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Dwell time and asymptotic behavior of the probability density
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The asymptotic long-time behavior of the probability density in a collision of a particle with
several model potentials is analyzed. In all cases the observed dependence is an inverse cubic power
of time. This assures the existence of the dwell time as a meaningful finite quantity.

In a recent publication the decay of one-channel quan-
tum states initially restricted to a Gnite spatial region
0 ( r ( B and interacting with a cutoff potential [i.e.,

V(r) = 0 for r ) R] was examined. It was argued there
that while the survival probability ~(@(t)~g(0)) i

behaves
as t for long times, the nonescape probability

for the propagator in terms of a contour integral in the
complex momentum q plane,

—'Ht/h
[ ) d I( )

t/s—'

C

R
P(t) =— dr ~@(r,t)['

I(q) = —x x' (4)

decays asymtotically as t . In a general one-dimensional
scattering or decay problem the asymptotic dependence
of the probability of being in a given spatial region [a, b] is

important because a t behavior would make the dwell
time

an ill-defined (infinite) quantity. (We assume for sim-
plicity that there are no bound states. ) At a preparation
time t = 0 the wave packet g(x, 0) may or may not over-
lap with the potential as corresponds to a decay or a
scattering problem, respectively. (Hereafter it is always
assumed that t ) 0 in all equations. ) The concept of
dwell time, as an average time spent by the particle be-
tween positions a and 6, has been central to the study of
time-dependent aspects of wave-packet propagation and
the temporal characterization of electronic devices, so
a careful examination of this matter is required. A second
motivation to study the subject is that the observation
of nonexponential decay in artificially built mesoscopic
d.evices where difI'erent potential shapes can be obtained
seems feasible.

It is our aim here to present analytical and numer-
ical evidence that, indeed, a t behavior can be ex-
pected quite generally for the probability density in
one-dimensional collisions and partial waves in three-
dimensional scattering.

A general understanding of the asymptotic behavior
of the probability density is achieved &om the expression

where z = q /2m and the contour C goes from —oo to
+oo, passing above all the singularities of the resolvent.
In the absence of bound states C goes simply above the
real axis, which is the continuous spectrum of the Hamil-
tonian H; see Fig. 1. Due to the exponential e
in (3) the large t behavior is dominated by the region
around the origin, which is associated with low momenta
on the real axis. The origin is actually a saddle point
for the steepest-descent path for this exponential factor
that crosses the origin along the diagonal of the second
and fourth quadrants; see contour C' in Fig. 1. It is
convenient to introduce the new variable

u = q/J', f = (1 —i) g(mn/t),
2

so that the exponential becomes e " and u remains real
along the steepest-descent path.

The resolvent matrix element (x~(z —H) ~x'), which
is defined for Imq ) 0 (or first energy sheet), has to
be analytically continued into the lower half q plane (or
second sheet of the complex z plane) to allow for this
type of analysis. Provided that the analytically continued
function is analytical at the origin it has a Taylor series
expansion

(x~ (z —H) '[x') = ao + aiq ~ a2q' +

with coefFicients a, depending on x and x'. But because
of the (odd) q factor in (4), the first term ao does not con-
tribute to the integral (3). The asymptotic formula for
the propagator comes, therefore, &om the second term,
and takes the form
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FIG. 1. Contour C (dashed line) in the complex q plane.
The contour C' results from deforming contour C by a rota-
tion by 45' and crossing a resonance pole.

lowed to cover the full line and second is the restriction
to a half line. There is a basic difference in the asymp-
totic time dependence between these two cases for &ee
motion while, at least for the potentials examined, the
probability density for interacting motion commonly de-
cays asymptotically as t . For the latter to occur, I(0)
must vanish. This can arise either via a cancellation be-
tween &ee and scattering parts, i.e. , I, (0) = —I~(0) g 0,
or both terms can vanish separately, I, (0) = I~(0) = 0.
The two possibilities are exempli'. ed.

Consider erst &ee motion on the full line. In this
case Hp is the kinetic-energy Hamiltonian for one par-
ticle moving in one dimension. Using the resolution of
the identity in terms of momentum eigenstates and con-
tour integration one finds the Green's function for free
motion,

(*I' *"'"l*')- a,t'f euu*e
2m' '

2m+x ( t)

1 1 1+- V
Hp z —Hp z —H

T(z)
z —Hp z —Hp

'+
Hp

in terms of the kinetic energy Hamiltonian Hp and the
parametrized transition operator T(z) = V + V(z—
H) iV, the evolution operator U:—e 'H /" will be sep-
arated into "free" and "scattered" parts, U = Uf + U, :

This formal result depends on the validity of (6), and
on the assumption that no additional contributions due
to the deformation of the contour are to be considered
asymptotically. In general the analytically continued ma-
trix elements of the resolvent will have poles in the lower
half q plane that may be crossed. when deforming the con-
tour (see an example in Fig. 1) but these can only yield
contributions that decay exponentially with time, so they
are negligible at long times. It is then our objective to
examine the factor I(q) in the limit q ~ 0 for several
models. When I(0) vanishes a t asymptotic behavior
of the probability density will occur and dwell times will
be well defined.

Based on the decomposition of the resolvent of H,

z —Hp qh
(14)

m a/2
iHot/hl t)— inn{+ —x') /2ht

iht

is obtained, verifying an asymptotic t behavior of the
probability density.

Next is the study of the scattering contribution to the
propagator for a separable (noncutoK) potential,

v = l~)v, hl

9 Ix) =
I

I, 7r ) a2+p2

(16)

The T(z) operator is known explicitly for this potentiaP

T() =Ix) "","'
(xl,

C(q)

C(q) = q(q + ia) —2mVp (q + 2ia),

which, using (13), gives for the scattering part of the
propagator the factor

so that Iy(0) = —i/h g 0; see (ll). As a consequence the
asymptotic behavior of the probability density for &ee
motion on the full line is t . This is an important case
in which Eq. (6) is not satisfied. Explicitly, by carrying
out the integral in (3), the well-known propagator

(xlUflx') = (xle * ""I*') = — dq e "' "If(q), (1o)
27r

Ig(q) = —x x'1 (ii)

i Ht/h i Hot—/h I—
dqe "'/"I, (q), (12)

I.(q) = —x T(z) x'1 1
m z —Hp z —Hp

(20)

1 —2mi /'a'& '/' e'I I«"
z —Hp q +a (A)

—a(~~/h

ia

The matrix elements depending on the coordinates in
(20) can be evaluated by contour integration,

Two different cases of one-dimensional motion will be
discussed. First is the case in which the motion is al- IThe matrix element depending on x' is obtained &om
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—ix p/h

b' + (p —p~)'
(22)

(21) by taking its complex conjugate together with the
replacements —q* by q and x by x'.] Substituting (20) in
(12), the resulting integral has three simple poles at the
roots of the cubic equation C(q) = 0 and a double pole
at ia. It can be explicitly evaluated by expanding I(q) in
partial fractions and recognizing the resulting integrals as
tu functions (for first-order poles) or as derivatives of to
functions (for second-order poles). For the present pur-
pose it is sufficient to point out that, using (20) and (21),
I, (0) = i/»i = It(0—), which exactly cancels the corre-
sponding result for &ee propagation. For some initial
wave packets analytical results can be obtained for the
time-dependent wave function in terms of ~ functions.
In particular the I orentzian momentum wave function

—10-

—20
0

In

FIG. 3. lnD, where D = (h,[(z = OIQ)I /a) versus lnv.
Same barrier and initial state as in Fig. 2. The initial rise is
associated with the approach of the packet to the barrier.

allows an explicit analytical evaluation of (xIQ(t)). Fig-
ure 2 shows the logarithm of the probability density at
the point x, which is the central position of the packet
at t = 0, versus the logarithm of time. The packet is
initially on the left, x ( 0, far &om the potential bar-
rier. An intermediate straight line of slope —1 denotes
the asymptotic regime associated with &ee motion, and
corresponds to a time regime where the effect of the po-
tential is negligible. There is after that regime a com-
plex oscillatory transient associated with the main pas-
sage of the reBected packet. Finally, the asymptotic t
decay (slope —3 in the figure) is found. The two difer-
ent asymptotic regimes, t or t for propagation with
or without the potential, are also represented in Fig. 3,
where the position chosen for the evaluation of the prob-
ability density is the potential center, x = 0. In addition,
numerical calculations have been performed for Gaus-
sian wave packets colliding with square barriers, and the
same asymptotic dependence t is found.

The next example is the b function potential
(x I

V
I
T') = Voh (x)8(x —x') . In this case one obtains,

using (8),

(23)

2
(rIp) =, sin(pr/»i), r ) 0, p & 0, (24)

where IO) is the position ket associated with the origin,
(xIO) = b(x). Using (13), (14), and (23) it is again found
that I.(O) = i/h, = —Iz(O).

An example of a different nature is &ee motion re-
stricted to the half line, i.e., to r ) 0. This can be
viewed as an 8-wave partial wave of three-dimensional
&ee motion or as one-dimensional motion restricted by
an infinite barrier at the origin. [A distinction between
radial motion and one-dimensional full line motion has
been made by using r for the radial coordinate versus
x as a general one-dimensional coordinate. The general
discussion between Eqs. (2) and (13) applies to radial
motion as well. ] A convenient complete set of orthogonal
functions is now given by

which are the continuum eigenvectors of Hp, hav-
ing eigenvalues p /2m, and normalized so that

j& (pIr)(rIp')dr = b(p —p'). The Green's function can
be obtained by expanding Hp in this basis:

mi [;(~ '+) q/s il r ~'
I q/s] (25)

z —IIo

—16
0

[Note the additional amplitude in comparison to the re-
sult obtained for free motion on the full line (14).] Iy is
given, using (25), by

FIG. 2. lnD, where D = (AI(z I@)I /a) versus In&, where
r = ta /mh for x,a/h, = —20 (solid line). Barrier and state
parameters are [see Eqs. (16), (17), and (22)] mVO/a = 5,
b/a = 1, p, /a = 2. The dashed line corresponds to the same
state parameters but free propagation (Vo ——0). Solid aud
dashed lines are indistinguishable in the scale of the 6gure
until ln ~ —2.5.

[
i(r+r')q/s iIv r'Iq/s]—(26)

which vanishes in the limit q —+ 0 implying an asymp-
totic t behavior of the probability density in contrast
with the t dependence for &ee motion on the full line.
Explicitly, the corresponding propagator is given by
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1/2
(rl& I") = ["' " '

zIt
i(r+r') vn/2th]

The effect of a b' function potential at ro can be examined.
The T(z) operator is now

T(z) = lro)
'

(rol (28)
q —imVo [exp(i2roq/h) —I]/h,

m V [
'("o+")q/" — 'I r ro

I q/&]

h2 q —imVo [exp(i2roq/5) —I]/h
~ [

i(rp+r')q/S i~rp r'( q/]S—

~. (q) =— (29)

and the scattering part of the propagator is determined
by

the physical mechanism to explain this behavior was &ee
motion. The present analysis, based. on a partition into
&ee and scattering parts, demonstrates that this is not
the case. In one-dimensional scattering on the full line,
it is the combination of free and and scattering contri-
butions that cancels the t term. In three dimensions,
both &ee and scattering components have their asymp-
totically dominant terms of the same order, t s. Quite
generally the resolvent will not have a singularity at zero
energy. In one dimension there is indeed a single pole at
the origin for &ee motion but a weak potential will shift
this pole. For arbitrary values of potential strength, only
in exceptional cases will a singularity occur at zero en-
ergy. In three-dimensional s-wave scattering the singu-
larities at the origin are known as zero-energy resonances
and can also be regarded as exceptional cases.

It is clear in this case that I, (0) = If(0) = 0 so
that the probability density will behave asymptotically
as t 3. This particular model was also examined by
Nussenzveig. This result agrees with Nussenzveig's but
divers &om Ref. 1. Nussenzveig, however, indicated that
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