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Analytic modeling of the conductance in quantum point contacts with large bias
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We have developed a model for calculating differential conductance that accounts for the effects ob-
served at high source-drain voltage. The model uses a linear potential drop over a saddle-point poten-
tial. If the region of the potential drop is wide enough, only that region is contributing to the transmis-
sion and a simple expression is obtained. The temperature is assumed to increase linearly with the
source-drain voltage and a model for an equipotential region in the saddle-point potential corresponding
to the channel width is made. The result from the calculations of the conductance with this model is in

good agreement with experimental results.

I. INTRODUCTION

The subject of quantum point contacts has been of con-
siderable interest in many varying aspects, ' both
theoretically and experimentally. When the size of a
semiconductor structure is of the same scale as the elec-
tron wavelength, the behavior of the electrons is
governed by quantum mechanics. The construction of
such devices has been possible thanks to a recent techno-
logical development. ' In a narrow constriction in a
two-dimensional electron gas the electron transport is
ballistic, i.e., the electrons move freely in the longitudinal
direction and are quantized in the transverse directions.
The conductance of such a quasi-one-dimensional con-
striction is quantized in units of 2e /h, which was
discovered experimentally by two groups in 1988.' The
quantization holds at low temperatures and when the po-
tential drop applied over the constriction is small. If the
bias voltage is increased half-plateaus occur between the
multiples of 2e /h. At high voltage the half-plateaus
are blurred.

The purpose of this paper is to propose a model that
accounts for the high-bias region. This is done in Secs.
II—VI. In Sec. VII we compare the theory with recent
experiments.

II. THEGRY

An analytical model for a narrow constriction was ap-
plied by Biittiker, "using a saddle-point potential

V(x,y)= Vo ——'m co„x +—,'m*co y

This kind of potential was used in calculation of tunnel-
ing in nuclear physics already in 1953.' ' The transmis-
sion through this potential is for each channel
T„=1/(1+e ") when no potential drop V,o is applied
between source and drain. Here e„=2[E E„—Vo]/—
fico, and E„=fico (n +—,

'
) is the harmonic-oscillator ener-

gy levels. This expression for the transmission has also
been used as an approximation for small nonzero V,d.
The main reasons for this are that the saddle-point poten-
tial is analytically solvable and that accurate quantitative
results can be achieved.

The general expression for the current through a po-
tential barrier with total transmission T(E, V,e ) is

I= I dE T(E, V,d)

X If,(E —PeV, )dfd[E+—(1 P)e—V,&]],
(2)

dI
BV,d

(4)

The conductance for zero temperature is then given by

c)G—
E~+@«,d

For the saddle-point potential in Eq. (1) we have
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FIG. 1. The linear potential drop over the saddle point. P is
the ratio of the potential drop on the right side of the saddle
point, y& and y2 are power series solutions of Eq. (8), E(a,x)
parabolic cylinder function solutions, and B, C&, C2, and D are
complex constants to be determined.

where P is the fraction of the potential that drops on the
source side (see Fig. 1) and f, and fd are Fermi func-
tions,

1
(s — )Ik T

e +1
on the source and drain sides, respectively. Here p is the
chemical potential, kz Boltzmann's constant, and T the
temperature. The differential conductance is
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T(E, V,d)=g T„(E,Vd)=g 1

n n 1+e
which is independent of V,d. Thus the conductance is

where

eV,d

1 I co
(12)

6 = Q I pT„(E„+peV,d )
n

+ ( 1 P) T—„[E~—
( 1 —P }eVsd ] I .

This expression is in very good agreement with experi-
ment at low bias V,d, but when the bias is increased it
difFers substantially from the experimental results (see,
e.g., Frost et al. }.

We insert the transmission in Eq. (2), and apply Eq. (4) to
get

G= I dE T(E Vd)

X p —a

III. MODEL OF LINEAR POTENTIAL DROP + 1 —P—a (13)

In this paper a linear potential drop' over the saddle-
point is introduced explicitly (Fig. 1). We make this
choice because it is more realistic than just assuming that
the potential is higher on one side of the saddle point
than on the other as in Frost et al. , and Martin-Moreno
et al. In addition, the mathematical properties are ap-
pealing. This leads to equations of the same type as for
an unbiased saddle-point potential,

d +(—,'x —a)y =0 .
dx

In this case a is different in the three regions. This equa-
tion is analytically solvable in each region and the con-
stants are determined by matching the wave functions
and their derivatives at the boundaries. It has also other
useful analytical properties. The equality for the parabol-
ic cylinder function solutions, '

1/ 1+e 'E(a, x}=e 'E'(a, x)+iE*(a,—x},

For zero temperature the expression of the conductance
simplifies to
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leads directly to the transmission T„above. Also, the
%'ronskian

8'IE(a, x},E*(a,x) I
= 2i—

has a simple form, and makes the evaluation of the
current straightforward.

The procedure outlined above works well for not too
high bias. For high bias, however, the matching process
becomes numerically unstable. Fortunately, a reliable ap-
proximation, which is examined below, can be made.

IV. APPROXIMATION FOR WIDE REGION
OF POTENTIAL DROP
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The important region for the transmission is where the
potential reaches its maximum value. If the potential
drop is assumed to be over a wide region, this value is
well inside region II in Fig. 1. As an approximation this
region may be extended to the whole x axis (Fig. 2). For
this approximation the transmission can be calculated
analytically, and the result differs from the unbiased
saddle-point potential only in an extra term in the ex-
ponent depending on V,d,

1
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FIG. 2. The total potential for the full model of a linear po-
tential drop (line) and the approximation (broken line) when
1=30 nm, P=O. S, m =0.2m„and %co„=4.5 meV. Vd is in
(a) 10 mV where the maximum of the potential is far from the
edge of the middle region, and in {b) 20 mV where the maximum
is near the edge and the approximation is not valid.
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VI. THE WIDTH OF THE CHANNEL
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(14)
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V. THE TEMMPERATURE VARIATION

k T=Q(k~TO) +CI /nB (15)
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VII. COM PARISON WITH EXPERIMENT

of the model with the approximationspp
ove results in a calculate i e

th 'dth d' o d t
Eq. (20) with proportionality constant equa

0.3 e V d
—3.75 me V ), V d & 7.5m7.5mV,



16 332 BRIEF REPORTS 52

7

6

5 ij ! i !I i i i !i, .

4 t!jjjijjiijijji!iji!!,

6

5'0
Sl
O
V

3 ti! jiiiii!ijii!i!jiiiliiiiiiii
'

!.'i!!!!!!!l!!!i!i!II!!iii!!lii!!!!iii!iliiiiIjijijii! !Ii

2 tfiiiiiii! i!!jiIIijiiiiijiijjiiijiiiiji!! „'

, jiiliiiiiiiiiiiiiimiiiiiiiiiiiiiiiiiiiiiiiiiljilliljllliijlii '!!Ii l:: . ';', ::!,i!i lii

0 0.005 0.01
~sd (ji')

0.015 0.02

FIG. 4. Theoretical calculations of the differential conduc-
tance 6 vs V,d for (E —Vo ) /fico„ranging from 1 to 8,
m*=0.067m„%co =4.5 meV, Aco~=9 rneV, i=50 nm, and
p=O. 55.

and the temperature is T = V,d 1000 K/V. The chemical
potential p =EF for our values of EF and T. The conduc-
tance resulting from these calculations is displayed in
Fig. 4. As can be seen the conductance plateaus for
V,d=0 are exactly in steps of 2e /h as in the Buttiker
model. " Half-plateaus occur for small V,d. When EF is
higher they occur for smaller bias due to the increasing
channel width. This is the same result as in the model
used by Frost et al. , but the next line of plateaus is very
diffuse, and no tendency of more plateaus can be seen.
This efFect is due both to the linear potential drop and the
temperature dependence. When the voltage is increased
to approximately 10 mV the conductance is increased,

'-2O -10 0
V,d (IV)

10 20

FIG. 5. Experimental differential conductance vs V,d for in-
cremental gate voltage Vg

= —0.7 to —1.2 V with a —0.01-V
step. Taken from Ref. 4.

especially for high Fermi energies. This raising occurs
since the channel width increases when the applied volt-
age is raised according to I'( V,d). The eft'ect caused by
raised voltage is overtaken by the effects of increasing
temperature, the linear potential drop, and higher max-
imum value V „of the total potential for even higher
V,d. The conductance drops and the conductance lines
become parallel with each other. The experimental result
(Fig. 5) measuring the conductance shows the same quali-
tative phenomena as the theoretical calculation.
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