and the stopping power for a charged
particle moving in a 2D electron gas have been presented
within linear-response dielectric theory. A LFC dielec-
tric function is used in this work to include the effect of
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the exchange-correlation interaction of the electrons
within the electron gas. The numerical results show that
the values of the wake potential, the induced electron-gas
density, and the stopping power in the low-velocity case
are enhanced by the exchange-correlation interaction,
especially for the larger r, . In the low-velocity regime, it
is observed that there is a smaller asymmetry in the spa-
tial distribution of the wake potential and the induced
electron-gas density along the axis of motion. In the

high-velocity regime, however, the spatial distribution of
the wake potential and the induced electron-gas density
display stronger symmetries and definite oscillations.

ACKNOWLEDGMENTS

The work was supported by the Ion Beam Laboratory,
Shanghai Institute of Metallurgy, Chinese Academy of
Sciences. We thank R. A. Moore and W.-K. Liu for a
critical reading of this manuscript.

'Permanent address.
J. Neufeld and R. H. Ritchie, Phys. Rev. 98, 1632 (1955); 99,

1125 (1955).
2R. H. Ritchie, W. Brandt, and P. M. Echenique, Phys. Rev. B

14, 4808 (1976).
P. M. Echenique, R. H. Ritchie, and W. Brandt, Phys. Rev. B

20, 2567 (1979).
4A. Mazarro, P. M. Echenique, and R. H. Ritchie, Phys. Rev. B

27, 4117 (1983).
5F. J. Carcia de Abajo and P. M. Echenique, Phys. Rev. B 48,

13 399 (1993).
B.Tanatar and D. M. Ceperly, Phys. Rev. B 39, 5005 (1989).

7H. K. Sim, R. Tao, and F. Y. Wu, Phys. Rev. B 34, 7123 (1986).
A. Holas and K. S. Singwi, Phys. Rev. B 40, 158 (1989).
B.Tanatar, Phys. Rev. B 46, 1347 (1992).
Y. N. Wang and T. C. Ma, Phys. Lett. A 200, 319 (1995).
A. Gold and L. Calmels, Phys. Rev. B 48, 11 622 (1993).
F. Stern, Phys. Rev. Lett. 18, 546 (1967).

3N. J. M. Horing, H. C. Tso, and G. Gumbs, Phys. Rev. B 36,
1588 (1987)

A. Bret and C. Deutsch, Phys. Rev. E 48, 2994 (1993).
A. Bret and C. Deutsch, Europhys. Lett. 25, 291 (1994).

~ H. A. Bethe, Ann. Phys. (Leipzig) 5, 325 (1930).


