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The pulsed-gradient spin-echo electron spin resonance method has been used to measure the restricted
diffusion of electrons along fluoranthene channels in the quasi-one-dimensiona1 organic conductor
(Quoroanthene)2PF6. This type of experiment allows one to measure the echo attenuation both as a func-
tion of diffusional observation time 6 and effective scattering wave-vector amplitude q. In these experi-
ments 6 was varied between 10 and 20 ps, while q values of up to 2. 5 X 10 m ' were employed, enabling
dynamic spatial resolution on the micron scale. The echo attenuation data are broadly characteristic of
one-dimensional electron diffusion within the confines of an ensemble of wells, in which the well dimen-
sion I is characterized by a distribution p(l) =ll exp(l/l). Subtle deviations in this behavior can be
modeled both by a11owing for relaxation effects at the we11 boundaries, or by allowing for weak boundary
permeability.

I. INTRODUCTION
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The one-dimensional (1D) organic metals form a class
of materials in which the conduction-electron mobility is
highly anisotropic with respect to the crystallographic
axes. This anisotropy is manifested in conductivity and
in electron self-diffusion measurements and, as a conse-
quence, these materials are known as quasi-one-
dimensional. The mechanisms which limit electron mo-
bility along the conducting channels in such systems are
of considerable theoretical interest, and it is clear that a
deeper understanding of these effects will have practical
significance.

The present paper concerns a pulsed-gradient spin-
echo electron spin resonance (ESR) study of the
diffusional motion of conduction electrons, along
fIuoranthene channels in the one-dimensional organic
metal (fiuoranthene)zPF6. Previous measurement of self-
diffusion of (FA)2PF6 by ESR methods (Ref. 1) have indi-
cated that the upper limit for diffusion perpendicular to
the conducting channels is at three orders of magnitude
smaller than in the longitudinal direction. In a recent
study of this system using steady gradient spin-echo
methods, the time (r) dependence of the echo amplitude
was fitted using a model comprising both transverse ( T2 )

relaxation and diffusive relaxation effects. The echo at-
tenuation for unrestricted diffusion in the presence of a
steady gradient is due to Torrey, and given by

The steady gradient data for (FA)zPF6 strongly deviated
from the simple ~ dependence expected for free diffusion,
but was able to be represented more closely by the re-
stricted diffusion model of Neumann. In particular, the
echo attenuation was fitted using an expression based on
the assumption of confinement in one-dimensional wells
of length l in which the distribution of well sizes is given
by the density distribution P(l) =l 'exp( —l/l ) and the
consequent weight function, which represents the elec-
tron contribution to the echo, is given by
p(l)=/l exp( —l/l). The free parameters of the fit are
therefore T2, D, and I, and yielded values of 6.7 ps,
1.8X10 m s ', and 96 pm, respectively.

The steady gradient approach, while providing impor-
tant insight, suffers from a number of defects. First, the
Neumann expression is based on an assumption of Gauss-
ian spin-phase distribution, and gives only an approxi-
mate description of the echo attenuation. The method
does not take account of transverse relaxation which de-
pends upon well size, for example due to decoherence
effects caused by electron scattering at the boundary.
This particular problem is complicated by the need to
separate diffusional and T2 relaxation effects in the
analysis of the echo time dependence.

An alternative approach to the problem is provided by
the pulsed-gradient spin-echo (POSE) (Ref. 5) ESR
method in which the spin echo is attenuated due to spin
motion over the time 6 between two sharply defined gra-
dient pulses of duration 5 and amplitude N. In this exper-
iment the attenuation at a, fixed time is examined as a
function of gradient strength. Provided that the gradient
pulses are sufficiently narrow, this experiment provides a
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direct measurement of the average propagator of the spin
motion via a Fourier relation akin to that which applies
in inelastic neutron scattering. ' Indeed, the method al-
lows one to define an effective scattering wave vector q,
which is determined by the gradient pulse time integral
q=(2vr) 'y jg(t)dt

One particular advantage of the PGSE approach is
that the propagator for the one-dimensional well, incor-
porating relaxation at the walls, is known exactly. Fur-
thermore, the method directly and independently probes
both time and wave-vector domains, providing a test of
internal consistency in the modeling process. The princi-
pal challenge faced by PGSE ESR concerns the use of
short and intense gradient pulses, on the order of 1 ps in
duration and 0.1 T m ' in amplitude.

II. KXPKRIMKNT

The apparatus used to carry out PGSE ESR experi-
ments on the microsecond time scale has been described
in detail elsewhere. The system employs three orthogo-
nal gradient coils' of sensitivity 0.2 T m ' A '. In order
to generate gradient pulses of su%ciently short duration,
we have utilized a home-built pulsed-current driver based
on the clipped I.-C resonance idea of Conradi et aI."
This driver enables semisinusoidal current pulses of any
duration 5 down to 2 ps and at peak field gradients up to
1.0 Tm, to be easily realized with our coils using a
small 50-V dc power supply. In the experiments reported
here the saddle G„coil, coaxial with the rf coil, was used
for the pulsed gradients, while the remaining quadrupolar
coils were used to shim the local magnetic field.

In order to minimize eddy currents associated with
rapidly switched gradients, we have placed the probe
head in the fringe field outside a 7.0-T NMR cryomagnet.
The fringe field is highly stable and free from any com-
ponent of field ripple that is usually present in elec-
tromagnets. The required static field of approximately
10.5 mT (for ESR at 300 MHz) was obtained by adjusting
the position of the sample coil to a radial distance of —87
cm from the magnet axis, in the equatorial plane of the
magnet coil assembly. The field at this position is vertical
and antiparallel to the field in the center of the magnet,
and the expected static radial gradient component of
some 0.03 T m ' could be easily shimrned out by small dc
current in the three-axis gradient coil assembly.

PGSE ESR experiments were carried out at Massey
University using a well-characterized single-crystal sam-
ple of (FA)2PF6 (Ref. 12) at room temperature. A Bruker
AMX300 NMR spectrometer was used to generate a
300-MHz spin-echo sequence comprising a 90 -~-180 -~
pulse train in which the 90„and 180 hard pulses had
durations of 0.2 and 0.4 ps, respectively, thus providing
an effective excitation bandwidth of 2.5 MHz. The long
axis of the crystal sample, nominally in the direction of
the conducting channels, was oriented manually along
the direction of 6 with an estimated accuracy of +15'.
Data were acquired at 10 M samples s with an acquisi-
tion bandwidth of 5 MHz. Receiver dead time allowed
fully recovered echo signals only for ~ ~ 4 ps. Free induc-
tion decay (FID) signals from a single acquisition follow-

ing a 90' rf pulse exhibited a T2 of around 6 ps, con-
sistent with the earlier spin-echo results. The near ab-
sence of inhomogeneous broadening indicates the
effectiveness of shimming and the absence of residual
steady gradients.

In the PGSE sequence, weak static gradients were
present, probably due to slowly decaying eddy currents
caused by the effect of the rapidly switched field-gradient
pulses in the vicinity of the rf shield. Figure 1 shows a
typical example of an on-resonance spin-echo signal, ob-
tained by signal averaging after 1000 excitations where
the echo time 2~ is 16 ps. In all experiments reported
here the 5 pulses were positioned immediately after each
of the rf pulses, thus implying A=~. This helped mini-
mize attenuation artifacts caused by residual eddy fields.
Note that for semisinusoidal gradient pulses of amplitude
g, the reciprocal space vector q has magnitude q given by

y5g, where 5 is the time between the two zero cross-
ings of the current.

III. PGSK THKQRY

Here we shall summarize the theory of pulsed-gradient
spin-echo (PGSE) ESR (Refs. 6, 18, and 13) as it applies
to restricted diffusional motion of electrons located
within an array of one-dimensional wells, and where the
applied magnetic gradient direction is applied parallel to
the diffusion axis. Two principal models will be con-
sidered. In the first the electrons are completely confined
in the wells but may suffer some relaxation effects in col-
lision with the barriers. In the second, some hopping be-
tween wells is permitted. A key assumption of the
analysis is that the spins move an insignificant distance
during the gradient pulse itself, or in other words,
5 «l /D where l is the interbarrier spacing. However, it
has been shown that even where significant motion does
occur, the narrow pulse analysis may still be applied but
with the effect that the apparent displacement of the
spins is reduced, leading to an apparently smaller well
size. '

Using the conditional probability P, (x
~
x ', b ) that an
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FIG. 1. Real and imaginary echo signals from a 90„-w-180~
spin-echo sequence (&=7.8 ps) after signal averaging from 1024
transients. The acquisition begins 0.5 ps before the first rf pulse,
although the correct phase cycling for signal coaddition does
not begin until 0.5 ps following the second pulse. The addition-
al delay before the signal appears is due to the 4-ps dead time.
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where p(x) is the starting spin density, the quantity
mapped in conventional NMR or ESR imaging, and cor-
responds to the pore electron density function.

J p(x)P, (x~x', h)dx defines the average propagator, '3
P, (X,b ), the probability that an electron at any starting
position is displaced by X=x' —x over time A. Conse-
quently Eq. (2) may be written

E(q, h)= fP, (X,A)exp[i2nqX]dX . (3)

Clearly inverse Fourier transformation of E (q, b. ) with
respect to q returns an image of the average propagator
I', . In this sense PGSE ESR is analogous to an imaging
experiment, the difference here being that electron-spin
motions rather than positions are mapped.

In free diffusion the propagator is Gaussian, and the
echo dependence will also have a Gaussian dependence
on q, namely,

E ( q, b, ) = exp( 4' q D 6 )—, (4)

i.e., the signal reverts to the well-known Stejskal-Tanner
relation.

A. Con6nement within wells

We now consider the case' where the electrons are
completely confined by impenetrable barriers to difFusion.
For a one-dimensional well whose barriers are separated
by a distance l, the electron diffusion will appear to be
unrestricted for b, «1 /2D, whereas for b, ))l /2D all
electrons, irrespective of starting position, can be found
anywhere within the pore, and the mean-squared dis-
placement will appear to be time-independent and on the
order of I . This long-time limit leads directly to a
dift'raction interpretation since, for 6 ))1 /2D,
P, (x~x', b. ) reduces to p(x'), the pore molecular density
function, while the averaged propagator P, (X, ao ) be-
comes an autocorrelation function of p(x'),

P, (X, ~ ) = fp(x +X)p(x)dx .

In consequence the echo attenuation function reduces to
the Fourier power spectrum of p(r'),

E(q, ~ )= IS(q)l' .

For the one-dimensional well this is precisely the
diffraction pattern of a single slit, namely,

S( ) ~2
2[1—cos(2mql)]

(7)
(2nql)

It is important to note that Eq. (7) is not only indepen-
dent of the observation time 6 but is also independent of
the microscopic self-diffusion coe%cient D. This marks
an important distinction between PGSE ESR and the

electron starting at position x on the well axis will move
to position x' over the time 6, we may write the echo at-
tenuation as '

E(q, b, ) =fp(x)P, (x~x', b, ) exp[i2~q (x' —x))dx dx',

steady gradient spin-echo where D is a key parameter in
the analysis of the echo attenuation process. In the long-
time-scale limit of PGSE ESR the actual diffusion rate is
important only in determining the onset of the
independent regime. Remarkably, while the regime is la-
beled "long-time scale, " it is very closely approximated
even when b, -1 /2D, a factor which enhances the useful-
ness of the model.

In the situation encountered here the electrons occupy
a distribution of wells of difFerent size I, so that an aver-
age structure factor can be obtained by integrating over
the assumed distribution function, P (1)= 11 exp( —1/1).
The result is clearly an approximation since the pore
equilibration condition 5)1 /2D must break down for
the largest values of l. Provided, however, that l is not
too large, this fraction of electrons will be small and the
average structure factor will be useful. The result of in-
tegrating Eq. (7) over the distribution p (I) is simply

IS,(q)l'=(4''q'~ ) '»(1+4~'q'~ )

Some further insight regarding the effect of the distribu-
tion of well sizes may be gained by pursuing the
diffraction model under the infIuence of the small scatter-
ing wave-vector approximation, i.e., 2mqX«1. In this
case the echo attenuation is given by' exp[ —

—,'(2vrq) X ].
For the case of the one-dimensional well in the long-time
limit, one may obtain a direct model-independent mea-
surement of the length distribution parameter 1 without
needing the particular functional form of the distribution.
To the extent that the long-time small q conditions are
met effectively for all l values in the distribution, we may
describe the amplitude of the echo signal, arising from
the entire distribution ensemble, by the expression

E (q, ao ) = exp [ —(2vrq) —,', 1 ] .

This simple diffraction picture for PGSE ESR of trapped
electrons, and its further extension to low wave vector, is
very helpful in providing theoretical insight. However,
the need for many of the assumptions involved may be re-
moved by a more exact theory, and this will be the ap-
proach adopted in Sec. III B.

B. Relaxation and Snite observation time effects

In addition to the finite gradient pulse width effects re-
ferred to above, two other factors result in modifications
to the simple difFraction theory. The first concerns the
problem of the long-time-scale approximation. Given the
wide distribution of l values expected in the Auoranthene
samples, many conducting channels will exhibit well sizes
for which 5 & l /2D. The long-time-scale approximation
may be avoided in a more sophisticated theory. The
second issue concerns the need to allow for relaxation
effects. Given the relatively short relaxation times that
apply for the conduction electrons, it is necessary to work
at spin-echo durations for which the attenuation due to
normal (T2) relaxation is substantial. This raises con-
cerns about T2 values which may depend on well dimen-
sion, thereby engendering unequal weighting to the ap-



16 388 KAPLAN, DORMANN, RUF, COY, AND CALLAGHAN

parent spin populations and deviations in the apparent
well sizes determined from the diffraction model.

Recently, an exact expression has been derived which
accounts for both such effects. ' The analysis is based
on an eigenmode expansion in which the boundary condi-
tion for the spin density, Dn. Vp+Mp=O, allows for
both reAection and relaxation at the walls. Here D is the
microscopic diffusion constant while M is the average
magnetization sink density on the boundary surface with

I

normal n. These determine the parameter set
given by the roots of

g„tang„= and g„cotg„=—Ml Ml
2D

For the PGSE ESR pulse sequence used here, the average
propagator and the echo attenuation are given, respec-
tively, as'

I', (X,h)= g exp
(2 „)Db,

I [1+sin(2g„)/2g'„]
I2

X ( [I —X +(I/4g„) [sin(2g„—4g„X/I)+ sin(2g„) ] ] cos(2g„X/I)

+ ( I /4g„) [ cos(2g„—4g„X/I) —cos(2g„) ]sin(2g„X/I ) )

(2g ) Db,
+ g exp

m=1 j'2
I [1—sin(2$ ) /2g ]

—(I/4g )I cos(2$ —4g XI)—cos(2g )]sin(2g XI)),

(2g„) Db
l2

, [(mql)sin(mql) cosg„—g„cos(mql)sing„]
2[ 1+sin( 2g„)/2g„]

[(mql) —g„]
Er(q a) = y exp

n=1

X([I—X—(I/4g~)[sin(2$ —4g XI)+sin(2$ )] ] cos(2g Xl)

(2$ ) Db,
+ g exp

m=1 l2

[(~ql) cos(~ql)sing —g sin(mql) cosg ]
2[1—sin(2g )/2g ]

[(mql) —g ]
(12)

In the analysis of the results presented here, we shall use
the exact expression for the echo attenuation given by
Eq. (12), weighted by the well size distribution function,
p(l), i.e.,

E(q, b)= I p(I)EI(q, b, )dl .
0

(13)

C. Well hopping

The facility to move between wells suggests that, in-
stead of being restricted to the dimensions of the local
well, each electron, over a sufficiently long time scale, will
experience a long-range mobility characterized by an
effective diffusion coefficient D,z. This provides a sharp
contrast with the model leading to Eqs. (12) and (13), in
which electrons suffer relaxation at the well boundaries

We refer to this depiction expressed in Eqs. (12) and (13)
as the impenetrable relaxing wall (IRW) model. Two lim-
iting cases for relaxation apply, depending on whether
MI/2D is greater or less than unity. While these limits
help explain the role of relaxation for the situation en-
countered in the PGSE ESR experiments on
Auoranthene, it is unnecessary to make such assumptions
in fitting the data. In both cases small wells suffer pro-
portionately greater relaxation. The influence of relaxa-
tion is therefore to diminish the contribution to E(q, b, )

from the smaller wells, thus preferentially reducing the
echo amplitude at large q.

but no hopping between wells is possible.
In allowing for migration of electrons between wells,

two different cases are considered. In the first, the migra-
tion occurs due to displacements along the chain in
which a small fraction of electrons pass the barrier to a
neighboring well rather than being rejected back into the
same well. For such a model well hopping clearly de-
pends on the electrons making collisions with the well
ends, and can therefore lead to rapidly enhanced migra-
tion only if the barriers are highly permeable. We refer
to this as the permeable well (PW) model.

In the second model, transverse migration between
chains allows electrons to move to a well of different l
and center positions. This latter process does not in fact
require boundary collisions but, instead, the rate of well
hopping is determined by the transverse diffusion rate
alone. Irrespective of local barrier permeability, if this
chain hopping is sufficiently rapid to allow electrons to
move freely between chains in which the position and
spacings of barriers are randomly varying, then the effect
is that net migration parallel to the chain directions will
be rapid and the effective longitudinal diffusion coefficient
will approach the local (free) diffusion value D. This
transverse migration (TM) model differs strongly from
the PW model in its predictions for the echo attenuation
function.

The first (PW) model of well hopping has been treated
in detail in an earlier paper. Two assumptions are cru-
cial. In the first, the so-called "pore equilibration" condi-
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E(q, b, ) = ~So(q)~ exp[ A,D,&b,—(1—FIh(X)I ], (14)

where h (X) represents the distribution of neighboring
well-center displacements, and FI ] is the Fourier trans-

tion, we assume that permeability is weak and that the
electrons will experience sufficient numbers of collisions
that the diffraction effects of motion within the well may
be separated from the interpore effects. For interwe11
spacings comparable with the well size, the equilibration
condition is satisfied provided 6 I /2D and D,ff((D.
In the second assumption, we presume that the probabili-
ty of well hopping in a given time interval is independent
of the distance to the first neighboring well. Under these
conditions it may be shown that the echo attenuation is
given by

form operator. The variable A, is determined by the rela-
tionship

2D,~5=(2') 8 /Bq exp[ AD—,~b(1 —FIh(X)I]~~=o .

(15)

While ~SO(q)~ is given by Eq. (7), the function h (X) is
obtained by considering two neighboring wells of spacing
l& and lz, respectively. Because the well centers are
separated by X =(l, +/z )/2, the probability distribution
h (X) is given by

h (X)=2f p(l i )p (2X —l i )dl i

,'X l —exp(—2X/l) . (16)

On Fourier transformation of h (X) and evaluation of the
constant, A, , we find

E(q, b, )=(4n. q / ) 'in(1+4m. q l ) exp
2D,ffh

5l

1 6(~q/ )
——(~q/ )

[I+(mq/) ]
(17)

It should be noted that the assumption of equal well hop-
ping probability is not absolutely necessary. Indeed,
some allowance for a distance dependence in this migra-
tion can be incorporated by adjusting the effective adja-
cent well distribution function given in Eq. (16). A
reduction in hopping probability which is inverse linear
or inverse quadratic in the separation distance X could be
allowed for by altering the X weighting in Eq. (16) to X
or X, respectively. For example, the inverse quadratic
variation leads to the exponent in Eq. (17) being replaced
by D,sh/l (1——[1—(~q/) ]/[I+(~q/) ]). Given the
wide variation in well sizes inherent in the exponential
distribution, such an allowance for well hopping variabil-
ity is probably essential.

While the PW model, represented by Eq. (17), may al-
low for interpore migration effects in the echo attenua-
tion, the pore equilibration approximation inherent in its
derivation must break down for sufficiently large values
of the well dimension, l. Furthermore, the derivation
takes no account of relaxation effects which may occur at
the barriers. By contrast, the IRW model [Eq. (14)],
while accounting for relaxation effects and avoiding the
pore equilibration assumption, takes no account of mi-
gration between pores. Both models are characterized, to
first order, by the well distribution structure factor pre-
dicted by the simple infinite time diffraction relation of
Eq. (8). It is in the q- and b, -dependent deviations from
this behavior that distinctions arise. Both models result
in enhanced echo decay at higher q values, by compar-
ison with that predicted by the well structure factor
alone. However, a significant distinction arises when
considering the 6 dependence of the signal. For IRW, a
family of echo attenuations obtained at different observa-
tions times 6 will have a common q dependence at long
times but deviate toward higher echo amplitudes for
6 ~ I /2D. By contrast, for PW the increasing decay of
echo amplitude proceeds relentlessly as 6 is increased,
owing to the leakage from the wells which is character-
ized by the parameter D,ff.

IV. RESULTS

Echo attenuation data for the conduction electrons in
Fluoranthene have been obtained at four different obser-
vation times, 6 for at least two different 6 values. The
shortest of these, 10 ps, was determined by the need to al-
low sufficient receiver recovery time after the 180' rf
pulse, while the longest time, 19.5 ps, was determined by
the need for sufficient signal-to-noise ratio in the face of
relaxation decay of the echo amplitude (Tz=7 ps). In
Fig. 2 some of these data, corresponding to the shortest
duration gradient pulse (around 2 ps), are plotted on a
conventional Stejskal-Tanner plot as ln(E (q, b, ) ) vs

0.1

100000

4mq~(A — 6/3) (sm )

200000

FIG. 2. Log of normalized echo amplitude vs 4m q 6,
(Stejskal-Tanner plot) for electron-spin echoes obtained from
(FA)~PF6. The data shown are for a range of reduced diffusion
times (A„=A—5/3) and in each case correspond to the shortest
gradient pulse duration, 5=2 ps for 6= 10 ps (filled circles), 14
ps (open circles), and 16.5 ps (filled squares}, and to 5=2.6 ps
for 6=19.5 ps (open squares). The data deviate from the sim-

ple Gaussian expected for free diffusion with unique diffusion
coefficient D, and do not lie precisely on a common curve as b, is
varied. This latter feature is characteristic of restricted
diffusion.
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4n q h„where 5„ is the effective gradient pulse separa-
tion, b, —5/3. (This reduction is the standard correction
which is made to allow for diffusion during a square gra-
dient pulse of duration 5. While it represents only an ap-
proximation to the result for half-sinusoidal pulses, the
correction is slight and of no significance in the present
context. )

It is clear that the data do not follow the Gaussian
dependence expected for free diffusion, in which
in(E(q, b, )) should vary linearly as 4m. q b, , with a slope
given by the diffusion coefricient. Furthermore, the data
cannot be explained by a distribution of diffusion
coe%cients owing to the lack of commonality of the set as
the observation time 6 is increased. Indeed, the apparent
reduction in slope with increasing 6 is exactly what one
would expect if diffusive barriers were acting, thus reduc-
ing the apparent diffusion coe%cient as the time of obser-
vation is increased. The data therefore present a prima
facie case for proposing a model involving restricted
diffusion.

An initial analysis of the low-q data using the approxi-
mate echo attenuation expression exp[ —(2~q) —,', I ]
yields a value for (l )' of 80+5 pm. From the number
distribution p (1) it may be shown that (l )'~ =v'6l and,
hence, 1=33pm.

Next we have attempted to fit the data sets, for each
observation time 6, using the IRW model in which we as-
sume the exponential distribution of well lengths expect-
ed on the basis of the random defects model. In fitting
the data to Eqs. (12) and (13) we have used a least-squares
algorithm in which I and M are the free parameters, with
D being fixed at the value of 1.8X10 m s ' used in the
previous steady gradient work, noting that the fits to l
depend only weakly on D. In the case of all the data sets
we noticed that a small correction of around 10% was
needed in the assigned gradient pulse widths for 2.6 and
2.0 ps in order to produce compatibility with the data ob-
tained for 6=4.0 ps. We attributed this effect to slight
deviations from the half-sinusoidal shape for the shorter
pulse widths and the consequent difhculty in assigning an
effective q value. Only the low-q data were considered in
making this adjustment, since here the echo attenuation
must follow the exp[ —(2~q) X ] relation, irrespective of
any assumption regarding the restrictions to diffusion.
While all our subsequent Agures and Ats incorporate this
correction, we emphasize that the conclusions reached
here are not significantly dependent on this adjustment.

Figure 3(a) shows an example of the data for the obser-
vation time 5 of 16.5 ps along with the best fit using Eqs.
(12) and (13). We have carried out similar fits for each of
the observation times 6 of 10, 14, 16.5, and 19.5 ps. A
compromise simultaneous fit to all data is shown in Fig.
3(b). The parameters for all of the fits are summarized in
Table I. Except for the shortest times of 5=10 and 14
ps, the data yield fairly consistent values of I around 50
pm, and M on the order of 0.1. The value of the wall
sink density corresponds to the fast difFusion regime
MI/2D «1 for the overwhelming majority of the wells
within the exponential distribution, and an additional
well-size-dependent relaxation time of I/2M, correspond-

(a) ~
~--

0.1

0.01

(b) & -=——
ILL

10000 20000 30000

q (m )

0.01 I I

10000 20000

q (m )

30000

ing to 250 ps at the mode well spacing I =50 pm. The
fitted transverse relaxation time, caused largely by spin-
lattice interactions, ' is T2 =7 ps. Consequently, and
without attempting to speculate on the possible mecha-
nism for M, the e6'ect of wa11 relaxation is weak except
for barrier spacing much shorter than 5 pm. However,

TABLE I. Parameters used in Ats to the data shown in Fig. 3
using the IRW model.

I

(pm)

21
20
47
46

M
(ms ')

4

0
0.11

D
(m's ')

1.8X10
1.8X 10
1.8 X 10
1.8X10

(ps)

10.0
14.0
16.5
19.5

0.01 1.8X 10 average best fit

FIG. 3. Log of normalized echo amplitude vs q for electron-
spin echoes from (FA)2PF6. (a) shows the case of the observa-
tion time 5= 16.5 ps (closed circles are 5=2.0 ps, open circles
are 5=2.6 ps, and closed squares are 5=4.0 ps). Also shown is
the best fit using the impenetrable relaxing wall (IRW) model
optimized by varying M and I. The parameters for the fits to all
the data corresponding to the diFerent observation times are
summarized in Table I. (b) shows superposed data for (A, 5)
values of open circles (14.0 and 2.0 ps), closed squares (16.5 and
2.6 ps), and open squares (19.5 and 2.6 ps) along with the set of
three IRW curves corresponding to the compromise best-fit pa-
rameter set (D =1.8X10 m s ', 1=47 pm, and M=0.01),
where the descending amplitude corresponds to ascending A.
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these short wells will dominate the remaining echo ampli-
tude at the largest values of q, so that the effect of this re-
laxation in the fitting of the echo attenuation data is im-
portant.

The discrepancy in fitting the IRW model to the data
sets obtained at different observation times 5 naturally
leads to our considering the alternative PW description.
This latter model is lent further credence by the trend,
apparent across the range of 6 values used in this work,
to somewhat greater attenuation of the echo as 6 is in-
creased. In consequence we have carried out a least-
squares analysis of the echo attenuation data depicted in
which the fit using Eq. (17) is optimized by varying D,s.
and I. For the uniform hopping PW model depicted in
Eq. (17), no good fit is obtained in which D,&%0 By.
contrast, the inverse quadratic dependence of well hop-
ping on well separation does yield a fairly consistent fam-
ily of fitted curves. An example of one such fit (b, =16.5
ps) is shown in Fig. 4(a), while the combined data fit is
shown in Fig. 4(b). The parameters for all these fits are

summarized in Table II. The slight superiority of this
model over IRW is apparent in the combined data fit. By
comparison with the IRW family shown in Fig. 3(b), the
PW description is more compatible with the data ob-
tained over a range of values of h. It is also clear that the
value of l obtained in the PW fit is, at 27 pm, somewhat
closer to the estimate of 33 pm obtained using the low-q
data.

It might reasonably be argued that the analysis so far
presented is dependent upon an assumed exponential dis-
tribution of well sizes. In principle, given a knowledge of
the specific nature of the electron-barrier interaction, the
echo attenuation function could be appropriately
transformed to yield the appropriate weight distribution
function p (l). While we have not attempted to carry out
an inverse transformation of the echo attenuation data
using Eq. (12) and (16), we have been able to approxi-
mate this by utilizing the first-order time-independent
diffraction model. Because of the Fourier relation in-
herent in Eq. (6), we may carry out this analysis by per-
forming an inverse Fourier transformation (FT) and then
fitting the data to a sum of one-dimensional well auto-
correlation functions. Because of the inherent assump-
tion of the long-time limit for all wells, we have only at-
tempted this for the longest observation time dat for
which 6= II9.5 ps. The FT of this data is shown in Fig. 5
along with the corresponding distribution function p,z.(l).
Also shown are the exponential weight function p (I), us-
ing the value i=25 pm. It should be noted that the
method of analysis involves the least-distance (LDP) al-
gorithm due to Lawson and Hanson, ' in which the ker-
nel is taken to be the expected triangular autocorrelation
function. It can be seen that the resulting weight func-
tion is truncated for values of l below 5 pm. Such a
cutoff was earlier proposed in the analysis of steady gra-
dient data.

It should be noted that the inversion process is not at
all unique. For example, a diff'erent algorithm [for exam-
ple, non-negative least squares (Ref. 19)] yields a diff'erent
distribution function. Furthermore, the direct inversion
process assumes perfectly trapped electrons, no relaxa-
tion, and a long diffusion time limit, whereas the fits to
the echo attenuation data using the exponential distribu-
tion takes account of relaxation, wall permeability, and
finite diffusion time effects. Consequently, we place more
weight on the exponential distribution fits used here. We
include the inversion calculations in order to demonstrate
the analysis potential of the PGSE method under condi-

FIG. 4. As for Fig. 3, but with fits carried out using the
permeable well (PW) mode1 optimized by varying D,z and I.
The fitted parameters are shown in Table II. No good fit is
found assuming a uniform hopping rate, and the theoretical
curves shown correspond to an assumption of inverse quadratic
dependence of well hopping on well separation. The combined
data fit is shown in (b), in which the data for b, =10, 14, 16.5,
and 19.5 ps are shown as closed circles, open circles, closed
squares, and open squares, respectively. The four PW curves
correspond to the best-fit parameters to the entire data set
(Deff 2 1 X 10 ' m s ', I =25 pm), where the descending am-
plitude corresponds to ascending h.

(pm)

13
20
26
26

D.a
(m's ')

3.2X10-'
2.2X 10
2. 1X10
2. 1X10

(ps)

10.0
14.0
16.5
19.5

25 2. 1X10 combined fit

TABLE II. Parameters used in fits to the data shown in Fig.
4 using the PW model.
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tions where the shape of the displacement propagator, I'„
is well known.

Finally we have attempted to fit the data presented
here with a model comprising two populations of elec-
trons, one of weight x which is free to diffuse without re-
striction with self-diFusion coefficient D, and one of
weight 1 —x which is completely con6ned. The best fit to
D and x is shown in Fig. 6, and clearly gives a poor repre-
sentation of the data.

0 'CElQCXJ
C3

V. DISCUSSION AND CONCLUSIONS

So far we have not considered the problem of trans-
verse migration of electrons. ' While diffusional motion
transverse to the conducting channels cannot in itself
lead to echo attenuation if the single crystal is properly
aligned, the facility to hop between channels over the
PGSE observation time may lead to an entirely diFerent
motional averaging process. In particular, if electrons
are able to sample many different well sizes over the time
6, the net migration in the axial direction parallel to
those channels will be quite different than if the electrons
were con6ned to a single local well dimension with the
echo signal being averaged over the well size distribution.

(a)

0.8

0.6 —~

0.4 — ~

0.2

I ~&~~ i~&0
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(b) o.o6
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0
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0.01
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FIG. 5. (a) The spatial Fourier transform of the E(q) data
for 6=19.5 ps and 5=2.6 ps along with (b) the corresponding
distribution function p,&(l) obtained using the LOP (open cir-
cles) algorithm of Lawson and Hanson in which the kernel is
taken to be the expected triangular autocorrelation function.
The solid curve shows the exponential weight function p (l), cal-
culated using the value l =25 pm.

10000 20000 30000

q (m')

FIG. 6. Fit to the E(q) data of Fig. 4(e) (5= 10, 14, 16.5, and
19.5 ps as closed circles, open circles, closed squares, and open
squares, respectively) using a simple two-site model in which
one fraction of electrons is able to diffuse freely (D =3X 10
m s ', x =0.9), while the remaining electrons are confined.
Descending amplitude corresponds to ascending A. The data
are poorly represented by such a model.

In order to take account of this possibility, we have
carried out some Monte Carlo simulations of this motion
using a model in which electrons are allowed to hop be-
tween wells of differing size on a time scale ~ which may
be less than or greater to the time I /D taken to collide
with the walls of the local well. In such a model not only
the wall spacing is allowed to change between jumps but
also the wall positions. In consequence the electrons And
themselves hopping in a maze which, in principle, allows
long-range motions. Our simulation results unambigu-
ously demonstrate that the diFusional motion will be
practically free, with a diffusion coefficient approaching
the unrestricted value D when r« I /D. This observa-
tion is consistent with our intuitive understanding. The
overall propagator is simply the convolution of N succes-
sive propagators corresponding to successive chain
residencies of duration ~ where A=N~. Consequently, if
r « l /D, then these propagators will be locally Gauss-
ian and the net propagator will be a Gaussian of rms
width 2DA. Such behavior would be expected given the
upper estimate of transverse electron diffusion of around
1X10 m s ', since this would correspond to ~-10
s, for which the distance diffused along the conducting
channel is on the order of 1 pm.

One of the most compelling features of our data is the
Aattening of the echo attenuation at large wave vector,
which can only arise from electrons trapped in regions of
small (& 10 p,ml dimension. Hopping which results in
jumps between wells with shifting walls will release these
trapped electrons, and the high-q data will be strongly at-
tenuated. In consequence any lateral mobility must not
be associated with hops between wells of diFering and un-
correlated wall positions. Indeed we would suggest that
the data presented here are only consistent with the con-
ducting channels subtending many chains, so that,
despite interchain hopping, electrons are con6ned to a
single effective well over the 10—20-ps observation time
associated with our method.

A schematic visualization of a possible well distribu-
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