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Edge structure of fractional quantum Hall systems from density-functional theory
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We use the Hohenberg-Kohn formulation of density functional theory (DFT) to study the density
profile at the edge of a confined two-dimensional electron gas in the fractional quantum Hall regime.
The strong correlation effects present in this system are accounted for in our DFT approach and
lead to the appearance of incompressible strips at fractional filling factors for smooth confining

potentials.

The structure of the edge states! in the integral and
fractional quantum Hall regimes of the two-dimensional
electron gas? is believed, by many, to control the trans-
port properties of a broad class of two-dimensional sys-
tems in the presence of a strong perpendicular magnetic
field, such as Hall bars, quantum wires, and quantum
dots. Particular interest has recently been focused on the
question of how the edge structure of a confined quan-
tum Hall fluid is affected by a change in the smoothness
of the confining potential.>"® The latter is characterized
by the variation in the confining potential over a mag-
netic length | = (%c/eB)'/?, divided by an appropriate
energy gap of the system. If this ratio is small, the po-
tential is said to be smooth, or slowly varying. In the
case of sharp edges the correct description appears to be
one in terms of one or more chiral Luttinger liquids.® For
a sufficiently smooth confining potential, however, the
edge is believed to separate into narrow incompressible
and wide compressible regions,*® and in this case con-
ventional edge state theory may not apply. In both cases,
the distribution of the electronic density in the edge re-
gion offers a straightforward signature of the regime a
particular sample is in. The possibility of directly mea-
suring edge channels has been recently demonstrated® in
the integral regime, and this gives hope that soon a sim-
ilar measurement could be performed in the fractional
regime.

Several calculations have been made recently of the
edge structure in the integral and fractional quantum
Hall regimes,” and of the transition between sharp and
smooth confinement.® If the system is sufficiently large,
then exact diagonalization techniques are not applica-
ble, and one has to resort to some alternative meth-
ods. One possible way to investigate the edge structure
in the fractional regime is to use composite fermions!®
in a mean-field approximation,® which provides a use-
ful single-particle description of the edge. An alternative
approach, which we take in this paper, is the density-
functional theory (DFT), originally formulated by Ho-
henberg, Kohn and Sham,*! and later extended by Vig-
nale and Rasolt!2 to systems in strong magnetic fields. In
this work, we use the finite-temperature generalization of
the Hohenberg-Kohn formulation. The fundamental ad-
vantage of the DFT approach is that it is, in principle, an
exact theory of the ground-state density distribution. Its
central statement is that the exact equilibrium density
distribution can be obtained by minimizing the energy
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(or the grand-canonical potential) which can, in turn, be
expressed as a unique functional of the density. In gen-
eral, the exact form of the energy functional is not known.
In the case of smoothly confined quantum Hall fluids,
however, the existence of a small parameter, namely, the
ratio of the magnetic length [ ~ 100 A to the character-
istic confinement length (i.e., the length over which the
density varies significantly) a ~ 1000 A, creates a rather
unique situation. For such slowly varying densities, a lo-
cal density approximation!® (LDA) provides an excellent
representation of the true energy functional. This repre-
sentation becomes exact in the limit of infinitely slowly
varying density, i.e., when [/a — 0.

In this paper, we present results of an ongoing inves-
tigation of the edge structure in the fractional quantum
Hall regime as a function of the smoothness of the con-
fining potential. The inclusion of correlation effects is es-
sential for a proper description of the system. We demon-
strate that, for smooth confinement, a picture in terms
of compressible and incompressible regions is also valid
in the fractional regime. The analog of the cyclotron
gap, which is responsible for the formation of the incom-
pressible regions in the integral regime, is provided in the
fractional regime by the gap in the exchange-correlation
scalar potential at certain filling factors, the filling fac-
tor v being defined as v = 2mi%n, where n is the two-
dimensional number density.

We emphasize that, in contrast to previous studies of
the edge structure problem, which employed the Thomas-
Fermi or the Hartree-Fock approximation, our DFT ap-
proach includes the effects of exchange and, more impor-
tantly, correlation. To the best of our knowledge, this is
the first application of DFT to include also the effects of
incompressibilities at fractional filling factors in a quan-
tum Hall fluid.

For simplicity we consider a system of spinless
fermions, the method being generalizable to electrons
with spin. Although our interest in this paper fo-
cuses on the properties of the ground state, we find it
convenient to approach the ground-state regime as the
zero-temperature limit of the finite-temperature density-
functional formalism.'* An advantage of this formalism
is that it offers a simple way to obtain a smoothly varying
density in a partially filled Landau level. We now derive
the set of self-consistent equations that we use to describe
the edge structure. The grand-canonical potential 2 of
the system may be written as a functional of the density
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p(r) as'®

Ul = Tulp] + Bulpl + [dr (V(s) = wlo(r)
+Fxc[p] — T'Ss[p], (1)

where T,[p] is the kinetic energy of the noninteracting
two-dimensional electron gas of demnsity p, Ss[p] is the
noninteracting entropy,

2

Enlp) = b /dr dr’ p(r)p(r) (2)

2¢ |r —r'|

is the Hartree energy with € denoting the dielectric con-
stant of the host semiconductor, V(r) is an external con-
fining potential, y is the chemical potential, Fx.[p] is the
remaining exchange-correlation contribution to the free
energy in the presence of the magnetic field B, and T is
the temperature. In the 7' — 0 limit, Fx.[p] reduces to
the usual exchange-correlation energy Fxc[p]. An essen-
tial feature of Ey. for a uniform Hall fluid is the existence
of cusps at certain fractional filling factors that lead to
incompressible states and a quantized Hall conductance
at these filling factors. We shall show that by including
this strong-correlation effect in DFT leads to the appear-
ance of incompressible strips at fractional filling factors
for smooth confining potentials.

The density may be written as a sum of contributions
coming from the various Landau levels p, according to

pE) = 53 D o). 3)

To obtain the finite-temperature density profile, we
minimize the grand-canonical potential with respect to
the p,(r). The noninteracting kinetic energy and entropy
functionals are

Tl = o 2 Jie pate) (e 3) hwes @

and
1 oo
Sl =~ O Jar (o) 19 )
+ [1 = pa(r)]|In [l — pn(r)]}, (5)
respectively. Here w. = eB/m*c is the cyclotron fre-

quency. The chemical potential is determined by the
normalization condition N = [dr p(r), where N is the
number of electrons. The minimization yields

u= (n+ %) Fuoe + Vir () + V(x) + Vae(r)

pn(r)
+kpT In [—ﬁ] 6
A ® ©
where the Hartree potential Vg is given by
e [, pr)
Vale) = & [ L5, ™)

and where
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6 Fxe[p]
dp(r)

is the exchange-correlation scalar potential. From Eq. (6)
it follows that

oE) = > [hwc (n+§) +veﬂ(r)—u}, (9)

Vae(r) = (8)

where f is the Fermi distribution function, and
Vet (r) = V(r) + Vu(r) + Vac(r) (10)

is an effective potential that includes exchange-
correlation effects. In the strong magnetic-field regime,
the kinetic energy is accurately described by the local
density approximation (4), and this makes our approach
equivalent to the solution of the Kohn-Sham equations,'?
with the advantage that our scheme, being less computa-
tionally intensive, allows us to investigate larger systems.

In order to proceed with the calculation we need a
form for the exchange-correlation potential, which con-
tains gaps at the fractional filling factors associated with
the formation of an incompressible liquid. We have used
an approximation given by MacDonald'® for the low-
est Landau level, at zero temperature, which exhibits
particle-hole symmetry. The use of the zero-temperature
form for V. is justified since we are interested precisely in
this limit. The approximation consists of a smooth part
and a superimposed oscillatory part, and uses a mapping
to composite fermions to give gaps at the filling factors
v =p/(2p + 1), with p an integer. The gaps agree with
the known calculated values at filling factors 1/3 and 2/5.
A plot of V. is presented in Fig. 1.

In the low-temperature limit, Eq. (6) becomes

pr(p(r)) + Veg(r) = p, (11)

where ui(p) = ([v]+ 3)hw, is the zero-temperature chem-
ical potential of the noninteracting electron gas, and [v]
is the integral part of 2wl2p. u;, exhibits discontinuities at
integral filling factors, and V. (in the limit T' — 0) is dis-
continuous at the filling factors of the fractional quantum
Hall effect. When the density reaches one of the filling
factors associated with a gap, ux or Vi, on the left-hand
side of Eq. (11) changes by the discontinuity there. This
implies that the density resists crossing that filling fac-
tor; instead it develops an incompressible region, where
a constant density is maintained, up to a width W such
that the difference in the classical potential V (r) + Vg (r)
evaluated at the end points of the incompressible region
exactly compensates for the discontinuity in pr or Vic.
Incompressible regions at integer filling factors are due
to discontinuities in ug, while those at fractional filling
factor are associated with the discontinuities in Vi.. In
both cases, a simple estimate of the width of an incom-
pressible region, obtained by balancing the discontinuity
against the change in the classical potential, yields®

N\ 1/2
W (ﬁ;) s (12)

where A; is the gap at that filling factor, and p' is the
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FIG. 1. Exchange-correlation potential as function of the filling
factor. The energies are in units of e?/el, from Ref. 16.

slope of the classical density profile there. From this
formula we see that large gaps and slowly varying density
profiles are the necessary condition for the occurrence of
incompressible regions of appreciable size.

We present here results for a quantum dot whose con-
fining potential is generated by a positively charged back-
ground in the shape of a truncated cone. A section of the
positive charge background is shown in Fig. 2. Given the
rotational symmetry of the system about an axis parallel
to the external magnetic field, the density profile is as-
sumed to depend on the radial coordinate only. The ad-
vantage arising from having a positive charge background
as a confining potential is in having a simple way to con-
trol the density in the bulk of the dot. The smoothness
of the potential can be adjusted by changing the slope
with which the positive charge density goes to zero, by
changing the parameters L and w defined in Fig. 2. We
have also performed calculations for Hall bars, and for
a parabolic confining potential, obtaining similar results
as those in this paper. The density profile is obtained
by solving self-consistently the set of equations (9) and
(10). All the results we present for the edge structures
considered in the fractional regime have been obtained
at a temperature of 0.07e?/el, which is sufficiently low
for the fractional incompressible strips to be observed,
the relevant gaps being about 0.3e?/el. We start from a
temperature of 0.5¢2/el, and then anneal to low temper-
ature, maintaining self-consistency at each temperature
step. Calculations performed at different temperatures
have been seen to affect only the size of the incompress-
ible regions, provided that the temperature is low enough
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FIG. 2. Filling factor of disk of the positive charge background as
a function of the radial coordinate r. Linear distances are expressed
in units of the magnetic length. L is the length over which the
density goes to zero with a slope w/L, while w is the size of the
bulk region.
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for their formation and high enough to avoid instabilities.
We have not noticed any appreciable contribution com-
ing from higher Landau levels, and this shows that the
only energy scales of the problem are e?/el and kpT. It
was not possible, in our numerical calculations, to anneal
below the temperature of ~ 0.07e¢2/el. Numerical insta-
bilities prevent the achievement of self-consistency below
this temperature. It is not clear at present whether or not
these numerical instabilities can be associated with a real
physical phenomenon, such as the formation of charge-
density waves, which are in fact expected to occur as the
temperature goes to zero,'” and the consequent break-
down of our assumptions concerning the slow variation
of the density.

The v = 2/3 edge state has received much attention
recently, and several theories of its structure and excita-
tion spectrum have been proposed. One is in terms of
two branches of excitations.? In particular, MacDonald3
described it as consisting of a ¥ = 1/3 droplet of holes
in a ¥ = 1 droplet of electrons, which suggests that there
may be a reconstructed edge where the filling factor goes
first from 2/3 to 1, and then from 1 to 0. Another pic-
ture is characterized by having an incompressible region
at filling factor 1/3 that separates two compressible re-
gions, one between the 2/3 state and the 1/3 state, and
the other between 1/3 and 0.

We plot in Fig. 3 the density profile for the case of a
filling factor 2/3 in the bulk with a sharp confinement
given by a disk of positive charge (w = 40l, L = 0.) The
figure shows that there are no incompressible regions,
which means that in this situation the Beenakker® and
Chang* picture does not hold. This is also consistent
with the qualitative formula (12), since in this case p’ is
very large. Numerical calculations done by Johnson and
MacDonald,” and by Meir,” seem to indicate that a v = 1
droplet may appear at the edge of the system. The pos-
sibility of such a composite edge is a direct consequence
of the higher hierarchical character of the v = 2/3 state
relative to that of, for example, the v = 1/3 state. Since
the density functional contains information only about
the magnitude of the cusps, but not about their “hierar-
chical” status (that is, the nature of the underlying wave
function), we do not expect our approach to be able to
reproduce the composite edge. However, enhancement
of the density at the edge of the systems could be ex-
pected on the basis of fairly general energetic arguments,
since the local exchange-correlation energy favors a larger
filling factor. The fact that we do not see this enhance-
ment in our calculations may be attributed to the effect
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FIG. 3. Self-consistent filling-factor profile for the case w = 40,
and L = 0, for a filling factor 2/3 in the bulk. The distances here,
as well as in the other figures, are given in units of the magnetic
length, and T' = 0.07e2 /el.
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FIG. 4. Self-consistent filling-factor profile for the case w = 40,
and L = 11, for a filling factor 2/3 in the bulk. T = 0.07e2/el.

of the finite temperature. Numerical calculations done by
Chklovskii,® for the 2/3 state in a channel, also produce
no rise in the filling factor.

In Fig. 4 we present results for the 2/3 edge for a
smoother potential (w = 40, L = 11). Incompressible re-
gions start to appear, beginning with the fractional filling
factors associated with the larger gaps in Vi.. In Fig. 5
the confining potential is made even smoother (w = 10,
L = 40) and the result is that more incompressible re-
gions have appeared, and the widths of the main ones
have increased. Qualitatively the widths of the incom-
pressible regions appear to conform fairly well to the be-
havior prescribed by Eq. (12). We have observed anal-
ogous results to those shown for filling factor 2/3, for
different values of the filling factor in the bulk.

We have found that in the fractional quantum Hall
regime, in the case of sharp confinement, the density
goes to zero from the value in the bulk without present-
ing additional incompressible strips at intermediate fill-
ing factors or without edge reconstructions. In making
the confining potential smoother, incompressible regions
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FIG. 5. Self-consistent filling-factor profile for the case w = 10,
and L = 40, for a filling factor 2/3 in the bulk. T = 0.07¢2 /el.

start to appear beginning with the filling factors having
larger gaps in Vi, and then including the others when the
confining potential becomes smooth enough. Neverthe-
less, the widths of the incompressible regions are always
smaller than the compressible ones. We have recently re-
ceived a preprint by Heinonen et al.,'® where they make
a study analogous to ours using the Kohn-Sham formu-
lation of DFT.
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