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Trace map, Cantor set, and the properties of a three-component Fibonacci lattice
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The electronic and phonon properties of a three-component Fibonacci lattice are studied by the
dynamical map method. The trace map is obtained. The electron energy and phonon spectra, which
are calculated by numerical iteration, have a structure like a Cantor set and the general dimension
is calculated. The results are compared with the corresponding two-component Fibonacci lattice.

In recent decades, there has been a great deal of in-
terest in studying the physical and geometric properties
of one-dimensional (1D) deterministic nonperiodic sys-
tems. The interest stems partly from the study of the 1D
Schrodinger equation with a quasiperiodic potential, the
properties of electron eigenstates, and the relationship
with Anderson localization. The other important reason
is the experimental discovery of quasicrystals in 1984 by
Schechtman et al. and the experimental work of Merlin
et al. on Fibonacci superlattices. Many highly sophisti-
cated techniques have now been developed, and many an-
alytical and numerical results about the electronic energy
band. s, 3 phonons, ' 3 3 magnetic 3 optical
and transport ' '» ' ' ' '42 properties of these 1D
nonperiodic lattices have been obtained. The lattices
most frequently studied have been those defined by
the two-component Fibonacci lattice
and its generalized form ' ' ' the two-
component Thue-Morse lattice 2 ' ' ' ' and hi-
erarchical lattices. Although these 1D nonperiodic
systems lack translational invariance, they are perfectly
ordered by construction. In some sense, these systems
can be regarded as an intermediate case between peri-
odic and random systems. Several authors ' ' ' have
discussed how different nonperiodic lattices can be ar-
ranged in a sequence from most ordered to least ordered
according to their different physical and geometric prop-
erties.

On the other hand, there are several kinds of nonpe-
riodic lattices in 1D systems, which have received lit-
tle attention so far. Example are the three-component
Fibonacci sequences. ' ' '5 Peng eP al. fabricated
experimentally a three-component Fibonacci Ta/Al su-
perlattice, using the dual-target magnetron sputtering
method. They studied the structural properties of this
superlattice by x-ray diffraction and by theoretical calcu-
lations. This work has stimulated the studies reported in
the present paper on the electron energy bands and the
phonon properties of this lattice.

The 1D three-component Fibonacci (3CF) lattice dis-
cussed by Peng et al. is constructed out of three types
of atoms A, B, and C arranged in a 3CF sequence. The
3CF sequence S is constructed recursively as

Sl+i (Sl Sl—2) for l & 1,

with S i = (B) Sp = (Cj and Si ——(A) . Alterna-
tively, the 3CF sequence can be generated Rom a seed
(e.g. , A) by the following substitution rule: A —+ AB,

S»»+ 2 6
= 0.68232.

where cr is the only real root of the equation, e3+ o —1 =
0. It is to be noted that our 3CF sequence is different
&om the three-component sequence introduced by Ali
and Gumbs, which does not appear to have been stud-
ied experimentally. They used the construction rule,

Sl+i ——(Sl, Sl i, Sl 2) for l & 1, (2)

or the substitution rule: C ~ ABC, B -+ C, and
A ~ B. In their case, F~ satisfies the recursion rela-
tion F~+» ——Fj + F~ » + Fj 2, and as l ~ oo, the ratio
El i/El tends to the value cr = s(l+ spy++ spy ),
where p~ = 19 + /297. The difference between these
two three-component sequences is the lack of S~ » in the
construction rule (1). Sequence (2) is similar to gen-
eral two-component Fibonacci sequences, and one can
easily obtain its trace map by following the method for
general two-component Fibonacci lattices. But the lat-
tice discussed in this paper does not have this similarity.

The discrete tight-binding diagonal model is given by
the equation,

0 +i+0 -i+Vs (3)
where V and g are, respectively, the site energy and
the probability amplitude at the nth site, and V takes
the three values V, Vb, and V, according to the 3CF
sequence. In matrix form, Eq. (3) can be written as

(
(4)

with M(n) as the transfer matrix defined by

(5)

The wave function at an arbitrary site N is represented
by

~

~"+'
~

=M&»
]

@'
~(@p)

'

where

B ~ C, C ~ A, which gives rise to the chain

ABCAABABCABCAABCAA ~

Due to the construction rule for S~, the total number F~ of
symbols in the sequence S~ follows the recursion relation
F~+» ——Ft + Ft—2 for l & 1, with F» ——Fo ——F» ——1. In
the liinit as l -+ oo, El i/El tends to the irrational value,
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M~") = M(X)M(X —1) ".M(1) (7)
represents successive multiplications of the transfer ma-
trices.

If N is equal to F~, it follows IIrom the recursion relation
Si+~ —(Si, Si 2) that the transfer matrix Mi = M
satisfies the following recursion relation:

M)+g ——M) 2M) for l & 1, (8)
with the initial conditions M q ——M(B), Mp ——M(C),
Mq ——M(A), i.e. ,

&z —vb —1) &z —v. —11

)E —V —1(
1 0)'

Since detM y=detMp=detMq ——1, it follows &om Eq. (8)
that M~ is unimodular, i.e., detM~ ——1 for all l. In
the following, we obtain the recursion relation for x~ ——

2 Tr(Mi).
For the unimodular matrices M~ and M~ 2, we have

the following equation:

Tr(Mi)Tr(Mi 2) = Tr(MiMi 2) + Tr(MiM& 2). (9)
Hence,

xi+ad ——2xixi 2 —
~ Tr(MiMi 2).

From Eq. (8), we have

M) ——M) 3M) g
——M) 3M) 4M)

MLM) 2 Ml —3Ml —4 ~

(10)

Here, we use the identities Tr(AB) = Tr(BA). Similarly,
one can show that

2xi sxi 4
——

q Tr(Mi sMi 4) + 2 Tr(Mi 4M) s). (12)

Also, &om Eq. (8), with / & 5,

M& s ——M& sM& 4 or M& s
——M& 4M& s. (13)

From Eqs. (10—13) and the fact that for a unimodular
matrix Tr(A) = Tr(A ), we get the recursion relation
for x),

lies in the spectrum is that ~xi~ & 1. In Fig. 1, we give
the electronic energy spectrum of a lattice for which the
parameter values are V = —V = 0.6 and Vg ——0. One
can see that the energy spectrum consists of E~ bands
and F~ —1 gaps at the lth iteration. As the index l gets
larger, more gaps appear. In the limit of l ~ oo, the
energy spectrum consists of an infinite number of points
of measure zero, as in a Cantor set. The distribution
of the energy levels is self-similar when viewed on differ-
ent energy scales. This is similar to the results of the
two-component Fibonacci lattice.

In order to characterize the structure of the energy
spectrum, we now use the algorithm developed in Ref.
53 to calculate the global properties of the spectrum.
Consider the F~ bands of the sequence S~ as a partition
of S, and take the measure of each band to be E&

Define the partition function

r, (q, , ~s, })= )'-(+i) '
i=1

where vo, is the width of the ith band and E& is its
measure. Define

r(q, ~) = lim ri(q, ~, (Si)). (15)

For given q, Halsey et al. argue that there is a unique
value v(q), such that r(q, v) = oo for w & v(q) and
I'(q, w) = 0 for w ( r(q). These properties enable one
to determine the value of w(q). It is better, &om a nu-
merical point of view, to calculate w &om the condition
that

r&(q, ) = c , (16)
where C is a nonzero constant. Evaluated for different
values of q, this gives the function w(q). Then the scaling
index n(q) and the corresponding &actal dimension f (n)

&1+1 —2&l&l —2 2&l —3&l—4 + &l—6) (14)

with initial conditions x q ——2(& —Vb), xp = 2(E —V),
xz —~ (E —V ), and xi =

2 Tr(Mi) for t = 2, 3, 4, and 5.
Equation (]4) defines the dynamical map in a seven-

dimensional space. Since the matrix map (8) transforms
(Mi 2, M& i~ Mi) «(Mi —i~ Mi~ Mt+i)»d all Mi are
unimodular, it can be regarded as a 9D dynamical sys-
tem. Our trace map (14) reduces this 9D map to a
7D dynamical system. Our trace map is different 6.om
the 6D one obtained by Ali an.d Gumbs for a differ-
ent three-component lattice, and from the 8D general
three-component map discussed in Ref. 49. The Jacobian
matrix of map (14) has a determinant equal to unity and
is, therefore, volume preserving like the two-component
Fibonacci lattice. Also, it has the trivial fixed points
x~ ——0, +1, in the same way as the map in paper.

The energy spectrum is obtained by looking for ener-
gies whose corresponding wave functions @~, do not grow
as the value of l increases. For the unimodular matrix M~
and periodic boundary conditions, the condition that R

0

10

FIG. 1. Band structure of the periodic systems of periods FI ——

FI, 3 + FI, $ and F i = Fo = Fi = 1 and L = 3, 4, 5, 6, 7, 8. The
parameters are chosen to be V~ = —V = 0.6 and Vg ——0. The
energy spectrum of the 3CF lattice is obtained by taking the limit
l —+ oo.
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of the subset of points with the scaling index n(q) are
related by a Legendre transformation,

~(~) = («(~)l«l f (~) = ~~(~) ~—(~) (»)
Much information about the global properties of the

spectrum is contained in the function f(cr) T.he Haus-
dorfF dimension D~ of the spectrum is just the maxi-
mum value of f(cr). In order to speed up the conver-
gence, we requiress instead of Eq. (16), that I'l jl l

1, where I' ) 1. The f nc-urve obtained &om the
condition I'12/I'is ——1 is shown as curve 1 in Fig. 2.
As one can see, it is a continuous curve and exists for
a range of values [n;„,a ]. This indicates that the
spectrum is a multi&actal set, with the most probable
scaling index o.p 0.77, and the maximum value being
f(as) = DH = 0.5. In order to compare with the corre-
sponding two-component systems, we plot the f cr cur-ve
for the two-component Fibonacci (2CF) lattice with pa-
rameter values V = —Vg ——0.6, as in curve 2 in Fig. 2.
From Fig. 2, we can see that the most probable scaling
index o.p of the 3CF lattice is almost the same as that
of the 2CF lattice. But, the HausdorK dimension D~
and a;„of the 3CF lattice are less than the values for
the 2CF lattice, and o. „is larger than that of the cor-
responding two-component lattice. This means that the
allowed electronic energy regions of the 3CF lattice are
smaller than those of the 2CF lattice, and the most con-
centrated region of the energy spectrum (corresponding
to a;„) of the 3CF lattice is more concentrated, and
the most rarefied region (corresponding to o. ) is more
rarefied than in the case of the two-component lattice.

We now turn to the nondiagonal tight-binding model,
for which the discrete Schrodinger equation is given by

t„+i@„+1+ t„@„ 1 ——E@„, (»)
where the hopping term t~ takes the values t, t~, and t
according to 3CF sequence. The phonon problem, on the

0

-2
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FIG. 3. Band structure of nondiagonal systems of periods I'I
and I, = 3, 4, 5, 6, 7, 8. The parameters are chosen to be t~ = 0.5,
tt, = 1.0, and t = 2.0.

other hand, is described by an equation of motion,

= & +.4 +i + ~ 0 -1 —(& +1+& )@

(19)
where g now denotes the displacement from its equilib-
rium position of the nth atom and the K's form a.3CF
sequence with three kinds of spring constants K, Kp,
and K . The matrix form of Eq. (18) is

~
=M(t„+„t„)

~

n ) ( o 1j-
and M(t;, t~) is a transfer matrix given by

0.8

0.6

0

0
0.2 0.4 0,6 0.8
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FIG. 2. The f-n curves of the spectrum of the 3CF lattice, with
parameter values as in Fig. l. (curve 1) and the corresponding 2CF
lattice with parameters Vs = —Vs = 0.6 (curve 2). The curves are
calculated from I'rs/I'rs = 1.

FIG. 4. The allowed u2 for phonon problem of system of pe-
riods F~ and L = 3, 4, 5, 6, 7, 8. The parameters are chosen to be
Ka = 0.5, Kg ——1.0, and Kc = 2.0.
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For the phonon problem, one simply makes the replace-
ments t; m K; and E m —~ + K; + K~) i.e.)

The off-diagonal model is more complicated than the
diagonal model in Eq. (3), since M(t„+q, t„) depends on
two bonds and is not a unimodular matrix. However, we
can obtain closed-form analytic results for the wave func-
tion at the 3CF lattice sites, by defining a transfer matrix
M/ given recursively by Eq. (8), with initial conditions,

Mg ——M(t„t ),
M2 ——M(t, tb)M(tb, t ),
Ms ——M(t, t, ) M(t„tb)M(t a, t )

M~ has determinant equal to unity and follows the recur-
sion relation (8). Thus, the trace map (14) also holds
for this case. The numerical results for the off-diagonal
electron case and the phonon problem are shown in Figs.
3 and 4, respectively. The parameter values are taken
tobet =K =0.5, tg ——Kg ——1.0, andt =K =2.0.
One can see that the spectra of the off-diagonal electron
and phonon models are Cantor-like sets. Furthermore,
there is a qualitative difference in the energy level struc-
tures for the off-diagonal electron and phonon problems.
In the electronic case, there is uniform scaling, whereas

in the phonon case, at low values of u, there are large
bands and small gaps, while for higher values of u, the
bands are very narrow. This is the same as the results
for the 2CF lattice. 5 The phonon problem with the spring
constants uniform and the masses arranged in a 3CF se-
quence is dual to the phonon problem discussed above,
and can be studied similarly.

In conclusion, the electron and phonon properties of
a 3CF lattice is studied by the method employing a dy-
namical map. The trace map is obtained, which is a
reduced dynamical system corresponding to a projection
of the full 9D dynamical map onto a 7D space. Merely by
iterating this trace map, one can determine the energy
levels and the phonon spectra of the 3CF lattice. It is
shown that the spectra are Cantor-like multi&actal sets,
and the generalized dimensions f(a) of the multifractial
set are calculated for the diagonal electronic energy spec-
trum. The results are compared with those for the 2CF
lattice. The electron and phonon properties of this three-
component lattice have the same qualitative behavior as
the 2CF lattice.

Rote added in proof After .this work was completed, I
learned of the paper by Wenji Deng et aL [Phys. Rev. B
47, 5653 (1993)j, where Eq. (14) is derived by a different
method.
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