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We develop a theoretical electronic structure based approach suitable for the study of complex
silicas, and apply it to three different silica polymorphs. The method is first principles but simplified
to cope with large systems. Charge transfer between ions is included in a self-consistent fashion. The
method is found to be adequate to describe the relative energetics and the electronic structure of silica
and is used to construct a simplified model energy for the structural transition of high cristobalite. In
addition we have studied the moderately complex silica, melanophlogite. Melanophlogite, although
a clathrate structure belonging to the group of silica polymorphs known as clathrasils, is found to
be only 10 kJimol above n-quartz, in accord with the recent thermochemical study of the stability
of zeolites.

I. INTRODUCTION

Silica or silicon dioxide is one of the most abundant
and important materials on earth, and as such is one of
the most thoroughly studied. Silica is known to exist in
numerous polymorphs, the variety of which is attributed
to the large number of possible topologies obtained by
linking the relatively rigid corner-sharing Si04 tetrahe-
dra. The unit cells for complex silicas can in some cases
involve hundreds or even thousands of atoms, as is the
case for complex zeolites.

Almost all the available atomic theories have been ap-
plied to silica: empirical potentials, semiempirical tight-
binding, ab initio solid state methods, and quantum
chemistry methods. Empirical potentials have been used
with a certain success to describe the phase diagram and
phase transitions, but the intricate balance between
the ionic and covalent components of bonding is appar-
ently beyond the appealing simplicity of these methods.
Semiempirical tight-binding techniques have been em-
ployed to study the electronic structure of bulk crys-
talline polymorphs, defects, and Si02 glasses. The
limited transferability of the tight-binding parameters,
however, leads to well-known difBculties in describing the
geometrical arrangement of atoms. The necessity of re-
liable and fast first-principles methods for complex sys-
tems can hardly be overemphasized.

Despite the industrial importance of silica and the
vast body of experimental work, the number of first-
principles studies of silica remains relatively small, both
from quantum chemistry and solid state physics perspec-
tives. Only recently have ab initio density functional the-
ory (DFT) or Hartree-Fock methods been successfully

applied to study solid state properties of a number of
silica polymorphs. Despite the obvious successes of
existing first-principles methods, one must not overlook
their limitations. The structural "softness" of the Si-0-
Si bridges makes the energetics delicate, and requires a
high degree of convergence for the theory to be quantita-
tive. In the popular plane-wave pseudopotential (DFT)
method, for example, this requirement is confronted with
two major difhculties: The unit cell must not be too
large (the computation scales as the cube of the number
of electrons, N), and the presence of first-row elements
(e.g. , oxygen) generally requires the use of an enormous
number of plane waves. A comprehensive account of ap-
plications of quantum chemistry methods to silica may
be found in Ref. 16.

There is an immediate need for a fast ab initio method
allowing a unified approach to the electronic structure,
total energy, and dynamical properties of systems such as
silica polymorphs. The purpose of this paper is to present
such a method and to demonstrate its usefulness with
some applications to the silica minerals. In particular, we
investigate the structural transition in high cristobalite.
We use the results of the first-principles calculations to
derive a simple phenomenological model describing this
transition. The model enables us to obtain an analytical
expression for the Si-0 bond length as a function of the
bond angle. Finally, we perform an ab initio calculation
of the zeolite melanophlogite.

The paper is organized as follows: In Sec. II we dis-
cuss the proposed theoretical model; in Sec. III we apply
this method to determine the energetics and the elec-
tronic structure of n-quartz, P-cristoba}ite, and the zeo-
lite melanophlogite.

0163-1829/95/52(3)/1618(13)/$06. 00 52 1618 1995 The American Physical Society



52 ELECTRONIC STRUCTURE APPROACH FOR COMPLEX SILICAS 1619

II. THEORY

A. Background

The plane-wave total energy method based on the local
density approximation (LDA) to density functional the-
ory (DFT) and the pseudopotential technique has proved
to be quite successful when applied to a variety of solids.
The computational efBciency of this method has been
significantly improved in the last decade. Although new
developments have made possible the study of systems
containing a number of atoms of roughly an order of mag-
nitude larger than before, the method is still computa-
tionally very demanding both in CPU time and memory
requirements.

At the same time, the alternative local-orbital ap-
proach to DFT has seen a quieter revolution. In 1985,
Harris introduced an approximate energy expression,
known since then as the Harris functional (or the Harris-
Foulkes functional2 ). This energy expression is obtained
by expanding the Kohn-Sham energy about a reference
electron density, and the reference potential constructed
&om that electron density, with an error which is second
order with respect to the deviation of the reference elec-
tron density from the self-consistent one (psc). Foulkes
and Haydock have remarked that the electron den-
sity and the one-electron potential may, in principle, be
treated as independent variables, resulting in a more gen-
eral functional. In a difFerent line of development, an ap-
proximate linear combination of atomic orbitals (LCAO)
Hamiltonian has been obtained by means of a second-
quantization formalism. In this approach, the many-
body terms are included without resorting to the usual
LDA approximation. 4 This procedure avoids the prob-
lems associated with the LDA exchange and correlation
eKects in the description of hydrogen bonds or other
weakly bonded systems.

Two important features of the Harris functional E~, as
compared with the non-self-consistent Kohn-Sham func-
tional Elcg, are that (i) E~ is far easier to evaluate and
(ii) E~ gives a better estimate of the ground state en-

ergy ED when the electron density p is not psc. Prob-
ably, the main advantage of the Harris functional is the
possibility of choosing an appropriate form for the in-
put (reference) charge density which is a sum of densi-
ties localized at various sites, together with the use of
localized orbitals to solve the one-particle Schrodinger
equation. The electron-electron Coulomb integrals are at
most three center, which is a great simplification. Input
densities consisting of the sum vf the &ee atomic densi-
ties have been used in the calculation of several proper-
ties of some dimers2 ' and solids, with remarkable
results. However, the accuracy is significantly improved
if, instead of &ee atomic densities, use is made of "con-
tracted" atomic densities.

Another important step towards a fast and accurate
total energy method consists of choosing an eKcient ba-
sis set for the determination of the occupied eigenvalues
and eigenvectors of the one-particle Schrodinger equa-
tion. Sankey and Niklewski have introduced the "fire-
ball" basis, in which the orbitals are obtained by solving

the atomic problem with the boundary condition that the
"atomic" orbitals vanish outside and at a predetermined
radius B . An important advantage of this basis set is
that the Hamiltonian (and overlap) matrix elements have
a short range. This method was extended by Drabold et
al. to systems with disparate types of atoms. Ordejon
et al. have implemented an order-N technique using this
method so that the computation time scales linearly with
the size of the system for large systems. Recently Lin
and Harris have proposed the use of a LCAO orbital
basis of A functions, which are linearly related to Slater-
type orbitals (STO's). In their approach, the exponents
associated with the orbitals are optimized, resulting in a
more Hexible scheme at the price of higher computational
efFort. The use of Slater-type orbitals requires that the
contribution of many distant neighbors needs to be cal-
culated. However, if one is interested in describing weak
interactions (such as hydrogen bonds or the interac-
tion between noble-gas atoms and a solid surface ) the
STO's are probably the most convenient basis set.

The Sankey-Niklewski-Drabold (SND) method has
proved to be a very efBcient and successful tool for a
great variety of problems. However, the representation
of the input electron density p(r ) by a sum of neutral
atomiclike charge densities limits the applicability of the
SND method when there is an important difFerence in the
electronegativity of the atoms that constitute the system
under study. The aim of the theoretical work presented
here is to generalize the SND method to deal with sys-
tems which present a significant transfer of charge be-
tween atoms (like the silicas), while keeping all the fea-
tures that makes it so efBcient, and capable of handling
complex systems. The major features that the theory
maintains are (i) a short-range nonorthogonal local or-
bital basis; (ii) all the analysis is done in real space (the
use of reciprocal lattice vectors is forbidden, except in a
simple Ewald summation); (iii) integrals involving four
centers are not required in the Harris scheme, so that all
the two- and three-center integrals are easily tabulated
beforehand and placed on interpolation grids no larger
than two dimensional; (iv) molecular dynamics simula-
tions are performed by looking up the necessary integrals
from the interpolation grids.

B. Method

The Harris expression for the total energy of a system
of electrons and ions for an input charge density p0 is

E(o( [p] = ).'*' + [E"—E-(po)]

+ &* (~ ) —f ~ (~)~ (~ (~))~'" (~)-

where the e,. 's are the occupied eigenvalues of the single-
particle Hamiltonian,

+ v[pp]2m
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with

V[pp]=) V, „(r —B )+e
R

po(r') dsr'
+ p (po(" )).

2

2

is the electron-electron repulsion.
In our approach we represent the input electron density

po as a sum of charged atoms of different 8-p hybridiza-
tions as

V; „ is the ionic pseudopotential of the atom at
B, E„,(po) is the I DA exchange-correlation energy,
y,„,(po(r )) is the exchange-correlation potential, E;; is
the ion-ion repulsion, and

correlation matrix elements are readily obtained due to
an elegant linearization described in Ref. 30. In the fol-
lowing subsection we discuss an approximate and efBcient
(fast) way of calculating the long-range Hartree contri-
bution 6

&
to the single-particle Hamiltonian matrix el-

ements h p. Our aim is to keep the method fast and
eKcient, with, of course, paying as small a price as pos-
sible concerning accuracy.

C. Long-range contribution to the single-particle
Hamiltonian

The long-range part of the single-particle Hamiltonian
matrix elements, 6 &, can be written as

po(r) = ) n;~P, (r —R;)~ .
where

Here the n, are real positive numbers that define the
occupation of the "atoinic" orbital P, on the atom at
position R;. The orbitals P, (r —R;) are the slightly ex-
cited pseudoatomic orbitals ("fireballs") of Sankey and
Niklewski that are used as basis functions to solve the
one-particle equation (2). The input density po(r ) is a
sum of confined spherical atomiclike densities, each of
them with a number of electrons determined by its occu-
pation nuInber n;. Allowing n, to vary implies that the
distribution of charge around each atom (tatung into ac-
count the nuclear charge) is in general non-neutral, and
we must deal with long-range interactions. The value of
n; will depend on the chemical environment of the or-
bital P, (r R,), through th—e density associated with the
single-particle orbital tP, , and its practical determination
will be discussed below.

The occupation numbers n; can be written down as
the sum of a neutral, n, , and a non-neutral contribution,
bn,'.

n; = n,'. + bn, .

Here n, is an appropriate reference occupation num-
ber that gives a "neutral-atom" charge density (e.g. ,

n, = n„= 2 for Si), and bn; describes the charge trans-
fer between the atoms of the system. The input elec-
tron density [Eq. (5)] induces a one-electron potential
[Eq. (3)] which has both long-range (due to the bn, ) and
short-range contributions to the single-particle Hamilto-
nian matrix elements 6 p.

(6 p —— r —B — V +Vpo pr —Bp2m

The matrix element h
&

contains the contributions
due to the kinetic energy, ionic pseudopotential, and
"neutral-atom" Hartree and exchange-correlation poten-
tials. We refer the reader to Ref. 30 for a detailed dis-
cussion of the short-range term 6 &. The exchange-

g p

The functions g are three-center integrals, but due to
the short-range nature of the fireball orbitals, we notice
that g'p ——O if ~B —Bp~ ) [R,(a) + R, (P)] [R,(p)
is the cutofF radius for the orbital P~ described in the
Introduction].

In the more interesting situation in which [B —Bp~ (
[R,(ct) +B,(P)], we have two cases: (i) the near field and
(ii) far field regimes.

(i) The near field regime is de6ned to be where
both orbitals in the matrix element overlap the density

fP, (r' —B,)/, i.e. , where /B —B; [
( [R,(n) + R, (i)] and

~Rp —R;~ ( [B,(P) + B,(i)]. In this case the integral
g'

&
is calculated numerically. The results for all possible

geometries are stored on a two-dimensional (2D) grid of
distances and interpolated when needed. This procedure
is identical to that described in Ref. 30 for the neutral-
atom matrix elements, and the details may be found in
that paper.

(ii) The far field regime is where either one or both
of the orbitals in the matrix element do not overlap the
charge density, i.e. , ~R —R;~ ) [B,(n)+R, (i)] or [Rp-
B;~ ) [B,(P) + R, (i)] (or both).

These are the true long-range contributions to the ma-
trix element 6 p and the geometry is shown schemat-
ically in Fig. 1. An infinite number of atomic centers
i contributes, in principle, to the matrix element h p.
However, the physics in Eq. (9) is simply electrostatics,
and we make use of far Geld electrostatic approximations.
To further simplify our task we shall consider only the the
most important matrix elements and set the rest to zero
as discussed below. Since the wave function densities
~P;(r —B;)~ are spherically symmetric and normalized
(for p states, we take a suitable spherical average), we
have that in the far field regime
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Ri

FIG. 1. Geometry of the Coulomb integrals for near and
far fields (see text).

set to zero. Equation (15) is now a sum of two-center
terms and the inBnite sum of contributions to the matrix
element 6 p from all atoms i is now summable exactly
using standard Ewald summation techniques.

Physically, the approximations of Eq. (9) to yield Eq.
(15) have included monopole and dipole far field effects.
These are used to calculate the contribution to 6

&
of all

the densities ~P;(r R;)
~

—whose charge distribution does
not overlap with the bond charge P* (r R~)P—p(r Rp—)
[case (ii) above]. In the near field [case (i)], the integral is
computed exactly and includes all multipoles. However,
at the boundary between case (i) and case (ii), there will
be a small discontinuity in the value of g'& due to the
far Beld approximations. We remove this discontinuity
by "smoothing" the boundary between the two regimes
of approximation:

g.'p = &(r)g.'p[Eq (9)1+ [1 —&(r)lg.'p[Eq. (»)1 (16)

&*(& R-)&n—(& R~) s—

R;/— (10)

The product P* Pp may have a dipole moment, and so we
expand „ in Legendre polynomials to yield

where r is the distance from the center of the density to
the center of the bond charge. The smoothing function
f (r) we choose is unity for distance up to second nearest
neighbors, and drops smoothly to zero at about third
neighbors.

g'p —— ~ + (R; —R ).p p(R )+ D. Determination of the occupation numbers n, 's

(see Fig. 1), where

S p = P*(r R)gp—(r —Rp)d r (12)

is the overlap (charge) and p p is the dipole moment,

p-n(R-) = P' (r R)gp(r R—p)(r R)—d r (1—3).
We are free to choose our "origin" B so that the second
(dipolar) term in Eq. (10) vanishes. Doing this we obtain
that g'

&
is approximately

S p

[p.~(R )IS.~) I

(14)

Here, R = (R + Rp)/2.
Within the same order of approximation, this can be

simpliBed further by defining effective charges q and qp
on each of the orbitals and writing Eq. (14) in the more
convenient form

g~ gp

with effective charges q~ = &S~p + p~p(R~)/dBc and

qp = &S p —p ~(R )/dBC, where dye is the "bond
charge" distance dye = ~R —Rp

~

and p p (R ) is the
dipole along dB~. Terms for which either S p or the
dipole moment in the bond charge direction vanish are

The total energy [Eq. (1)] is a function of the occupa-
tion numbers n, ,

&t.t [po]—:E~(n;),

once we have restricted the input density to be of the
form given by Eq. (5). The problem is thus reduced to
finding out which are the n s that give the best estimate
for the ground state energy Eo ——EH [psc].

The Harris energy expression is stationary at psg,
but it is neither a maximum nor a minimum; i.e. , in gen-
eral the stationary point at ps~ is a saddle point.
Several authors have pointed out that the Harris energy
functional displays a maximum at its stationary point
(p = psc) for a wide class of densities p.2 ' 's The input
density of Eq. (5) seems to belong to that class of den-
sities, and use could be made of the maximum property
of the Harris energy expression to determine the opti-
mum set of n s. Recently, Methfessel4 has shown that
when the density and the potential are considered as in-
dependent variables the energy functional is maximal
respective to the potential and minimal respective to the
density. This means that in our case we could use two
sets of independent n s (one to characterize the poten-
tial and the other for the density) and optimize them
accordingly.

However, one must be especially careful once the long-
range Coulomb interaction is explicitly included in the
theory since it can, if not treated carefully, give nonphys-
ical results. To illustrate this point we consider a simple
dimer with a transfer of charge between the two atoms,
and compare the electrostatic contributions (ES's) to the
total energy in the limit of large separation. In the Har-
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ris theory, one obtains the "band structure" contribution
EBs from summing energy eigenvalues:

EES 2E (
in out) + E ( out) (18)

EDEs, = E,; —E..(n'", n'").

If we now add Eqs. (18) and (19) for the dimer case in
which one atom on input has excess charge bq and the
other —bq, while on output has corresponding charges
bq and —bq, we obtain, for large d,

2

E. . .(d) = —bq ( —bq + (bq —bq)) + Uo, (20)

where n'" is the input electron density and n " is the
output electron density obtained from the single-particle
wave function. In addition to the band structure energy
is the ion-ion and electron-electron "double-counting"
correction:

-544. 0
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I"IG. 2. The total energy of a Si-0 dimer as a function of
the interatomic separation obtained by a self-consistent calcu-
lation (labeled SCF) and by the three non-self-consistent cal-
culations, one for the two neutral atoms and two for the atoms
with the fixed charge transfer (the amount of charge trans-
ferred is indicated in the graph). Note that for large distances
the interaction is repulsive for the curve labeled q = 0.5.

where Uo does not depend on d, the distance between
the two atoms of the dimer. As one can see, for the neu-
tral input density (bq = 0) the 1/d contribution to EtEst i
vanishes, while for a self-consistent density (bq = bq) the
long-range effects result in the proper —e (bq) /d attrac-
tion. However, for a non-self-consistent density (bq gbq),
Eq. (20) can result in either an attractive interaction or
a repulsive interaction. If the input and output charges
are significantly difFerent, we obtain the nonphysical re-
sult that the two oppositely charged atoms repel. The
mathematical condition which leads to this nonphysical
result &om Eq. (20) is bq (

We have found this efFect in fact to occur for the case of
a Si-0 dimer under certain conditions. Here the Si atom
donates some of its electrons to the oxygen atom. If we
incorporate poor "guesses" for the input charge transfer,
we find that the two atoms of the Si-0 dimer repel for
large distances. This is shown in Fig. 2. In Fig. 2 we
show the total energy of a Si-0 dimer as a function of
the interatomic separation obtained by a self-consistent
calculation (labeled SCF on the graph) and by three non-
self-consistent calculations: one for two neutral atoms
and two for the atoms with the fixed charge transfer (the
amount of charge transferred is indicated in the graph).
As one can see, both the self-consistent and Harris (neu-
tral) calculations result in physical long-range limits (the
atoms attract). However, when the transfer of charge
is allowed in the non-self-consistent calculation, a guess
which is close to the self-consistent solution (bq = 0.25)
deviates only slightly &om the correct answer, while a
"bad" guess (bq = 0.5) results in the aforesaid unphysi-
cal repulsion at separations larger than 2.25 A. .

This example demonstrates the need for some level of
self-consistency. However, the representation of the input
electron density in the form given by Eq. (5) prevents
us from achieving self-consistency in the standard way,
where p'"(r ) = p "t(r ) at each point r. One simplified
way to obtain an approximate solution was proposed by
Averill and Painter. In their method, the density is
written as a superposition of the fit-basis functions with
unknown coefIicients, and the output charge density of

where @ are the occupied eigenvalues of Eq. (2) and &p;

are the atomiclike orthogonal orbitals of I owdin,

y; =) (s );,.g, . (22)

We determine the occupation factors n, " from the "self-
consistency" condition n, " = n, for all i, where n; is the
input occupation numbers from Eq. 5. Equation (21)
may be viewed as a way of projecting the output electron
density obtained from Eq. (2) into a density of the form
given by Eq. (5). This scheme is similar to the one
of Ref. 42, where Mulliken charges were used in a self-
consistent charge Hartree-Fock-Slater model.

We next apply this theoretical method to the study
of several silica polymorphs. We use a minimal basis set
consisting of Sp orbitals on the silicon and oxygen atoms.
The cutoff radii R, have been chosen to be R (0) = 3.6
and R, (Si) = 5.0 (atomic units). Improvements in this
basis set, such as an optimized choice of the B,'s or the
inclusion of more orbitals (e.g. , d orbitals) per atom, are
certainly possible, and will be analyzed. in the future.

III. RESULTS

The most common crystalline phases of Si02 are
n- and P-quartz, n- and P-cristobalite, stishovite, P-
trydimite, and coesite. These difFerent polymorphs are

the previous iteration cycle is used to determine these
coe%cients subject to the constraint of conservation of
the total number of electrons, by a conventional least-
squares fit.

In the present work, we have followed an approach that
is similar in concept to Ref. 31 but is simplified and less
computationally intense. We define output occupation
numbers n, " as
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TABLE I. Experimental crystal parameters for the pure SiO& polymorphs o.-quartz, P-cristobalite, and for the clathrasil
melanophlo gite.

Polymorph
a-quartz

P-cristobalite'

melanophlo gite

Space group
Table No.

P3221
No. 154
Trigonal

I42d
No. 122

Hexagonal
Pm3n

No. 223
Cubic

Lattice
constants (A)

a = 4.916
c=5.4054

a = 5.042
c = ?.131

a = 13.436

Atoms/cell
9

12

138

Si-0-Si
angles
143.7'

146'

148.3-180.0'
Avg= 168.8

Si-0
bond length A,

1.614-1.605
Avg=1. 610

1.62

1.569-1.595
Avg= 1.576

Space group number in International Tables of X ray Cryst-allography (The Kynoch Press, Birmingham, England, 1965).
B.G. Hyde and S. Anderson, Inorganic Crystal Structures (Wiley, New York, 1989).

'A.F. Wright and A.J. Leadbetter, Philos. Mag. 31, 1391 (1975).
H. Gies, Z. Kristallogr. 164, 247 (1983).

stable in diferent parts of the pressure-temperature
phase diagram. In addition to the pure polymorphs,
there exists yet another family of silica polymorphs which
are impure. These are the clathrate compounds known
as clathrasils and include silica-sodalite, dodecasil 10,
decadodecasil 3B, melanophlogite, nonasil, and dodecasil
3C. In all these silica polymorphs, except high-pressure
stishovite, oxygen atoms are twofold coordinated, form-
ing a continuous three-dimensional framework of nearly
regular Si64 tetrahedra linked by sharing corners. The
tetrahedra are fairly rigid within themselves; it is the va-
riety of ways they may be linked by corner sharing that is
responsible for the great multitude of silica polymorphs.
Silica also exists in amorphous or glassy phases, in addi-
tion to the above-mentioned crystalline phases.

Correctly predicting the relative stability of the com-
plex set of structures for silica is a considerable challenge
for any theoretical method. Most of these polymorphs
have energies very close to each other, so that subtle ef-

fects due to the bond angles must be correctly included
in the theory to properly describe trends. One expects
that a careful Hartree-Fock or LDA Kohn-Sham calcula-
tion would obtain realistic results, but these calculations
are quite demanding.

We have tested our method by calculating the equa-
tion of state for the three silica polymorphs: o.-quartz,
P-cristobalite, and melanophlogite. The experimental
structures of these polymorphs are given in Table I, and
the experimental fractional internal parameters are given
in Table II. The energy vs volume curves we obtain
are shown in Fig. 3. In this figure we have fixed the
fractional internal coordinates to those of experiment,
and have used experimental values for the cja ratios
for those structures with two lattice constants. When
the full relaxation is performed for o.-quartz we obtain
V = 34.842 A jmolecule, B = 34.74 GPa, and B' = 6.61,
for the equilibrium volume, the bulk modulus, and its
derivative, respectively. We have used a Murnaghan

TABLE II. Experimental coordinates for the pure SiO& polymorphs u-quartz, P-cristobalite, and for the clathrasil
melanophlo gite.

Polymorph
o.-quartz

P-cristobalite'

Melanophlo gite

Fractional
coordinates

Oq(6c) zyz, etc.
Siq(3a) x00, etc.

Og (8d) x-,'-,', etc.
Sip (4a) 000, etc.
Oq(48l) zyz, etc.
Oz(24k) Oyz, etc.
Os(12f) z00, etc.
04(8e) ———,etc.

Siz (24k) Oyz, etc.
Siz(16i) zxz, etc.
Sis(6c) —0 —,etc.

0.4135
0.4697
-0.09

0.0963

0.3423

0.1826

g
0.2669

0.2465
0.4056

0.3098

z
0.1191

0.1360
0.1813

0.1142

B.G. Hyde and S. Anderson, Inorganic Crystal Structures (Wiley, New York, 1989).
o.-quartz is shifted by [0,0,-sj from the International Tables of X ray Crysallograplhy (The Kyn-och Press, Birmingham,

England, 1965) so that the unit cells of o.- and P-quartz correspond.
'A.F. Wright and A.J. Leadbetter, Philos. Mag. 31, 1391 (1975).
"H. Gies, Z. Kristallogr. 164, 247 (1983).



I624 DEMKOV, ORTEGA, SANKEY, AND GRUMBACH

equation of state to determine the bulk modulus (B),
and have found B' to be quite sensitive. The energy vs
volume curves have very appreciable nonparabolic contri-
butions, and points needed to be chosen very close to the
minimum. The results for P-cristobalite shown in Fig. 3
are for the ideal (but incorrect) C9 structure which as-
surnes linear Si-0-Si bonds. The correct P-cristobajite E
vs volume curves are much "softer" due to the changes in
the Si-0-Si angle, as will be discussed separately below.
The most important result of Fig. 3, however, is that a
correct ground state structure (o.-quartz) is found. The
energetics of P-cristobalite and melanophlogite will be
discussed below, but it appears that the melanophlogite
energy minimum is quite reasonable when compared to
similar experimentally measured silicas, while the energy
of P-cristobalite appears somewhat high.

The electronic band structures for the three poly-
morphs of this study are shown in Fig. 4. The zero of
energy is defined to be the top of the valence band in all
cases. All structures show bands which are quite similar
in major features. There is an oxygen 8-state-derived set
of bands in the range —17 to —22 eV depending on the
structure. The next highest set of bands is the oxygen-
silicon bonding orbital bands centered at around —7 to
—8 eV. The highest set of occupied bands is the nonbond-
ing p states on the oxygen. These states form the top
of the valence band. The band gaps are quite large; we
find 16 eV for o.-quartz. Experimentally the band gap
of o.-quartz is 9.2 eV, although the size of the gap
cannot be said to be well established due to the forma-
tion of excitons and defects. The use of the LDA is well
known to predict gaps below those of experiment, while
the use of a minimal basis set of local orbitals (the main
effect here) is known to increase4s the band gap above
experiment.

The density of states for o.-quartz has been measured
by ultraviolet and x-ray photoemission. ' It is found
that the lowest peak exists at 21 eV below the top of the
valence band, while our bands indicate a peak at about

20 eV. The next set of peaks corresponding to the 0-
Si bonding states are at —10 and —7.5 eV, while our
bands indicate peaks at —9 and —6 eV. The final p
band experimentally peaks at —2.5 eV and is about
5 eV wide, while our band is centered at —2 eV and is

4 eV wide. Thus our results for the overall electronic
structure are in a good agreement with the experimental
data, and we feel confident enough to apply this method
to study in detail the structural properties of high cristo-
balite.

A. Structural properties of high eristobalite
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High cristobalite (or P-cristobalite) is one of the most
intriguing of all the silica polymorphs. Being metastable
under ambient conditions (cristobalite is stable just be-
low the Si02 melting point) this polymorph occurs nat-
urally, and was named after the San Cristobal Desert in
Mexico where it can be found. The reason for cristo-
balite being easily quenched to room temperature lies in
the reconstructive nature of the o.-quartz to cristobalite
transformation (the very strong Si-0 bonds have to be
broken). The structure of P-cristobalite was proposed by
WyckofF over 50 years ago to be the linear Si-0-Si C9
structure, which is now believed to be incorrect. The
details of the correct structure remain controversial, al-
though there appears to be a general consensus on the
most important parameters.

2.0

-25.0
(101) (001) (000) (100) (110) (000) (111)

20.0—

0.8-

0.4

15 20 25 30 35 40 45 50 55
03

Volume/moIecule (A)

8

U)

8
C
UJ

10.0-

0.0

-10.0

-20.0
('f01) (001) (000) (100) (110) (000) (111)

FIG. 3. Total energy vs volume for three silica polymorphs
(1) o.-quartz, (2) P-cristobalite, (3) melanophlogite, obtained
using the current ab initia method.

FIG. 4. Band structures of silica polymorphs (a) o-quartz,
(b) P-cristobalite, (c) melanophlogite, obtained using the cur-
rent ab initia method.
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In the idealized C9 structure proposed by WyckofI' the
Si atoms take positions on a diamond structure, and oxy-
gen atoms take positions at the bond centers midway be-
tween two Si atoms. The Si-0-Si bond is therefore linear,
and the resulting structure is cubic and belongs to spaqe
group Ed3m with Si in the 8a positions and 0 in the
16c positions. The lattice constant of the material leads
to the conclusion that the Si-0 bond length is 1.54 A,
which is very short compared to that in other Si02 poly-
morphs. What is perhaps more important, however, is
that the Si-0-Si bond angle is 180, and not the char-
acteristic 145 —150 . Nieuwenkamp proposed that the
material is disordered and only the average symmetry is
Ed3m, and there exists a local configuration of bent Si-0-
Si bonds. Leadbetter and Wright and Leadbetter"" in
more recent experiments proposed that the correct struc-
ture of high cristobalite is a distortion from C9 with the
lower local symmetry of I42d, which gives an Si-0-Si
angle of 147' and a bond length of 1.61 A. A continu-
ous transformation from the C9 structure to the I42d
structure was shown by O'KeefI'e and Hyde to be ac-
complished by rotating corner-sharing rigid Si04 tetrahe-
dra by an angle P about a 4 axis in opposite directions.
During the rotation, the Si-0-Si angle is reduced from
the linear value (180 ), to smaller angles down even to
the tetrahedral angle of 109.47 . At the tetrahedral an-
gle, the structure has collapsed into a defective chalcopy-
rite structure, which can. be thought of as a zinc-blende
structure with every other cation missing. The average
Ed3m structure can be obtained by random static do-
mains of I42d. However, this view is controversial, and
an alternative view is that there exist domain walls of o.-
cristobalite between domains of P-cristobalites or that
the P-cristobalite structure is dynamically distorted with
an average structure of Ed3m.

There have been few theoretical investigations of this
polymorph. Vashishta et al. used a classical two- and
three-body potential to find the volume-dependence of
several (fixed) Si02 crystal structures, including "ideal"
P-cristobalite (C9) and a bent bond structure. They
find that the C9 structure is the lowest-energy P-
cristobalite structure and the n-cristobalite structure to
be the ground state silica polymorph. Zhang and Ong
have recently theoretically investigated the possibility of
the pressure-induced amorphization in this structure by
means of the constant-pressure molecular dynamics and
find amorphization to a six-coordinated structure at 11—
15 Gpa. Keskar and Chelikowsky have used a classical
three-body potential to investigate the pressure depen-
dence of the six internal parameters for the Ed3m struc-
ture as defined by WyckofI'. Welberry et al. have per-
formed Monte Carlo simulations using a Born —von Kar-
man harmonic force model. When the model is modi-
Ged to constrain the Si-0-Si angle to 147', the predicted
difI'raction pattern is in good agreement with the exper-
imental one. Recently there have been two ab initio the-
oretical studies of P-cristobalite. Silvi et al. is have per-
formed periodic Hartree-Fock calculations on the related
o.-cristobalite, relaxing the tilt angle. They find that the
C9 structure (which occurs at a tilt angle 0 ) to be dy-
namically unstable. Liu et al. have examined the C9,

I42d, and P2~3 structures using a Kohn-Sham plane-
wave technique. They find that of these three the I42d
structure is energetically favored.

The continuous set of possible P-cristobalite structures
may be described most simply in terms of just two pa-
rarneters: the Si-0 bond length d and the corner-sharing
tetrahedron rotation angle P. In this model, the Si04
tetrahedra are assumed to remain regular. Given a fixed
bond length d, the rotational angle /=0' corresponds to
the linear C9 structure, while /=45' corresponds to the
tetrahedral defective chalcopyrite structure. A general
value of P results in the I42d structure. The relation
between P and the Si-0-Si bond angle 8 is

1 —4cos2 PcosH =—
3

The structure refinement of Wright and Leadbetter cor-
responds to the I42d structure with rotational angle
/=19.8 .

We find this picture attractive since it has only two
parameters, and allows us to explore the entire "struc-
tural space" of the I42d structure. In Fig. 5 we show the
energy per molecule of P-cristobalite as a function of the
rotational angle P for different Si-0 bond lengths d. From
this figure, we see that shorter bond lengths favor the lin-
ear C9 structure, while the longer bond lengths favor the
distorted structure with nonlinear Si-0-Si bonds. In no
case is the defective chalcopyrite structure (P = 45') the
structure lowest in energy. The global minimum occurs
for a value of d = 1.56 A, and at the distortion angle of

P = 20.5'. Our bond length is systematically underesti-
mated by about 0.05 A. in all structures.

We can rationalize this behavior as arising from
competing interactions within the crystal. The "or-
bital" Si(sp )-0(p ) interactions favor a 90 Si-0-Si
configuration, while the Si-Si nonbonding overlap re-
pulsion together with the repulsive Coulomb contribu-
tions between adjacent Si atoms try to keep the Si atoms
as far away from each other as possible, thus favoring
the collinear 180 configuration. When the bond length
is short, the distance between adjacent Si atoms is re-
duced and the system seeks the C9 linear structure since
it allows the two silicon atoms to be farther away. When

-1005.0

-1005.5- '"
0
8
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FIG. 5. Energy of p-cristobalite as a function of tetrahe-
dron rotational angle &p for the difFerent Si-O bond lengths.
The angle p determines the Si-O-Si bond angle through
Eq. (»).
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the bond length is increased, the system seeks the lowest
energy by compromising the orbital Si(sp )-O(p ) inter-
action and the Si-Si repulsion.

It is illuminating to cast the theory of the transition be-
tween the idealized Fd3m Wyckoff C9 structure and the
experimental I42d structures along the lines of a Landau
theory of phase transitions. We write an approximate
energy function involving the two independent variables
in this model which are the Si-0 bond length d, and the
rotation angle P between rigid tetrahedra, as

E(d, p) = Eo+ —k(d —db) + K2(d—)p + K4(d—)p .
1 2 1 2 1 4

2

-1004.0
0I
8

-1005.008
0

-1006.0
E

LU -1007.0
1.4 1.5 1.6

Si-0 distance d (~)
FIG. 6. Energy of the C9 structure (P = 0) as a function

of the Si-0 bond length, obtained from our ab initio method.
A parabolic fit determines the model parameters Eo, k, and

Here the Si-0 distance d plays the role of a generalized
temperature, and the rotational angle P that of the order
parameter. The erst term Eo is a constant which sets
the zero of energy. The second term is an Si-0 bond-
stretching term of "spring constant" A: and equilibrium
distance db. We include both harmonic and anharmonic
bond-bending terms, with d-dependent spring constants
r2(d) and r4(d). Symmetry does not allow a cubic Ks
term. Notice that our expansion is performed around
P =- 0, the linear Si-0-Si C9 system.

As will be seen below, the bond-bending coeKcient
r2(d) depends on the bond length d, and in fact vanishes
at some critical bond length d* (which plays a role of the
"critical temperature"). We expand r2 in a Taylor series
to first order in the bond length as

vs P are concave upward with increasing P (a restoring
force), while for d ) d', they are concave downward,
producing an instability which breaks the symmetry.

The final parameter +4, the anharmonicity parameter,
is obtained from fitting any single point of the curves
in Fig. 5 close to the transition. The term rc4$4 in the
energy expression Eq. (26) makes large P angles (small
0 angles) very unfavorable. The values we obtain from
the Gt are given in Table III. The energies predicted by
the model and the parameters of Table III are shown in
Fig. 8. This figure should be compared to the results
of the ab initio calculations in Fig. 5. The zero-pressure
minimum energy structure is found by imposing BE/Bd
= BE/B$ = 0. The vanishing of BE/Bd leads to

d)
K2(d) = ro

I
I ——I,d*) ' (25) d;„=db+ (rco/k)P', .„,

where d* is the transition bond length in which the bond—
bending spring at P = 0 vanishes. The "spring" r4 is
not expected to change sign, so we replace the coeKcient
r4(d) by rc4(d*) = r4 for simplicity, leading to our sim-
plified energy function

1 I f diE(" 4') = Eo+ —k(" —"b)'+ —Ko
I

I ——
I

4'
2 d*)

(26)

0ur model energy contains the parameters Eo, k, db,
Ko, d*, and r4 which we obtain from a fit of our first-
principles calculations. The constants Eo, dg, and It.. are
readily obtained from calculations of the linear C9 struc-
ture. In Fig. 6 we show the energy as a function of the
Si-0 distance (/=0 ), which evidently shows a parabolic
behavior which determines the first two terms of Eq. (26).
To obtain two of the remaining three parameters, we cal-
culate the energy as a function of the bond length for a
small angle P. Assuming that the quartic term can be
neglected, we can then use Eq. (26) to determine r2(d),
which is shown in Fig. 7. The bond distance d at which
r2(d) crosses the axis determines d*, and the slope de-
termines vo.

The "critical" parameter d* is perhaps the most impor-
tant in the Inodel, since it quantifies the transition from
the C9 to I42d structure. For d ( d*, the energy curves

which illustrates that for parameters which yield a min-
imum energy structure with a large tilt angle
(i.e. , smaller Si-0-Si bond angle), the bond length in-
creases, and vice versa. The vanishing of BE/BP yields
a cubic equation with roots P;„= 0 or

The erst solution is the C9 struc-
K4

ture, while the second set of solutions yield the lower-
symrnetry I42d structure. Either solution (C9 or I42d)
is possible within this model depending on the choice
of parameters. In terms of model parameters only, the
solutions are given by d;„= d*~&'. ", where g

20
ctt

0.0-

-2.0-

-4.0-

1.45 1.50 1.55
Si-0 distance d (~)

1.60

FIG. 7. Model parameter +2(d) as a function of the Si-0
bond length d. Diamonds indicate values computed from ab
initio energies. The bond distance at which K2 ——0 determines
d*, and the slope determines eo.
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FIG. 10. Contour plot of energy of P-cristobalite as a func-
tion of rotation angle P and Si-0 bond length d, obtained
from the model energy function with parameters determine
by the self-consistent plane-wave pseudopotential method.

~ ~

ignore a11 topological variation of geometry in the silica
f 1 . Th 's of course enormous scatter in e a a,

d' at' g that no simple formula can be expecte to give
quantitative agreement. But '

g
' y' gqu

' ' . it is ratif in that such a
simple result as that given in Eq. (26) fairly accurately
describes this important correlation.

In conclusion, we have applie our techni ue to theq
study of P-cristobalite, and find general agreement with
the experimen an pt d previous ab initio calcu ations. e
propose a simp e p end 1 h nomenological model describing

rameters of the model being readily obtained from any
first-principles (or empirical) calculations. In the uture
it may a so e possi e o1 b 'ble to turn the problem around and
extract the model parameters from experimenta ata,
which would provide a convenient means to gauge t e
accuracy of ab initio calculations.

B. Melanophlogite
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FIG. 11. Same as Fig. 8, the parameters for this plot were
obtained using the method of Ref. 65.
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FIG. 12. Dependence of d(Si-0) on —sec(—sec ~2Si-O-Si, ob-
tained using q ( Ji(so i iE . (26) ( 1'd line). Also for comparison, results
of regression ana ysis o e .1

' f R f. 66 (dashed line) and experimen-
tal data of Ref. 67 are shown.

M 1 hl 'te is a rare mineral, and e onge on s to thee anop ogi
asils It isgroup 0 sl icaf lica polymorphs known as clathrasi s. is
' tsof ol-a clathrate compound whose structure consists o po y-

hedral cages of Si02, which encapsulate impurity atoms.
The structure contains up to 8 0 o H 0 N, an
S in the form of guest molecules entrapp ed within the

f th h st framework. The Si02 &amework is
constructed of corner-sharing Si04 tetrahedra. e i

s the ol hedral3D four-connected network itself makes e po y e
cages o w ic eref h' h there are two types: dodecahedra a poly-
hedron with 12 pentagonal faces) and tetrakai eca e ra

1 h d 'th 14 faces 2 of which are hexagonal,
while the rest are pentagonal). This structure as
Si02 rnolecules (138 atoms) per unit cell containing o-
d h d d 6 tetrakaidecahedra. Stereographic repre-eca e ra an
sen a ions ot t' f the structure can be foun in Re s.

b t IIThe framework is isostructural with that of cu ic ype-
~ ~ ~

This connectionh drates containing impure
between clathrate silicas and water has been examxamlned
by Kamb. Elemental silicon also takes this form in t e
presence o a ig impurf h h

'
ity concentration of alkali-metal

the silicon clathrates M Si46 and M Si136atoms, as in e si
(M stands for the alkali-metal atom). ' e pure i
form has a band gap predicted to be 0.7 eV higher than
d d S' d when doped with some metals has a
Dahn-Teller distortion and Bat band with a hig ensi y
of states at t e ermi eve .th F '

level. ' The structure has chan-
nels going in (100) directions, with the apertures formed
by hexagonal rings.

's tetra onal,Naturally occurring melanophlogite is tetragona,
while the synthetic one is cubic with the space group
Pm3n and a=13.436 A. at 200'C. Upon heating, nat-
ural melanophlogite transforms to a cubic phase at about
60 C, although this temperature varies rom

'
yrom localit to

locality and from sample to sample. For example Gies

trans orm a, wx at 65' while no transformation is seen up to
150 C for samples from Sicily. Presumably t is is ue o
variations in e gth uest species and concentra ion. Here

ofwe wi examine e cu11
' th bic modification in the absence o
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impurities.
The coordinates of the structure are given in Table II.

As can be seen, there are three different types of sites
occupied by silicon and four difFerent types of sites oc-
cupied by oxygen. Some of the Si-0-Si bond angles are
180 (P = 0), which according to the Eq. (26) should give
rise to shorter bond lengths. This is indeed the case. The
average bond length in this structure is 1.576 A, which
is significantly shorter than typical silica bond. lengths of
1.60—1.61 A. The average angle is 168.8', which is 20'
wider than typical silicas.

We have performed the ab initio calculation of
melanophlogite. We have not incorporated any guest
molecules into the structure, but consider the "idealized"
melanophlogite. It is not clear a priori whether the struc-
ture is significantly higher in energy than other naturally
occurring pure silicas, and is found in nature only be-
cause the guest impurities have drastically altered the
energy of the structure, or that the ideal structure is ac-
tually competitive in energy with other structures, and
the guest atoms only slightly modify the energy and are
acting as a template for the melanophlogite cage crystals
to grow around them.

Total energy calculations can give some information
concerning this point. We have calculated the total en-
ergy and electronic states for this structure. Due to the
large number of internal parameters, we have not done
a full optimization of the structure, but used the experi-
mental fractional coordinates (given in Table II) and di-
lated or contracted the lattice. The band structure is
shown in Fig. 4. We find melanophlogite to be a direct
(I'-to-I') gap material with a large band gap of 14.3 eV or
almost 2.0 eV lower than that found for o.-quartz. The
valence band has the structure very similar to that of o.-
quartz, with the oxygen s band being shifted slightly up
in energy. The results of this calculation for the energy
as a function of volume for melanophlogite are shown in
Fig. 3. We find the minimum energy lattice constant to
be 13.11 A. which gives a volume per molecule of 49.04 A.s.
The volume is thus expanded from n-quartz by over 40%.
Our values can be compared to the experimental val-
ues of 13.43 A. for the lattice constant and 52.66 A.s

for the volume, which show we have errors of 2.8% and
6.9%, respectively. The bond lengths range from 1.53
to 1.56 A. compared to the experimental range of 1.57—
1.60 A. Again our results give bond lengths which are
systematically about 3% too short. An estimated value
of the bulk modulus is 126.1 GPa, but the internal coordi-
nates were not optimized at each volume. The most sig-
nificant result is that we find melanophlogite to be only
0.1 eV/molecule (10 kJ/mol) above n-quartz. This re-
sult is in a good agreement with the recent thermochem-
ical study of Petrovic et al. who find that structures
of large volume are typically 0.10—14 kJ/mol above n

quartz. These authors find almost no correlation between
the energy of zeolite structures and the average bond an-
gle, but suggest that it is rather the distribution of these
angles that is important. In particular, the presence of
small angles (under 140 ) is the major destabilizing fac-
tor; e.g. , faujasite is the least stable zeolite structure (0.14
eV/molecule above a-quartz) in their study, and it has
the largest fraction of small angles. Melanophlogite does
not have bond angles below 145', which may explain its
relative stability with respect to quartz.

IV. CONCLUSIONS

In conclusion, in this paper we have presented a fast ab
initio total energy method, and applied it to the study
of several properties of the silica polymorphs. The key
features of the theory presented here are the use of the
energy expression due to Harris, together with the rep-
resentation of the input electron density in the form given
by Eq. (5) and the use of an appropriate short-range ba-
sis set ("fireball" local orbitalsse) to solve the one-particle
Schrodinger equation (2). The resulting calculational
scheme is orders of magnitude faster than standard ab
initio methods.

In Sec. III we have presented the results for o.-quartz,
P-cristobalite, and melanophlogite. A simple model for
the structural transition of high cristobalite is suggested.
This model can be used to interpret the correlation be-
tween the Si-0 bond lengths and bond angles in a variety
of silica polymorphs. We have performed an ab initio cal-
culation of the zeolite melanophlogite, and find it to be
0.1 eV/molecule above n-quartz. This is in qualitative
agreement with recent experimental trends which indi-
cate very small energies of zeolites above those of quartz.
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