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Pairing correlations with s and d, 2 y2 symmetry in a disordered Cu408 cluster
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Recently we have shown [V. F. Elesin, A. V. Krasheninnikov, and L. A. Openov, Sov. Phys. JETP 79, 789
(1994)] that in the hole-doped Cu40s cluster pairing correlations with s* symmetry are nearly twice as strong
as those with d„2 y2 symmetry, while in the electron-doped cluster pairing correlations seem to be present in

the s* channel only. In this paper the effect of on-site disorder on the pairing correlators with s* and d 2 y2

symmetry in the Cu408 cluster is studied numerically through an exact diagonalization of the Emery-Anderson
Hamiltonian. It is shown that at a nearly optimal doping level (0.25 excess holes per copper atom) the disorder
weakens pairing correlations in the d 2 y2 channel and has much less influence on pairing correlations in the
s* channel. Based on the results obtained, the "superconducting" components of pairing correlators are

estimated to be 10—30% of their full values, with the remaining parts of correlators being contributions from
a finite-size effect. These results indicate that cluster calculations may be relevant for the study of high-T,
superconductivity.

Much attention has been paid lately to the symmetry of
the pairing state in high-T, superconductors. The knowledge
of the underlying symmetry might shed light on the mecha-
nism of high-T, superconductivity and reduce the size of the
list of theoretical models debated. Unfortunately, experimen-
tal data are still controversial. There is evidence for d 2 —y2

symmetry' as well as for s* symmetry. ' The most consis-
tent theoretical approach to the problem is the analysis of
suitable model Hamiltonians. But strong Coulomb correla-
tions prevent analytic solutions of even simplified two-
dimensional (2D) models. In such a situation, great impor-
tance is attached to numerical calculations on finite clusters.
For example, quantum Monte Carlo methods have been used
to calculate the pairing correlators with s, s*, and d 2 —y2

symmetry. ' While in the 2D Hubbard model the pairing
correlations have been found in the d 2 y2 channel only, the
correlations with both s* and d 2 y2 symmetry have been
shown to take place in the 2D Emery model. The variational
Monte Carlo calculations have revealed mixed s+id sym-
metry of the superconducting state in the Emery model. In
Ref. 8 the pairing correlators in different channels have been
calculated by means of exact diagonalization of the Emery
Hamiltonian, and correlations with s* symmetry have been
shown to dominate. All these numerical results favor the
purely nonphonon mechanisms of high-T, superconductivity.
However, the weak point of cluster calculations is the small
size of clusters studied. Though a very short coherence
length in high-T, cuprates indicates that studies on finite
Cu-0 clusters may be relevant in describing the physics of
the cuprates and may lead to a qualitative understanding of
the properties of the infinite Cu02 plane, it is still not clear
whether the pairing correlations found are intrinsic to a par-
ticular model Hamiltonian or are just a finite-size effect.

One way to learn something more about the presence or
absence of "superconducting" components in pairing corr-
elators of finite Cu-0 clusters is to study the inhuence of
Anderson disorder on pairing correlators with different sym-
metries. Indeed, Anderson disorder mimics nonmagnetic im-

purities, which are known to have much stronger effect on
2 y2 wave superconductors as compared with s — or

s*-wave superconductors. Hence, numerical calculations on
disordered clusters might help us to separate "superconduct-
ing" components of pairing correlators from finite-size ones
and thus to check the relevance of cluster calculations for the
study of high-T, superconductivity.

We should stress that we use the term "superconducting
component" to mean the pairing-correlation-induced part of
the total pairing correlator. It is needless to say that true
long-range superconducting order may be found in the infi-
nite system only. However, the superconducting order, if it
exists in a large system, should manifest itself in small clus-
ters. So, it may be hoped that numerical investigations of
even tiny clusters can provide at least qualitative information
on the characteristics of the infinite system.

In this paper we use the exact diagonalization technique
to investigate the effect of Anderson disorder on pairing cor-
relations with s* and d 2 —y2 symmetry in the Cu40& cluster.
We use the two-dimensional Emery model combined with
the diagonal on-site disorder. The Hamiltonian has the form

H= t g (d,+p„~+—H.c.)+eg n„+ Udg n;tn;&
(lk) ~ k~ l

+ U~g n„tnkt+ V g n; np
k (i k), o.o-'

+ g w, (n, t+n, t),j=i,k

where w are the increments in the site potentials of the
copper and oxygen atoms randomly distributed in an energy
interval of width W, other notations being standard (see, e.g. ,

Refs. 8 and 10).The parameter W characterizes the degree of
disorder (the case W=O corresponds to the absence of disor-
der) and plays a role of defect concentration. '
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We consider the two-dimensional Cu408 cluster with pe-
riodic boundary conditions. We study in detail the case of
"optimal" hole doping, when there are five holes in the clus-
ter (one doped hole in the parent dielectric state). For the
relative (per copper atom) concentration x of excess holes we
have x=0.25, this value being close to the optimal doping
level at which T, reaches its maximum in p-type high-T,
superconductors. To solve numerically the many-electron
Schrodinger equation H'II'=F%' we make use of the Lanc-
zos algorithm. The exact ground-state wave function is then
used to calculate the pairing correlator P in o. channel
(n=s* or d, 2 y2):

0.8—

0.6—

0.4—

P =g (6+(r)b, (r+r')), (2)
0.2—

where

6+(r) =Np" g g (p)d„+&d,+„~&,
P

Np is the number of Cu02 unit cells (for the cluster consid-
ered No=4), sununation over r and r' is carried out over all
the copper sites. The form of the function g (p) is deter-
mined by the symmetry of the pairing state: g,*(p)=1 when
p=~ae„or p=~ae, and g, *(p)=0 for other values of p;
g„(p)= 1 when p= ~a e, , g„(p)= —1 when p= ~ae, and

gd(p) =0 for other values of p. Here a is the lattice constant,
and the averaging (" ) is carried out with respect to the
ground state (i.e., at T=O).

To minimize the finite-size effect, ' we subtract the quan-
tity

0 4 L

0.8 —
(

0.6—

0.4—

0.2—

P =Np ' X g (P)g (P')(d,+td, +, t)
/ tr,r, p, p

X(d, td, , „) (4)

0.0

from P . Pairing correlations in the u channel are thought to
persist if P —P )0. ' Our aim is to calculate P —P as a
function of disorder parameter W at given values of other
parameters of the Hamiltonian (1).Note that at a fixed value
of W, the ground-state characteristics depend on the specific
realization of the site disorder, i.e., on the specific set (w, ) in

(1). A correct description of the infiuence of defects on the
electronic structure of small clusters requires taking a suit-
able average over various disorder configurations and deter-
mining both mean values and mean-square deviations. ' Un-
der such circumstances, we carried out calculations in the
following manner: For each of L different random sets tw ')
(l = 1, . . . ,L), at fixed values of all the other parameters of the
Hamiltonian, we calculated (P P) '. Mean values of—
P —P at a fixed value of W were then found as the arith-
metic means over L configurations. Mean-square deviations
D(P P) were calculated using —the standard formula of
mathematical statistics. In most cases we restricted the cal-
culations to L =30 disorder configurations as results obtained
were practically the same as for L=100. The following pa-
rameters sets have been used: (i) Ellt = 1, Udl t =8, U„=V= 0;
(ii) alt =2, Udlt= 6, U„=V= 0; (iii) alt =2, Udlt =6,
U it=2.5, Vlt=1.5.

Figure 1 presents plots of the dependence s of

FIG. 1. Plots of normalized pairing correlators

g =(P P)l(P P)p and—of their me—an-square deviations
D =D(P P)l(P P)p—versus the diso—rder parameter Wlt in
the hole-doped Cu408 cluster for the parameters set (iii) alt=2,
Udlt =6, Uplt =2.5, Vlt = 1.5. (a) n=d„2 y2, (h) u'=s

g =(P P)l(P P)p —and —D =D(P P)l—
(P P)p on W in d 2 Y2

—and s* channels for the set (iii).
Here (P P)p is the valu—e of P Pat W=O. For the s—et
(iii) the value of (P,*—P,*)p has proven to be roughly twice
as large as that of (P„Pd)p. The r—atio (P,*—P, *)pl
(Pd Pd) p 2 holds also for other parameters sets. As fol-
lows from Fig. 1, gd decreases monotonically with increas-
ing W. The same is true for the dependence of g, * on W, but
only at Wlt~ l. Mean-square deviations D increase with W
in both channels.

The qualitative difference between the functions g (W)
in s* and d, 2 —y2 channels consists in that the correlator g, *
remains almost unchanged at W/t(1 within the uncertainty
D,*, whereas gd decreases already at Wit&&1. This is clearly
illustrated in Fig. 2 where mean-square deviations Dd are
plotted as vertical lines. The same results were obtained for
parameters sets (i), (ii). Thus, d 2 Y2 wave pairing is more
sensitive to the disorder than s* pairing, as expected. We
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FIG. 2. The same as in Fig. 1. Mean-square deviations D are
shown as vertical lines.

would like to stress that a substantial (40—50 k) decrease of
pairing correlators in both d 2 —y2 and s* channels occurs
only at W/t)5 (see Fig. 1), i.e., at such values of W when
the disruption of the antiferromagnetic correlations takes
place. ' This fact attests to the essential contribution of non-
superconducting (probably, magnetic) interactions, along
with the superconducting ones, to the pairing correlators.
This contribution is apparently conditioned by finite-size ef-
fects and should be absent in a large system. To determine
the relative weights of superconducting components in total
pairing correlators, we assume that finite-size effects equally

contribute to the normalized pairing correlators in both chan-
nels, i.e., g, *(W) =g, ,(W)+g„s(W) and gd(W) =gd (W)

sc

+g„s(W) were g are the superconducting components
(different in n=s*- and d, 2 y2 channels at W)0) and g„s is
the finite-size contribution (the same in both channels).

In Fig. 3 we present the plots of the quantity B,d=g, +
—gd=g, , —g„versus W. It is seen that for each of the pa-SC SC

rameters sets examined the value of 6',d increases monotoni-
cally with W at Wlt(3, and approaches a constant value
B,d=0.28 (i), 0.25 (ii), 0.07 (iii) at W/t)3 (oscillations of
B,d for the set (iii) are probably due to insufficient number of
disorder realizations used). Note that mean-square deviations
Dd exceed mean values gd starting with some Wlt, thus
giving rise to the nonregular dependence of gd on W (see
Fig. 1). In this connection, we have restricted the intervals of
Wlt values in Fig. 3 by the condition gd~Dd, i.e., 0~
W/t~4 (i), O~W/t~4 5(ii), .0(W/t(6. 5 (iii).

The initial increase of B,d reflects the fact that the super-
conducting component in the d 2 —y2 channel gd is being
suppressed by disorder more quickly than that in the s*
channel, g, ~ . The constant values of 6,'d at Wit~3 indicatesc

that superconducting interactions do not contribute to gd at

large W (i.e., gd = 0), while g „remains almost unchanged,
and the finite-size contribution g Fs is indeed the same in both
channels. As a corollary, 6,d can be thought to be equal to

g, „(W)=g,~(0), or, equivalently, to gd (0), as we sup-

posed gFs to be the same in both channels. In that way,

g (0)=0.28 for (i), 0.25 for (ii), and 0.07 for (iii). Now,
having the values of g (0), we are able to plot the depen-
dence of gd on Wlt by subtraction g„s(W) =gFs(0)=1-
g (0) from gd(W). This is done for set (ii) in Fig. 4. The
critical value of W, lt, derived from the condition gd (W, )
=0, is equal to 1.7. At this value of Wlt the correlator

g,*(W) does not differ much from g, *(0), see Fig. 1, thus

indicating a weak sensitivity of g, , and g Fs to the disorder at
0(Wlt&W, lt and hence justifying the approximation g„s
(W) =g„s(0) at W(W, used by us when plotting g„(W).
The same linear dependences of gd on W take place for
other parameters sets, the values of W, lt being 1.6 and 1.0
for (i) and (ii), respectively.

0.3— sd

FIG. 3. Plots of B,d=g, *—
gd versus W/t. In-

tervals of W/t are chosen from the condition

Dd(gd (see text). ~, (i) «It=1, Udlt=8,
Up= V=O, , (ii) «It=2, Udlt=6, U~= V=O, ~,
(iii) «It=2, Udlt=6, U It=2 5, Vlt=l. 5. .
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FIG. 4. Shows the superconducting component g„versus S'it
in the hole-doped Cu40s cluster for the parameters set (ii) alt=2,
Udit=6, U =V=0.

In the case of s*-wave pairing we are unable to estimate
the value of W, from our numerical calculations, since the
function gFs(W) at large W is unknown. The only thing we
can say is that the value of W, in the s* channel is appar-
ently larger than that in the d 2 y2 channel. Apart from the
value of W, , we can estimate the ratio (P,*—P, ~)o /

(P„P„)o =(P,*—P,—*)o/(P„Pd)a=2, —where the first

equality arises from our assumption that g„s is the same in

both channels, i.e., g ~(0)=gd (0), and the second one is

the result of our numerical calculation. The presence of pair-
ing correlations with both s and d 2 y2 symmetries in the
hole-doped Cu408 cluster points to a possible mixed symme-
try of the order parameter in p-type high-T, superconduct-
ors, with the prevalence of correlations in the s* channel
(see, also, Ref. 7).

We now proceed to a comparison of our results with theo-
retical studies of defects influence on the d 2 y2 wave super-
conductors. For this purpose it is convenient to present the
function g„(W) in the following form (see Fig. 4):

W 1

gd (W)=1 —b —=1 ——,
7 6'

where b is a numerical coefficient, v is associated with the
relaxation time, e is a characteristic energy (e= r, , where 7;
is a critical value of r at which pairing correlations vanish).
In cluster calculations, a value of 7. may be estimated from
the uncertainty principle 7.6E0-1, where 6EO is the uncer-
tainty of the ground-state energy Eo caused by the disorder.
According to our calculations, BEO=W, so 7. '=W, i.e.,
7., '=W, =t-l eV. This value of ~, ' is at least an order of
magnitude larger than that obtained for a d 2 y2 wave super-
conductor from numerical solution of Eliashberg equations. "
We note, however, that the authors of Ref. 11 assumed an
isotropic impurity scattering. As is discussed in Ref. 12, the

presence of the d-wave component in the impurity scattering
can lead to a substantial increase of 7., '.

In order to compare our calculations with existing experi-
mental situation, we turn to a brief discussion of T, degra-
dation under particle irradiation. First, the value of T, is
known to decrease linearly in the irradiation dose, i.e., in the
impurity concentration n; r-(see, e.g. , Ref. 13).This fact
is in agreement with our result (5), as gd may be viewed to
be proportional to b, „, see (2). Next, experimentally ob-
served critical value ~, ' =EF at which T, vanishes, ' is
close to the calculated value of ~,. '= t in the d 2 —y2 channel
since EF= t. But then a question arises about the presence of
the s*-wave component in the order parameter. One should,
however, keep in mind that strong disordering leads to the

appearance of localization phenomena. It was shown in Ref.
13 that the condensate of Cooper pairs could be localized at
r '~EF, so that resistively measured T, equals zero (as the
supercurrent vanishes), while 540. The transition of the
Bose condensate of Cooper pairs into a localized state was

apparently observed in Ref. 14 where the influence of
radiation-induced defects on 5 in YBa2Cu307 was inves-

tigated by means of Andreev reflection. We can conform our
calculations with the experimental facts if we assume that the
contribution to 5 from the d 2 y2 channel vanishes at

=EF and then the localization of the remaining part of
the Bose condensate with the s* symmetry takes place.

Now let us consider brieAy the case of the electron doping
(three holes in the cluster, i.e., one extra electron in the par-
ent state). As it was pointed out in Ref. 8, in the absence of
disorder the value of (P,*—P,*)o for the electron-doped

Cu408 cluster is an order of magnitude larger than the value
of (P„P„)o.This fact g—ives rise to strong doubts about the

presence of the superconducting correlations with d 2 y2

symmetry under electron doping. Moreover, according to our
calculations, the pairing correlator gd in the disordered clus-
ter behaves rather unphysically: It increases substantially
with W, while the mean-square deviation exceeds the mean
value. This is true for all the parameters sets examined and

points to a complete absence of d 2 y2 wave correlations in

the electron-doped cluster. On the contrary, g, * is practically
independent of W, thus indicating a weak sensitivity of pair-

ing interactions with s* symmetry to the disorder under elec-
tron doping as well as under the hole one. Hence, under
electron doping, pairing correlations seem to be present in
the s* channel only, in accordance with experimental data. '

So, according to the model, ' we can expect radiation-
induced defects in n-type cuprates to suppress resistively
measured T, , keeping the value of 6, measured by means of
Andreev reAection, almost unchanged up to T, =O. This pre-
diction may be checked experimentally.

In conclusion, we have separated the superconducting
components of the pairing correlators with s* and d 2 —y2

symmetry in the Cu408 cluster from the finite-size ones and
have shown them to be 10—30% of the total values. Our
results indicate that purely nonphonon pairing correlations in
s* and d 2 y2 channels are intrinsic for the two-dimensional
Emery model. In the hole-doped cluster, the superconducting
fraction of the pairing correlator in the s* channel is a factor
of 2 larger than that in the d 2 —y2 channel. Under electron



52 PAIRING CORRELATIONS WITH s AND d&2 y
2 SYMMETRY e ~ ~

16 191

doping pairing correlations with the d, 2 —y2 symmetry are
absent.
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