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Superconductor superlattice model for small-angle grain boundaries in Y-Ba-Cu-0
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The measured critical current ratios of small-angle Y-Ba-Cu-0 grain boundaries fabricated by Dimos et al. ,
are calculated from a superconducting superlattice model where the periodicity is given by the Read-Shockley
formula. The layers' thicknesses are estimated from stress-field calculations of a periodic edge-dislocations
array model. The measured critical current dependence on the misalignment angle and the temperature are
reproduced with a single fitting parameter. This parameter is related to the stress field in proximity to an edge
dislocation. The model's validity and comparison with other attempts at the same data are discussed.

I. INTRODUCTION

Shortly after the discovery of high-temperature supercon-
ductors (HTS's) it was realized that grain boundaries (GB's)
in some HTS ceramics suppress the critical current (j,). In a
pioneering series of experiments aimed at identifying the
factors responsible for such a "weak-link" GB behavior, Di-
mos et al. fabricated a particular, controlled, GB
structure: Growing a thin epitaxial [001] (and [001])
Y-Ba-Cu-0 film on a SrTi03 bycrystal substrate with a pre-
scribed misalignment angle 8 of the two subcrystals (9=0
corresponds to a single crystal), the film assumes the sub-
strate's configuration. The slab-shaped domain where the two
Y-Ba-Cu-0 subcrystals mesh is surmised to represent a GB
in ceramics. The measured critical current density, hereafter
denoted by j, , in the direction normal to the GB plane and at
T=4.2 K, shows a sharp exponential drop with rising t9 for
0~8', followed by a small-j, plateau for the higher 0
range. This result implies that an almost-perfect grain
alignment is necessary for achieving high j, in HTS

Other studies ' show a characteristic falloff
of j, (8=5', T) as the temperature increases.

The difference in the measured j, (O, T=4.2 K) behavior
for small and large 0 correlates with the difference in the
corresponding GB structures. Transmission electron micros-
copy (TEM) studies of the small-angle GB's [Refs. 2(b), 3]
reveal a structure comprised of an ordered array of isolated
edge dislocations, Fig. 1(a), with spacing d conforming to
the Read-Shockley formula

sin0'

where b is the corresponding Burgers vector. For the [001]
GB's, which are the only ones modeled in this work, the
analysis gives b=3.8 A. 11' As (1.1) implies, the spacing
between dislocations shrinks with increasing 0 to the point
where they coalesce to form a continuous slab. Provided this
slab acts as a tunneling barrier, such a GB may be character-
ized as a Josephson junction, in keeping with large-angle GB
data (')

It should be emphasized that GB's in other systems, such
as in flux-melt ceramics and sputtered thin films, have trans-

port properties which are probably controlled by factors
other than the misalignment angle. ' In particular, the level
of local oxygenation correlates with current transport prop-
erties of "nonweak" GB's. ' The interplay of these and
other possible material-specific factors in determining the j,
associated with a particular type of GB is still the subject of
active research.

In this work we propose a phenomenological model for
the j data of the small-angle GB's fabricated by Dimos
et al. This type of GB is modeled as a S-S' superconductor
superlattice, where the edge-dislocation cores and the host
superconductor material between the cores are represented
by "bad" and "good" superconducting slabs, respectively:
see Fig. 1(c). We arrive at this model by the following rea-
soning. The small-angle GB structure, i.e., a periodic array of
edge dislocations, ( l' Fig. 1(a), implies the presence of an
associated periodic, geometrically complex stress field. Our
first premise is that the "highly" stressed domains around the
dislocation centers —with either positive or negative stress—
constitute a degraded superconducting phase of the host su-
perconductor. This premise is based on indications that local
stress in proximity to an extended defect enhances local out-
diffusion of the volatile oxygen atoms through the defect.
The corresponding deoxygenation in HTS s implies a well-
known degradation of T, . By the same token, the material
outside the highly stressed domains constitutes the host HTS
material. Consequently, the GB's under discussion constitute
a periodic configuration of geometrically complex supercon-
ducting regions, where the periodicity is given by (1.1) and
in which the degree of T, degradation varies continuously.

To simplify the analysis of such a complex configuration,
the continuum of T, degradations is approximated by just
two phases, hereafter referred to as the "good" (S) and
"bad" (S') superconductor phases, which correspond to the
highly and low stressed domains. This is schematically plot-
ted in Fig. 1(b) for a choice of a circular geometry of the
highly stressed domains around each edge dislocation. The
important issue of demarkation between the high and low
stress domains is modeled separately and discussed in the
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Since the penetration depth in HTS's is considerably
larger than the coherence length, the London limit is valid. In
that limit and coordinate system defined in Fig. 1(c), the
basic equation for a S-S' superlattice with periodic,
piecewise-constant penetration depth X(x), in the presence of
a vortex at (xo,yo) parallel to the crystal c axis, is the Lon-
don equation

e ~ ~ ~ ( P 82 8
2 2 B=@'o&(x xo) ~(y yo)

, Bx BY
(2.1)

clG
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FIG. 1. Schematic depiction of small-angle grain boundary
structure and models. (a) The periodic edge-dislocation array ob-
served in TEM studies (Ref. 3). The current (J) and vortices (H)
directions normal and parallel to the grain boundary plane, respec-
tively, are indicated. (b) Periodic edge-dislocation array model em-

ployed in the calculation of Appendix C. The circular hatched do-
mains, enclosing an edge-dislocation symbol, are assumed to be
"highly" strained. The complementary area represents the "low"
strain domain. (c) The superconductor-superlattice model employed
in the text. The B and 6 layers designate the "bad" and "good"
superconductor layers, respectively, and are characterized by pen-
etration depths P z and kG, and thicknesses d~ and d G, respectively.
The circular domain enclosing an edge-dislocation symbol in the B
layers is a reminder that these layers represent the immediate prox-
imity of the edge-dislocations of (a) and (b). The coordinate system
here is the one used in the text,

last section. Furthermore, the complex geometry of the high-
low GB stress field, schematically depicted in Fig. 1(b) by
circles around the edge dislocations, is drastically simplified
by adopting the superlattice geometry of Fig. 1(c), where the
superlattice periodicity is still given by (1.1). The good fit to
the data in Fig. 4, below, in terms of a single parameter
indicates that the superlattice model captures the essential
physics of the problem at hand. This legitimacy of this sim-
plification is further discussed in the last section.

The paper is organized as follows: The superconductor
superlattice model and the ensuing j, are analytically evalu-
ated in Sec. II. The results, discussion, and comparison with
competing models are given in the last section. Some details
of the calculations are given in the Appendixes.

where B(x,y;xo, yo) is the magnetic field in the c-axis direc-
tion and 4o=mfic/~e~ =1630 (eV A)" is the flux quantum.
For interfaces at planes x=xr, as in Fig. 1(c), the corre-
sponding boundary conditions are

=0, A[B) =0, (2.2)

where the notation 5 nfl(xl, y) = P(xl+ e,y) —P(xl —e,y) for
a~0 is employed.

To solve (2.1) we use the Fourier transform method: In
each of the two superlattice domains, the homogeneous
equation solutions have the representation

Bx(x,y) = dk e'"yyBx(k';x), X= G,B, (2.3)
J —oo

where hereafter the G and B labels refer to the "good" and
"bad" superconductor superlattice domains. The ensuing
equation for Bx(k;x), a fixed k and a periodic )t (x), has
the structure of a "wave equation" with a periodic "poten-
tial. "According to the Bloch theorem, its solutions satisfy

Bx(ky;x+ d) = e ~"Bx(ky;x), X= G,B, (2.4)

where the modulation p, is analogous to the crystal momen-
tum in infinite periodic solids. However, unlike the situation
for infinite periodic solids, the boundary condition here is
that the solution vanishes at infinity, rejecting the fact that
the magnetic field emanating from a vortex decays at a large
distance from its location. '

Matching the boundary conditions (2.2) for (2.3) yields
the key dispersion relation

where

1+R'(k, )
cosh [pd) = cosh [DG(ky)dG) cosh [Dri(ky)ds)+ sinh [DG(ky)do) sinh [DJi(ky)de),2R ky

(2.5)

XGDG(ky)
R(k )= 2, Dx(k )=

B B y

1
ky+ 2, X= G,B,~x' (2.6)

and )tx denotes the constant penetration depth in domain X, Fig. 1(c). Note that (2.5) is invariant under interchange of the B
and G-domain entries. This symmetry is expected since p„which pertains to the entire superlattice, should not depend on the
particular coordinates choice of Fig. 1(c).Also, (2.5) resembles the dispersion relation of the Kronig Penney model with the



SUPERCONDUCTOR SUPERLATTICE MODEL FOR SMALL-. . . 16 239

important difference that no forbidden k domains (or energy gaps) are implied. This feature reflects the elliptic characteristic
of (2.1), in distinction to the hyperbolic characteristic of the Schrodinger wave equation.

For a fixed k, Eq. (2.5) has two solutions of the form ~~p, ~. The corresponding solutions (2.3) constitute a complete
solutions set of the homogeneous equation, from which the solution of (2.1) is constructed following the standard method. '

Further details are given in Appendix A. The ensuing B-domain pinning potential per unit vortex length L, denoted here by
Ua(xo)/L, is

Ua(xo)
L

C'0

32m' X~ g

&& [2Pa'(/ ~)Pa '(/ ~)+ e ' "'Pa'(/ ~) + e' "'Pa '(/ ~)j (2.7a)

where O~xo~da and the p functions are defined by Eq. (A3):

Pa '(k, , / ) —=Pa '(V) =—
(1 —R )

e p.d —

Dydee

2R
sinh(D d )

(1+R )
1 —e"" a & cosh(DGdo)+

2R sinh(DGdG)

"D ~
('-R')

e p,d+Dpdg
2R

sinh(D d )

(2.7b)

(1+R')
1 —e~" a"a cosh(DGdG)—

2R sinh(DGdG)

In (2.7a), the symbol Pa( i(p,(), for example, is an abbrevi-
ated notation for Pa(+i(k, p, ), Eq. (2.7b), evaluated with the
p,(0 solution of (2.5). All kY dependences in (2.7) have been
suppressed for the sake of notational clarity. The correspond-
ing expressions for the 6 domain are obtained by interchang-
ing the G- and B-domain entries in (2.7). Together with
(2.7), these expressions comprise the exact pinning potential
of the superconductor superlattice model in the London limit.
Note that the pinning potential does not depend on the yo
coordinate, rejecting the superlattice translational invariance
in the y coordinate.

An example of the calculated pinning potential (2.7) is
given in Fig. 2. Plotted is the total free energy F„/L, which
is the sum of the pinning potential (2.7) and the vortex self-

energy Fx('"1/L=[4o/(4m)tx)] Ko((/Xx), where X=B,G
and Ko(z) is the modified Bessel function of zeroth order. '

As expected, the bad domain free energy is lower than that of
the good domain, in addition to the characteristic narrow
minimum at 5-S' interfaces. Note that the minimum and
maximum points are at domain midpoints, with concave and
convex curvatures, respectively. This particular location of
the extrema follows since the infinite superlattice is symmet-
ric to the left and right of each such midpoint. The opposite
pinning potential curvatures at the two domains is in keeping
with the overall decrease of the free energy with moving
from a good to the adjacent bad domain. Therefore, ignoring
the interface minima, the maximum pinning barrier—
associated with the critical current —is the difference of the
pinning potentials evaluated at the domain's midpoints.

To identify the controlling parameters in (2.7) and evalu-
ate the critical current, it is instructive to introduce analytic
approximations for the relevant case when xo in (2.7) is at
domain midpoint. The approximations are based on expres-

XG = 1500 A X, B ——15XG

dG = 79.4A dB ——29.1 A

0.01—

6)

0.006-
U

0.002-
0

cl
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FIG. 2. Calculation of the total free energy per vortex unit

length, denoted by FT/L, in the superlattice unit cell, for the ex-
ample specified in the header. Indicated are the "good" (dG) and
"bad" (da) domains, employing the coordinates of Fig. 1(c). The
narrow wells separating the bad and good domains reflect standard
cntoffs (Ref. 8) with /=15 A.

sions (2.7) evaluated in the physically interesting regime
when dz/kz, dG/KG&&1 and X.G/) ~&&1. Details are given in
Appendix B. The focus on this regime is motivated by the
sizes of the dislocation cores and spacings, which are small
in comparison to typical penetration depths [O(1000 A.)], and
the premise that the bad domain is a substantially degraded
phase of the good domain. The exact [Eq. (2.7)] and approxi-
mate integrands derived in Appendix B are compared in Fig.
3 for a characteristic example. As Fig. 3 shows, the approxi-
mation is excellent. The ensuing pinning potentials, Eq.
(2.7a), and its G-domain counterpart assume the simple form
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FIG. 3. Comparisons of exact
(solid line) and approximated
(dashed line) pinning potential in-

tegrand I(g) for the
example: kz = 1500
=3XG, dG=49. 1 A, dg=174. 3
A. The abscissa is y=x/kG. The
exact integral in the B layer is
given in Eq. (2.7); the correspond-
ing G layer integral is not quoted
in the text. The approximate ex-
pressions are derived in Appendix
B. (a) In the B domain. (b) In the
G domain.

UG(Xmid) 4 o dG

L (4vrkGi y XGj
'

(2.8)

where x;z denotes the midpoint of the pertaining G or 8
domain. Note that in (2.8) the complicated coupling between

the domain [Eq. (2.7)] is absent. The asymmetric form of
(2.8) between the B and G domains is discussed in Appendix
B.

The critical current j, is commonly equated to ratio of the
maximum pinning barrier over a characteristic range. Con-
sequently, employing (2.8) and adding the vortex self-free-

energy mentioned above, yields for the measured critical cur-

rents the ratio

j,(8)
j,(8o)

1 1

2 [+0(( ~B)+ +0( B( 8) ~B)] 2 [+0(P~G) +0( G( 8) ~G)]

1 1
2 [+0( 'P~B) +4+0(dB( 80) ~B)] 2 [+0('8~G) +0(do( 80)/~G) ]

(2 9)

In (2.9) the thicknesses d~, dG, Fig. 1(a), are constrained by
the Read-Shockley formula (1.1):

b
0—8g+ 8g-

sint9
' (2.10)

j.(8) I:0(P) o) I:0(do(8)/) G)—
j.(8o) Itp(P~G) Ito(dG(80)/) G)

(2.11)

Expressions (2.9)—(2.11) apply equally to any superconduc-
tor superlattice and j, parallel to the superlattice slabs.

Provided P« is identified with the host superconductor,
expression (2.11) depends just on a single parameter, i.e.,

dG(8), which must either come from another calculation,
such as stress calculations which lead to Eq. (3.1) below, or
taken as a fitting parameter. Before discussing this point, it is
instructive to examine the structure of (2.11).Note that since
Kp(z) diverges as z~0 and since dG(8) decreases as 8 in-

80 is a calibration angle, and ( is the coherence length evalu-
ated at the temperature of the measurement. In the particular
limit where the "bad" superconductor is considerably de-
graded in comparison to the "good" domain, i.e., when

ks &) X G, expression (2.9) simplifies further. Since
Ko(z)= —ln(z) for!z!(&1,' the B-dependent terms in (2.9)
can be entirely neglected, which yields the central result

creases [Eq. (2.10)] and approaches (, there is an angle 8,
when the numerator changes sign and goes negative. The
numerator, on the other hand, is proportional to the maxi-
mum pinning barrier between the bad and good domains and
hence cannot attain a negative sign in a physically viable
situation. Consequently, we conclude that at the angle 6I, the
London equation (2.1) and ensuing analysis break down.
This should be indeed the case since when dG(8, ) =g; i.e.,

when a characteristic length scale becomes comparable to the
coherence length, the macroscopic London approach embod-
ied in (2.1) is supposed to become invalid.

The preceding discussion implies that Eq. (2.11) is valid
only for 8 angles such that dG(8)~(. In this regime, the
structure of (2.11) and the measured rapid 8 variation of
j,(8) [Ref. 2(b)] imply that dG(8) is considerably larger than

d~(8). We arrive at this conclusion as follows: Since
Ko(z) =—ln(z) for!z!(1, the numerator of (2.11) varies rap-
idly when its two terms approach each other, i.e., when
d G/X G

= (/X G(& 1. Consequently, expanding the numerator
Kp(dG(8)/kG) around ICp($/XG) to first order gives rise to a
term proportional to dG(8) —g. On the other hand, dG(8) is
constrained by the Read-Shockley formula (2.10), which for
small angles is rapidly varying since sin(8) =1/8 for 8(&1.
Therefore, provided do(8)~)d~(8))$ in (2.10), it follows
that do(8)=1/sin(8) and (2.11) is compatible with a depen-
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FIG. 4. Comparison of model
calculations with data. (a) The

j,(8) /j, (go= 0.1) data at T=5 K
[Ref. 2(b)] (solid line) and calcu-
lated curves employing (2.11) and

(3.1), with C=0.075 (long-dashed
line) and C=0.105 (short-dashed
line). (b) The j,(T, Oo)/j, (T= 5
K, go) data at HO=5' [Ref. 2(c)]
(solid line) and the calculated
curve employing (2.11) and (3.2)
(long-dashed line).

dence j,(0)/j, (8&) =I/sin(0). As shown in the next section,
stress-field calculations yield an estimated do(8) consistent
with these considerations. And a particular fit to the data
discussed below assumes indeed a j,(0)=1/sin(8) depen-
dence.

III. RESULTS AND DISCUSSION

=0 32
d( 8)

(3.1)

To apply (2.11) it is necessary to specify dG(0) and the
penetration depth Xz. We identify the good superconductor
domain with the Y-Ba-Cu-0 host; hence, )~o(T=4.2 K)
=1500 A. Given the lack of data or detailed calculations of
the dislocation stress field for low-angle GB's, the do(0)
parameter is estimated from stress-field calculations of an
edge-dislocation array model outlined in Appendix C. '

The corresponding geometry, depicted in Fig. 1(a), assumes
a periodic array of dislocations. From the numerically calcu-
lated shear stress field (o; ), we extract a radius ro of an
effective circularly stressed domain around each dislocation,
Fig. 1(b), by equating the average of ~o.,Y~

over the circle to
an adjustable value, i.e., o.,=(~ cr ~~). In the vein of the su-
perlattice model, Fig. 1(c), the former is equated to rz = dB/2.
An excellent approximation to the ensuing calculated dii(8)

14

sponds to the T=4.2 K data, fix the misalignment angle at
0=5', and introduce the standard temperature-dependent
penetration length and coherence length'

(3.2)

with $(0)=15 A., ko(0)=1500 A. As Fig. 4(b) shows, this
parameter-free fit is surprisingly good over a wide range of
temperatures.

To put our results in perspective, we discuss now the va-
lidity of the model and competing models. A major approxi-
mation of the present model is the highly simplified super-
lattice geometry, Fig. 1(c), which supposedly represents the
delineation of stress fields associated with the periodic edge-
dislocations array, Fig. 1(a). While the geometry of the latter
is obviously quite different from that of a superlattice, the
resulting good fits to the data of the superlattice model are
interpreted to implies that the rates of change with 8 (or d)
of the ratio of two j, [a calibration j, value and a running

j, ; see Eq. (2.11)] for the two geometries are not grossly
different. This is attributed to the fact that both geometries
satisfy the Read-Shockley formula and entail a periodic
structure of two types of domains. In other terms, while the
absolute values of the critical currents in the geometries of
Figs. 1(a) and 1(c) may be quite different, their relative rate

where the dimensionless fitting parameter C is
C=2(~rr, ~~)/p, with p, , denoting the classic shear modu-
lus (Appendix C), and d(0) is given by the Read-Shockley
formula (1.1).

Employing the calculated dpi(8) from (3.1) and do(0)
from (2.10), the calculated critical current ratio (2.11) is pre-
sented in Fig. 4(a). A good fit with the exponentially decreas-
ing j,(0) data t ) is obtained over the entire range 8~7' for a
range of values C=0.105—0.075. When compared to an es-
timate of ( rr„Y~)/p, based on the theoretical shear strength
of crystals, which is typically of the order of 1/20 —1/30, the
above fitted C value is quite reasonable. The corresponding
thicknesses, Fig. 5, shows that dz(0) is much larger than

dii(8) [which varies as 0 " according to (3.1)] and rapidly
drops with 8, closely following that of the periodicity d(8)
[Eq. (1.1)].As discussed above, these features are necessary
to reproduce the data.

Figure 4(b) shows the calculated temperature dependence
of (2.11) and the data. t') For this calculation we use the
"best"-fit parameter C=0.105 of Fig. 4(a), which corre-

X G = 1500 A, C= 0.105

200-

150
o+

100

50

0
2 3 4 5 6 7

e (DEGREES)

FIG. 5. Superlattice layer thickness 0 dependence: The period-
icity d, Eq. (1.1) with b=3.8 A [Refs. 2(b), 3], and the "good"
(dG) and "bad" {dz) layer thicknesses are calculated from Eqs.
(2.10), (3.1) with C=0.105.
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of change with 0, which is the measured quantity, is appar-
ently similar. To check this conjecture quantitatively requires
calculations of considerably complexity which are deferred
to another publication.

Underlying the model is a transcription of local stress
(positive or negative) into a local degradation of supercon-
ductivity. This degradation occurs probably through the
mechanism of out-diffusion of oxygen atoms and a related
change in the carrier concentration as a function of stress. '

Currently, there is no reliable quantitative model to assess the
degree of degradation; therefore, this effect is represented in
the present model by a free parameter ()ii)). In the limit of
"large" degradation, this ill-defined parameter is entirely
eliminated from the final result [Eq. (2.11)j, indicating that
the key to reproduce the observed data is the length of the
superconducting constriction between adjacent dislocations.
These observations underscore the importance of stress cal-
culations. Our calculations, Appendix C, employ the shear
stress o; . Similar results are obtained when the diagonal
stress components ozz oyy are employed. 14

As discussed above, for 0 beyond the point where

dG(8)=(, the present model breaks down since the disloca-
tion lines get closer than the coherence length and the
discrete-dislocation concept loses its validity. For such GB s

a more realistic model is to represent them by a continuous
slab, which acts either as a Josephson junction weak link or
as a nonweak link as observed in some fIux melt
ceramics. '

In all of the above discussion the magnetic field did not
enter, corresponding to the experimental setup, which only
leads to weak self-fields. This circumstance is consistent
with the validity regime of the basic equation (2.1), where
the assumed weak field is refIected by an isolated Auxon.

The data under consideration are also the subject of other
approaches. ' The model of Ref. 21 produces fits of same
data as Fig. 4. It stipulates that the critical current is deter-

mined by a combination of an electron-pair tunneling
mechanism through a GB effective Josephson junction and
a pair-scattering mechanism from charge at the dislocation
cores. Using a continuum model for the stresses, the calcu-
lated junction effective width for 6)~7 is less than 2 A. . Our
difficulties with this model are, first, the assumption that the
small angles GB's of Ref. 2 are in effect Josephson junctions.
The TEM studies of these GB's (Refs. 2, 3) do not support
this premise. Second, given that the Y-Ba-Cu-0 coherence
length is =15 A, it is difficult to justify a tunneling mecha-

0

nism over a distance =1 A. As our analysis demonstrates,
the same data can be quantitatively understood in terms of a
considerably simpler model. Another attempt at the same
data (') is an empirical fit j,(6))/j, (0')=I/sin 0, reminiscent
of the Read-Shockley relation, Eq. (1.1).As discussed at the
end of Sec. II, Eq. (2.11) together with the thicknesses cal-
culated in Fig. 5 implies approximately this form of 0 behav-
ior when the numerator in (2.11) is expanded to first order. In
Ref. 22(b), a configuration of the type depicted in Fig. 1(b) is

suggested, however, without any quantitative analysis. As
commented above, the corresponding large calculational ef-
fort may not be warranted at this point given that the ex-
pected outcome will be a data-fitting expression of the type
(2.11).

In conclusion, we introduced a superconductor superlat-
tice model and calculated the ensuing critical current ratio
measured in small-angle GB's in Y-Ba-Cu-0 bicrystals.
With a single parameter, which naturally emerges from the
pertaining stress-field calculations, the model fits the data
small-angle and temperature dependence. The crucial 0 de-
pendence enters via the Read-Shockley constraint (1.1) and
the estimated layer thicknesses. This model may also be ap-
plicable to the analysis of current transport in superconductor
superlattices. Such structures, with Y-Ba-Cu-0-like constitu-
ents, have been recently fabricated.

APPENDIX A: SOLUTION OF EQ. (2.1)

This appendix provides some details on solving Eq. (2.1) for a piecewise constant, periodic penetration depth profile. All
notations and coordinates are defined in Fig. 1(a). The starting point is the homogeneous London equation solutions

(x y) dk eikyY[eik& (kv xB (/r ) + eiko (ky)xB( —
)(k )]

(+) + ( —)

(xy)dkei kY3'[ei k&(k&)xB()(k)+ei kii (k&xB(/()]
(+) , (-)

kx( )(kY): ~iDx(ky) X G B (Al)

where Bi)(x,y) and BG(x,y) denote the fields for O~x~ds and dii~x~d, respectively.
Inserting the expansion (Al) in Eq. (2.1) yields for a fixed k value a one-dimensional wave equation with a periodic

potential. According to (2.4), this equation has a complete set of solutions which satisfy the one-dimensional Bloch theorem

B( )(k ) [P,+iko (k )]dB( )(1. ) (A2)

and p, in given by (2.5). The subsequent ratios
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( —)
= (-)

Bx (k, p, )
=Px (-k, , p)= P—x (-p), (A3)

are given in (2.7b). These ratios determine, up to a k -dependent normalization, the solutions (Al).
The solution to Eq. (2.1) is constructed following the standard method for constructing the Green function from a complete

set of solutions of the homogeneous equation. '

The single-vortex Green function needed in Sec. II is

gooB(""(x,y) =
4 gTxg J —oo

~k (Y
—po) —D&(k )(~o

DB(ky)

+p v'(~ —~&)'+ (y —y())'

2m'~2 &O (A4)

APPENDIX B: THE INTEGRAND IN EQ. (2.7a)

To derive the analytical approximation of the pinning potential (2.8), we need the ~k
~

—y0, pp limits of the integrand in (2.7).
To construct these, the approach is to consider first the integrand's "tail, " i.e., the k —+~ limit, for which it simplifies and
yields the integral representation of the Ko(z); see (A4). Next we consider the k y0 limit, from where the main contribution
to the integral (2.7) arises, and relate the two extremes.

In preparation for these steps, Eq. (2.5) yields the following limits of the attenuation factor p, :

p, (0)d= lim p, d=
kY~O

t dG dB) (1—p) dGdB+ l +
P )(.GAB'

lim p,d= ~ky~d,

(B1)

where p=kG/k~&&1 and we considered the regime where dG/Xz, d~/k~&&1. The integrand is estimated below at the midpoints
of the 6 and B domains for the reasons given in Sec. II.

Consider first the B domain. Noting that p, k8/dB(&1, Eq. (2.7b) yields, for the three terms in (2.7a) at the ~ky~ ~op limit,

P' '(p~)P"(p~)= (1—p')
8 8 (I+ 2)

1—2
2Da(ky)~op(+)( ()= dalkyl e2Da(ky)~op( )(&~)= e

—lkylda

(B2)

and the corresponding terms for the k —+0 limit are

P' '( p~ )P"'( p~) = (1 —p')
8 8 (1+ 2) ~

(B3)

—2Da(ky)xpp(+)( () da/ka 2Da(ky)xp (
—) ) —

da lpga

By the same token, the results for the G domain for ~ky~ ~op are

P' '(p~)P"(p~)= (1 —p')
G G (1+p2)

1—2
2DG("y)+pp(+)( )) — e l~yldG e2DG(ky)~pp( )( )) —e lkyldG

]+p

and for k —+0, we get
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(1 —p~) ~( d
p(G )(/ ))p(G'(/ ()= @{0)d—dg /KG

2

—2DG(ky)xo (+ ) ( ()
—p(0) d

1 —p' ( d~)

2 (85)

1 —p' (di))
2DG(k&)xpp( —

)( () —do lk~
() GJ

The results (Bl)—(85) lead to the key analytical approxi-
mation (2.8). To demonstrate this, consider first the B do-
main. For k ~~, Eq. (8.2) shows that the last two terms are
about equal and exponentially large in comparison to the first
term (the pX p term). These two terms contribute a charac-
teristics tail contribution proportional to 2@0(di)/)i. ~); see
Eq. (A4). On the other hand, for k~~0, Eq. (83) shows that
all three terms in the integrand are about the same. Since
most of the contribution to the integral arises from the small
k domain [see Fig. 3(a)], it is suggestive to approximate the
integral for all k as twice the tail contribution, hence the
factor 4 in (2.8). In the G domain, the situation is different.
Equation (84) shows that for large k the last two terms are
about equal and larger than the first term. Again, they con-
tribute a characteristic tail contribution proportional to
2Eo(dGIXG). For a small k~, however, since
p=)i. G/Xi)(&l, dpi(dG, Eq. (Bl) implied that the second
term in Eq. (85) dominates. Therefore it is suggestive to
approximate the integrand for all k as half the tail contribu-
tion, hence the unity factor in (2.8). Although for the very
small k this approximation overestimates the G-domain in-

tegrand [see Fig. 3(b)], it still yields a very good approxima-
tion for the integral.

APPENDIX C: STRESS-FIELD CALCULATIONS

o~y A;rp
o-, = dn " '

=(io-.,i).
3p 277

(C 1)

In (Cl), x= ro cos u, y=ro sin n, and the array is along the

y axis. The expression for the shear stress of an infinite array
of edge dislocations, ignoring core-core interactions is'

pro DX/Lb[cosh(2 vrX) cos(27r1') —1]
d(1 —v)[cosh(2mX) —cos (2m Y)]~

' (C2)

The goal is to calculate the radius rp of a circular region
around each of the dislocation centers, Fig. 1(b), such that
the averaged value of the absolute shear stress ~o;~~ over the
circle equals a prescribed value o;:

X=x/d, 7= 7/d, v is the Poisson ratio, p, is elastic shear
modulus, b is the Burgers vector, and rp, d are defined in

Fig. 1(b). For small misalignment angles, the Read-Shockley
relation gives d = b/8.

The numerical method for evaluating (Cl) utilizes a
simple adaptive scheme. Using a least-squares fit and assum-

ing v=1/3, Eq. (3.1) is obtained, where C=2o, /)M, . Employ-
ing the other stress components tr,„,o~~ in (Cl) yielded a
dependence similar to (3.1).

Equation (C2) is derived from superposition of the stress
field of the entire dislocation array, disregarding core-core
interactions. To consider the latter, we utilize a simple
model, ' where the radius rp is determined by minimizing
the total elastic energy which is comprised of the stress-field
energy and the core-interface energy. The former is obtained

by solving for the stress field in which core-core interaction
is introduced via a boundary condition, i.e., imposing a van-

ishing stress field on and in a circular perimeter around each
dislocation of radius ro, Fig. 1(b). This stress-field energy
component favors larger rp. On the other hand, the total
energy component of core-interface energy is proportional to
rp and pushes for smaller rp. The rp value is obtained by
energy minimalization.

Equating the rp calculated in this manner with d~/2 and
substituting in (2.10), (2.11) gave a considerably worse fit to
the data. This outcome can be understood as follows. The
qualitative shape of the "correct" stress profile, as function
of distance from the dislocation center, follows a rise from
zero at the center up to a maximum and then tapers off far
from the dislocation center. In the vein of our model, the
correct C parameter [Eq. (3.1)] should correspond to an ef-
fective rp such that it encompasses the highly stressed do-
main; in particular, rp should be larger than a typical dis-
tance at which the stress profile reached its maximum. The
value 0.5C=1/20 —1/30 (Ref. 17) corresponds to such a ro
choice. On the other hand, in the core-core calculation de-
scribed above, ' the circular "core" of radius rp is com-
pletely unstressed and somewhat larger than the correct
value, hence the worse results.
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