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Bragg difFraction peaks in x,-ray difFuse scattering
from multilayers with rough interfaces
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The peaks in x-ray diffuse scattering appearing due to diffraction of incident or scattered waves
on a periodically layered structure are sensitive to the perfection of multilayers. These peaks are
investigated analytically and compared with numerical calculations. It is shown that, if the roughness
of periodic interfaces is not correlated, the peaks follow the intensity of the x-ray standing wave on
the interfaces. Interference effects due to correlated interfacial roughness can change the sense of
the peak (sequence of maximum and minimum). The factors controlling the peak sense are derived
and applied to explain the results of numerical calculations.

X-ray diffuse scattering has proved to be an informa-
tive nondestructive tool for the studies of roughness of
surfaces and. interfaces. An essential feature of dif-
fuse scattering from multilayer systems is the sensitiv-
ity to correlations between the roughnesses of interfaces.
This effect is especially pronounced in periodic multilay-
ers: when the roughness is correlated, diffuse intensity is
concentrated on equidistantly spaced sheets in reciprocal
space. All experimental studies report that the roughness
of different interfaces is correlated, at least partially.

Additional singularities in the diffuse scattering are ob-
served when either the incident or the scattered beam oc-
curs in Bragg difFraction conditions due to the periodic-
ity of the multilayer. It has been claimed, without proof,
that the intensity distribution in Bragg singularities fol-
lows the standj. ng-wave j.ntensity at j.nterfaces 2, ix The
aim of this paper is to investigate the formation of these
singularities and their sensitivity to interlayer roughness
correlations by means of analytical estimations compared
with numerical calculations.

The x-ray diffuse scattering is due to random devia-
tions by(v') of the polarizability of the scattered object
from its mean distribution (y(v)). The most effective
way for its calculation, in the lowest order over the per-
turbation hy(v ), is to apply the reciprocity theorem (see,
e.g. , Refs. 1 and 8). The amplitude of diffuse scattering
can be represented as

f = (s /4z) J E "'(v )6y(v)R' (v)dv, (1)

where X'"(v') and E "
(v ) are the wave fields in the ob-

ject produced by x-ray plane waves incoming in the in-
cidence direction and from the observation point, and k
is the modulus of the wave vector in vacuum. Approxi-
mation (1) is commonly referred to as the distorted wave
Born approximation (DWBA). Far from the regions of
diffraction or reHection the waves X'" and X " tend
to plane waves with wave vectors inside the medium
K'" and K ", which difFer from corresponding vac-
uum waves Ie'" and —k "t due to refraction. The scat-
tering amplitude (1) reduces to the refraction-corrected
first Born approximation, f = (k /47r) hy(Q), where

(Kin + Kout)
When the object possesses periodicity with a period

D and either incident or scattered waves occur in the
Bragg diffraction conditions, the corresponding wave is
no longer a plane wave and the Born approximation is not
valid. The difFracted wave has to be taken into account.
The difFraction process close to an mth-order Bragg peak
with the diffraction vector H, = 27rm, /D can be consid-
ered as a scattering on the corresponding Fourier com-
ponent yH of polarizability of the periodic system. Dy-
namical diffraction effects are governed by the ratio of the
extinction length AH = 2 sino/(k~yH~) to the thickness
L = ND of a multilayer. In most practical cases, the
extinction length is larger than the multilayer thickness
for m ) 1. Then the kinematical approximation can be
applied to determine the wave fields &'" and & " .

I et us assume, for the sake of definiteness, that
Bragg diffraction conditions are satisfied for the incident
wave. Its amplitude is E'"(r) = Eo(v ) exp (iK~v ) +
EH(r) exp [i(K~ + II)v'], where H is the actual diffrac-
tion vector and K~ is the wave vector in crystal sat-
isfying the Bragg condition. In the kinematical ap-
proximation, the amplitude of the transmitted wave
Eo(v) does not change in the direction of its propa-
gation, c)Eo(t')/(9so —— 0, where so is the coordinate
along K~. Applying the boundary condition at the
multilayer surface Eo~,—o = exp [i(K —K~) '],xone has
Eo —exp( —2irsH sine), where 0 is the Bragg angle,
r = (K —K~), is the z component of the wave vector
deviation from the Bragg condition, and 8H is the coordi-
nate along K~+ H . The kinematical approximation im-
plies that the amplitude of the difFracted wave E~ varies
in the direction of its propagation due to scattering from
the transmitted wave, BE~(v )/Ban = —i(kyle/2)Eo.
The integration of this equation gives

.kxH
EH =&

2
Eod80

gH 2iesn sine— 2ircL 2itcsp sins) (2)—8 —e e
4K, sin 0

The second term on the right-hand side of Eq. (2) is the
integration constant ensuring the boundary condition on
the bottom surface of the multilayer E~~, I, = 0. Pro-—
ceeding to the rectangular coordinates along the surface
and a normal to it, one has
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E'"(i ) = exp(iK'"v )

+ +H (1 2iK(I —z) )
k

4K sin 0
x exp[i(K'"+ H)r] .

Two terms in the curley brackets of Eq. (3) are due to
direct diffraction at point v' and reHection from the bot-
tom surface of the slab, respectively. Substituting (3)
into (1), we get

de
dO

A:2= (]If]') =
I 4— ] {]&z(Q)&z'(0))+ « ."8](&z]Q—II)&z*]Q))

—exp(zeezj(SZ(Q —II y Z)eeb *Z]Q))]) .

Here the angular brackets (. . ) denote averaging over
Huctuations of polarizability, a is the vector of the length
m directed normally to the interfaces, and by(Q) is the
Fourier transform of the polarizability fluctuations. The
first term in Eq. (4) corresponds to the Born approx-
imation and two other terms are due to direct diffrac-
tion of the incident wave and the wave scattered from
the bottom surface of the slab, respectively. Comparing
them with the result of the Born approximation, one can
see that they involve correlations between fluctuations of
polarizability on two different wave vectors and thus, in
principle, contain more information about correlations.

The polarizability Huctuations are due to variations
in positions of the interfaces and can be represented as
a sum over the interfaces, by(Q) = g. bye(Q). Then
the correlations of polarizability fluctuations on the in-
terfaces can be written, for a pair of the wave vectors
Qi and Q2 entering Eq. (4), as (hy~(Qi)by&(Q2))
Ey~. Ayge * "' '*'"

C~A, . Here C~A, (Qi„Q2„q~) is
a correlation function, the explicit form of which depends
on the model of roughness and can be found elsewhere,
and Ly~ is the difference between the polarizabilities of
two media forming the interface.

Consider a slab of N periods of thickness D = d~+ d2,
each period consisting of two layers with thicknesses dq
and d2 and polarizabilities y~ and yz, respectively. The
Fourier component of polarizability of the slab is y~ ——

4/(HD)Dyexp( —iHdi/2) sin(Hdi/2), where Ag = y2-
The phase factor exp( —iHdi/2) arises due to the

distance z = di/2 of the symmetry plane of multilayer
"unit cell" from the origin z = 0 chosen at the multilayer
surface.

If roughness of different interfaces is not correlated,
one can set C~I, ——Cb~j, . Then one arrives at

- NC [1+g(S„iII(KD)],

where g = 4k Ag/H, parameter ( is a factor 1, and

S = sin(Hdi) (6)
is a factor determining the sign and magnitude of
the Bragg difFraction effect. The function iI]'(x)
x i [1 —cos ((N + 1)x) sin(Nx)/(N sin x)], antisymm«-
ric with respect to its argument, possesses dispersionlike
behavior with a minimum and a maximum.

Let us calculate, for comparison, the total intensity
of the wave field E'"(v ) on the interfaces v ~

= (p, z~):

I = P ~E'"(p, zi)~ = 2N [1+gS 0'(KD)] Thu. s, the
diffuse scattering on multilayers with uncorrelated rough-
ness follows the intensity of an x-ray standing wave on
interfaces, differing &om it only by a slowly varying fac-
tor ( 1. The dispersionlike curve of ill(x) is typical of
the standing wave.

Let us proceed now to the opposite limiting case of
completely correlated roughness and set C~I, ——C. Then
we obtain

- C4'(Q, ) sin (Q,di/2) + g(S.C', (KD)

where 4(Q, ) = sin(Q, ND/2)/sin(Q, D/2), and

S, = sin(Hdi/2) sin [(Q, —H) di/2] sin(Q, di/2) . (8)

In a general case the function @,(x) difFers from ill(x).
However, for scans along a resonant diffuse scattering
(RDS) maximum, where Q, is equal to one of the Bragg
diffraction vectors Q, = G = 27m/D, the function 4, (x)
is reduced to 4(x). Then the contrast of difFuse scatter-
ing peaks due to completely correlated roughness differs
from that due to uncorrelated roughness by substitution
of S for S„only.

Bragg difFraction of the incident wave on a periodic
multilayer structure gives rise to a standing wave illu-
minating rough interfaces. ' If roughness of the in-
terfaces is not correlated, the diffraction peaks in diffuse
scattering follow the standing-wave distribution, the se-
quence of the maximum and the minimum being gov-
erned by the sign of the factor S„.Correlations between
roughness of the interfaces gives rise to the interference of
diffusely scattered waves, which can reverse the sequence
of the maximum and the minimum, depending of the sign
of the factor S, for given reciprocal-lattice vectors G and
H. It is worth noting that the shape of the Bragg diffrac-
tion peaks can also be sensitive to an asymmetry between
B/A and A/B interfaces in periodic multilayers.

It can be shown that the qualitative features of Bragg
peaks are not sensitive to minor deviations &om com-
pletely correlated roughness. Let us assume a slow
variation of C~I, with j and A:, so that for two inter-
faces belonging to one and the same period of multilayer

C~+q I, and we can proceed from summation over
interfaces to summation over periods. That gives the ex-
pression for do/dO where the sign of the Bragg peak is
still controlled by S . Therefore, a qualitative transition
from one extreme to the opposite one can be expected in
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case of a fast decrease in correlations with a distance be-
tween interfaces, when the assumptions of slow variations
of Cjk within one period are not valid. This conclusion
is confirmed by numerical calculations below.

To proceed to the numerical tests of our analytical
estimations, we have to choose an explicit form of the
correlation function Cjk. A commonly used approxima-
tion is to treat a rough interface as a sharp boundary
between two media with different polarizabilities, ran-
domly displaced by uz(p) from its mean position z~.
Then the correlation functions Cjk can be expressed
in terms of the rms displacements of interfaces, u

2

(u~ (p)), and the displacement-displacement correlation
functions Kik(p) = (ui(0)uk(p)). For j = k the cor-
relation functions are commonly taken, after Ref. 1, as
Ki~. (p) = 0 exp[ —(p/(z) "], where (~ is the lateral cor-
relation length of roughness at the jth interface, and
3 —h is a fractal dimension. For j g k there is a va-
riety of suggestions, assuming either nonaccumulated '

or accumulated ' roughness. In the erst case, the cor-
relations between interfaces are supposed to depend on
the distance between them. For example, in the model
by Ming et al. the correlation function has the form

K,k(p) = K,, (p)Kkk(p) exp( —~z, —zkl/( -t),

): f d'f ( *.(f))
n=max( j,k)

x exp[ —v(2z„—z~ —zk) f ] exp(i fp) . (10)

where (,t is a vertical correlation length of roughness.
Usually, one takes all K~~ equal to each other, K~~ = tC.
The correlations of roughness of diBerent interfaces can
vary between the limits of uncorrelated interface rough-
ness, K~k(p) = K(p)8~k, at ( „t -+ 0, and completely
correlated (replicated) roughness, K&k(p) = K(p), at

Spiller, Stearns, and Krumrey took into consideration
the fact that interfaces are formed successively one after
another, starting with the substrate and with the lay-
ers repeating long-wavelength modulations in the inter-
face positions, whereas the short-wavelength roughness
of an interface is smeared out and appears on the next
interface independently. Then the Fourier transforms
of displacements of subsequent interfaces are related by
the recurrent formula u~(f) = h~(f) + a~(f)u~+q(f),
where f is a two-dimensional wave vector in the inter-
face plane, and hj are random displacements acquired
at the jth interface ((h~hk) = 0 for j g k). The func-
tions aj govern the roughness transfer; they were taken
on the assumption of difFusionlike roughness propagation
as a~(f) = exp[ —vi(z~+q —z~)f ], where v~ are relax-
ation parameters. A spatial frequency dependence of the
number of interfaces involved in correlations has been
observed recently. '

Here we derive the correlation function of displace-
ments K~k(p) for this model on the assumption that the
relaxation parameters are equal to each other, vj = v.
Starting &om the substrate roughness u~ = h~ and it-
eratively expressing uj's, we arrive at

The limit v ~ 0, implying complete roughness transfer
at all spatial frequencies and the assumption of similar
acquired roughness at all interfaces, gives rise to the cor-
relation function applied in Ref. 7. We consider the more
general case v g 0. As noted in Ref. 6, the major part
of the disuse scattering pattern has a weak dependence
on the &actal dimensionality h in this function. Taking
h = 1 (Gaussian distribution) we obtain

K,k(S) =
n=max(j, k)
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FIG. 1. Formation of resonant sheets in x-ray diffuse scat-
tering from periodic multilayers with an increase in the ver-
tical correlation length of interface roughness. The computa-
tions are for the superlattice consisting of 20 periods of (95
A. GaAs/125 A AlAs) on a GaAs substrate; A = 1.5 A; the
parameters of interfacial roughness are o. = 8.6 A. , It = 1, and
$ = 2000 A. The vertical correlation length is ( „t ——0 (a),
200 A (b), 1000 A (c), and oo (d), respectively. Arrows 1 and
2 mark the resonance sheets and the traces of Bragg singular-
ities. The dashed lines show the place of sections presented
in Fig. 2.

where p2 = 4v(2z„—z~ —zk). In the limit v -+ oo one
has K~~k(p) = 0, i.e. , the absence of vertical correlations.
In the opposite limit v ~ 0 the roughness is completely
transferred and accumulated. Taking all („equal to each
other, ( = (, one can introduce, for convenience of com-
paring with the model of nonaccumulated roughness, the
vertical correlation length ( „t ——( /v.

Figure 1 presents the distributions of disuse scattering
intensity for difFerent values of ( „t in (9). The most pro-
nounced feature due to the correlations of roughness of
interfaces is the concentration of the intensity on equidis-
tantly spaced RDS sheets. ' ' ' These sheets are in-
dicated in the figure by arrows with the mark "1." The
difFuse scattering at all ( „t possesses, in addition, the
singularities along the lines where either the incident or
the scattered wave occurs in the Bragg difFraction condi-
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FIG. 2. Transformation of Bragg peaks in the section
q, =const along the fifth resonance sheet with an increase in
the vertical correlation length of interface roughness for mod-
els of nonaccumulated (a) and accumulated (b) roughness.
Lines 1—6 correspond to ( „~ ——0, 200, 500, 1000, 10 000, and
oo A. , respectively. The vertical dotted line follows the trans-
formation of the third-order Bragg peak. The parameters of
calculations are the same as in Fig. 1 with the exception of
acquired rms roughness in (b): o (~ = 1.6 A and cr~ = 8.6

tion vector H = 2am/D and consist of a maximum and
a minimum of intensity, whose sequence is controlled by
the factor S„, Eq. (6). In the case of correlated rough-
ness, the sense of the Bragg diffraction peaks is controlled
by another factor, S„Eq. (8), and depends also on the
order n of the RDS sheet (Q, = 2am/D). For the value
di/D = 0.43 used in the calculations and for m=3, n = 5,
the two factors, S = 0.97 and 8 = —0.15, have opposite
signs. Then the third-order peak on the fifth RDS is ex-
pected to possess opposite contrasts in cases of correlated
and uncorrelated roughness. This behavior is confirmed.
by the lines 1 and 6 in Fig. 2(a).

Figure 2 also illustrates the process of the Bragg sin-
gularity transformation with increasing vertical correla-
tion for the two models of vertical roughness correla-
tion. Figure 2(a) shows that the contrast becomes al-
ready inverted at minor vertical correlations, the param-
eter ( „t ——200 A being less than one multilayer pe-
riod, thus con6rming the estimations given above. Com-
parison of Figs. 2(a) and 2(b) demonstrates that, with
increasing the vertical correlation length, the diffuse in-
tensity in Spiller's model increases first for small q, due
to prior transfer of the long-wavelength interface rough-
ness. It can also be noted that the contrast of the third
Bragg peak inverts later than that in the nonaccumulated
roughness model, although this peak changes its sense at
a rather small vertical correlation length as well ((„„tis
less than five periods).

Thus, for completely uncorrelated roughness of inter-
faces, Bragg singularities follow the intensity of the x-ray
standing wave at interfaces. The contrast of the peaks
can invert due to minor correlations between roughness
of different interfaces, which are insufhcient for forma-
tion of the resonance diffuse scattering sheets. The fac-
tors controlling the contrast of these singularities have
been found analytically and con6rmed by numerical cal-
culations. The inversion of the Bragg peak sense might
be helpful in studies of minor correlations between rough
interfaces.

tion. These lines form a regular mesh on the isointensity
maps (see arrows with the mark "2"). In the case of
uncorrelated roughness, the singularities on the lines are
completely characterized by the order m of the diffrac-
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