Specific-heat analysis of rare-earth transition-metal borocarbides: An estimation of the electron-phonon coupling strength

H. Michor, T. Holubar, C. Dusek, and G. Hilscher

Institut fiir Experimentalphysik, Technische Universitat Wien, Wiedner Hauptstrasse 8-/0, A-1040 Wien, Austria

(Received 18 May 1995; revised manuscript received 31 July 1995)

We analyzed the superconducting and normal-state heat capacity of superconducting YNi_2B_2C , LuNi₂B₂C, LaPt₁₅Au₀₅B₂C and the nonsuperconducting reference compounds LaNi₂B₂C, YCo₂B₂. The deviations of the thermodynamic ratios as $\Delta C/\gamma T_c$, $\gamma T_c^2/H_c^2(0)$, $H_c'(T_c)/T_cH_c(0)$, and $\Delta(0)/k_BT_c$ from their BCS values give an estimate for the strong-coupling parameter T_c/ω_{ln} which is in the range of 0.06–0.1 and indicates that the phonon mediated superconductivity can be classified in the moderately strong-coupling limit. From the normal-state specific heat between 2 and 300 K we constructed model phonon spectra to determine the moments of the phonon density of states $F(\omega)$ and calculated the electron-phonon enhancement factor λ with the Allen and Dynes formula which yields λ values in the range of 0.95–1.15 for the three superconducting compounds. The comparison of these λ values with the electron mass enhancement derived from the ratio of the Sommerfeld parameter γ and the calculated density of states at the Fermi level, $N(E_F)$, shows that band structure calculations overestimate $N(E_F)$. Furthermore we determined the upper critical field $H_{c2}(T)$ from specific-heat measurements up to 11 T and the normalized Ginzburg-Landau parameter $k(T)$ which both show BCS-type behavior for $LaPt_{1,5}Au_{0,5}B_2C$, but a significant upward curvature for YNi₂B₂C and especially for $LuNi₂B₂C$.

I. INTRODUCTION

The discovery of superconductivity and its coexistence with magnetism in quaternary transition-metal borocarbides with the formula RNi_2B_2C ($R = Y$, Ho, Er, Tm, Lu)¹⁻³ stimulated the research activities of various groups in this field (for a short review see Ref. 4). These compounds crystallize³ in a filled version of the ThCr₂Si₂ structure stabilized by the incorporation of carbon where $Ni₂B₂$ layers built from $NiB₄$ tetrahedra are separated by R -C rocksalt layers. Most of the experimental and theoretical results tend to support a conventional BCS description of the superconducting properties. Although a qualitative agreement between band-structure calculations⁵⁻⁸ and spectroscopic experiments⁹⁻¹¹ calculations⁵⁻⁸ and spectroscopic experiments⁹⁻¹¹ is achieved with respect to the density of states (DOS), the spectroscopic experiments indicate that $d-d$ electron correlations play a role and reduce the DOS peak at the Fermi energy predicted by band-structure calculations.

In this paper we present low- and high-temperature specific-heat measurements of superconducting $LuNi₂B₂C$, $YNi₂B₂C$, LaPt_{1.5}Au_{0.5}B₂C, and the nonsuperconducting compounds $\text{LaNi}_2\text{B}_2\text{C}$, YCo_2B_2 . The latter compound with the well-known $ThCr₂Si₂$ structure is included to study the influence of carbon upon the phonon contribution to the heat capacity with respect to the borocarbides. $LaPt_{1.5}Au_{0.5}B_2C$ is used to examine the different influence of the $3d$ and $5d$ contribution upon superconductivity. The analysis of the low-temperature specific heat in the superconducting state yields via the BCS ratios, information about the coupling strength λ which can be compared with the electron mass enhancement derived from the ratio of the calculated DOS at E_f and that from the electronic contribution to the heat capacity in the normal state. The heat capacity data up to room temperature provide sufficient information to construct a phonon model density of states from which λ can be calculated with the Allen and Dynes formula.

II. EXPERIMENTAI.

Polycrystalline samples of $RNi₂B₂C$ were prepared by high-frequency induction melting and annealing at $1050 \degree C$ for 24 —36 ^h (see also Ref. 12). To improve the sample quality we varied the annealing procedure and succeeded to reduce the amount of a secondary phase of $LuNi₂B₂C$ to below 1% by an extended annealing time of three weeks. According to x-ray diffraction and micrographs the improvement of phase purity of the other compounds investigated was limited by secondary phases of about $3-5\%$. As LaPt₂B₂C could not be obtained as a single-phase material we used $\text{LaPt}_{1.5}\text{Au}_{0.5}\text{B}_2\text{C}$ with the proper annealing conditions given by Cava *et al.*¹³

Ac and dc susceptibility measurements were performed in a calibrated ac susceptometer (80 Hz and field amplitudes up to ¹ mT) and in a 6 T superconducting quantum interference device magnetometer, respectively. Specific-heat measurements up to 11 T were carried out on $2-3$ g samples in three automated calorimeters using a quasiadiabatic step heating technique. In the low-temperature calorimeters (1.5—100 K) the temperature is measured either with a Germanium resistor or with a Carbon glass resistor for zero field and field measurements, respectively, which are situated in the bore of the sapphire sample holder. The field calibration of the latter has been performed in situ against a $SrTiO₃$ sensor. For the upper temperature range $(80-300 \text{ K})$ we use a thin AuAg disc as sample holder which is surrounded by two active radiation shields in cascade. In addition, the temperatures of the heater and platinum thermometer wires are controlled for minimal residual losses in order to thermally isolate the sample and to obtain proper quasiadiabatic conditions.

FIG. 1. C_P/T versus T^2 plot for $\text{YNi}_2\text{B}_2\text{C}$ (a), LuNi₂B₂C (b), and LaPt_{1.5}Au_{0.5}B₂C (c) for various external fields as labeled; the inset of Fig. 3(c) shows the significant field dependence of the normal-state heat capacity above 2 T.

III. RESULTS

A. Results of the specific-heat measurements

A comparison of the low-temperature specific heat of $YNi₂B₂C$, LuNi₂B₂C, together with LaPt_{1.5}Au_{0.5}B₂C is shown in a C_P/T versus T^2 representation in Figs. 1(a)-1(c). External fields are applied to suppress superconductivity to determine the normal-state heat capacity $C_{p} = C_{e} + C_{ph}$

 $=\gamma T+\beta T^3$ where γ is the Sommerfeld parameter and β is related to the low-temperature value of the Debye temperature by Θ_D^{LT} = (1944 $\times N/\beta$)^{1/3} (N is the number of atoms per formula unit). From these data in Figs. $1(a)-1(c)$ all experimental quantities can be deduced which enter into the universal relations predicted by the BCS weak-coupling theory: $H_c(0)/T_cH_c'(T_c) = 0.57$, $\gamma T_c^2/H_c^2(0) = 0.168$, and $(\Delta C)_{T_c}$ $\gamma T_c = 1.43$, where $(\Delta C)_{T_c} = (C_s - C_n)_{T_c}$ is the specific-heat jump at T_c , $H_c(T)$, and $H_c'(T_c)$ is the thermodynamic critical field and its derivative at T_c . Strong electron-phonon coupling modifies these relations; the magnitude of these corrections was expressed in terms of the strong-coupling parameter $T_c/\bar{\omega}_1$ by Rainer and Bergmann¹⁴ and finally exended to approximate formulas for a large number of super-
conductors by Marsiglio and Carbotte.^{15,16} Thus we present in the following the analysis of the $C_p(T,H)$ data with respect to these quantities to examine the deviations from the aforementioned BCS values which provide a sensitive measure for the coupling strength.

It is obvious from Figs. $1(a)-1(c)$ that extrapolations from the normal state above T_c gives too small values for γ since the C_P/T vs T^2 plots exhibit a significant deviation from linear behavior below T_c . If, furthermore, the lowtemperature heat capacity is dominated by lattice contributions containing some low-energy Einstein modes, the usually employed linearization of these plots may be precarious: The comparison of the normal-state heat-capacity ratios C_e/C_{ph} at 10 K yielding values of about 3, 1, and 0.1 for $YNi₂B₂C$, LuNi₂B₂C, and LaPt_{1.5}Au_{0.5}B₂C, respectively, indicates that the uncertainty of the γ value is largest for the latter compound. Additionally, its normal-state heat capacity exhibits a significant field dependence [see inset of Fig. $1(c)$] which is not observed for both the Y and Lu compound after suppression of superconductivity in the normal state up to 11 T. In a previous paper⁴ we derived for LaPt_{1.5}Au_{0.5}B₂C a γ value of 5.2(6) mJ/mol K^2 from a fit of the low-temperature data with $C_P(T) = \gamma T + C_{\text{Debye}}(T)$. The numerical analysis of the specific heat with a more realistic model for the phonon spectrum (see Sec. III B) incorporating not only the Debye spectrum but also low-energy Einstein modes gives γ = 6.4(8) mJ/mol K². In the case of LuNi₂B₂C the same analysis yields γ = 19.5(3) mJ/mol K² instead of 18.5(5) mJ/ mol K^2 (Ref. 4), while for YNi_2B_2C the Sommerfeld constant $[\gamma = 18.2(2)$ mJ/mol K²] remains unaffected by this procedure because of the large C_e/C_{ph} ratio of about 3 at ow temperatures. These results are collected in Table I where also available data from the literature 1^{1-20} together with band-structure results⁵⁻⁸ are compiled for a comparison.

The electron mass enhancement (λ) due to electronphonon interaction and/or electron-electron correlations can be estimated from the ratio of the experimental γ values and the calculated density of states (DOS) at E_f yielding $\gamma/\gamma_{\rm band}$ = (1+ λ). These values summarized in Table I indicate weak-coupling for $LaPt_{1.5}Au_{0.5}B_2C$ but moderately strong-coupling superconductivity for $LuNi₂B₂C$ and $YNi₂$ B_2C , if all mass enhancement is attributed to electronphonon interactions. Note that $\lambda \approx 0.1$ for LaPt_{1.5}Au_{0.5}B₂C is ncompatible with a T_c of 10 K which will be discussed in Sec. \overline{VI} B. Photoemission ' and x-ray-absorption spectroscopy¹¹ studies have shown that electron correlations

TABLE I. Comparison of the low-temperature specific-heat results for Θ_D^{LT} and γ_{exp} with other available experimental and theoretical results ($\gamma_{\text{band structure}}$) yielding the given estimate for the mass enhancement λ .

	Θ_D^{LT} (K)	γ _{exp} (mJ/mol K ²)	γ band structure (mJ/mol K ²)	λ
YNi_2B_2C	490(5) $489(5)^{b}$ 41.5°	18.2(2) $18.7(5)^{b}$ 8.9°	$9.5^{\rm a}$	0.9
LuNi ₂ B ₂ C	360(3) $345(10)^e$ $350(10)^8$	19.5(3) $19(2)^e$ $11(2)^{g}$	11.3 ^d $11.2(1)^f$	0.75
LaNi ₂ B ₂ C La Pt_1 , Au_0 , B_2C LaPt ₁₇ Au ₀₃ B ₂ C YCo ₂ B ₂	495(8) 250(3) $220(10)^e$ 570(10)	8.4(3) 6.4(8) $7.5(1.5)^e$ 6.7(1)	6 ^h 5.9^{t} $5.9(1)^{f}$	0.4 0.1

'Reference 7.

'Reference 20.

Reference 6.

'Reference 18.

^fMattheis cited in Ref. 18.

gReference 19.

hReference 33.

'Reference 8.

have to be taken into account which reduce the calculated DOS at E_f by a factor of about 0.5.⁹ Accordingly, taking this reduction of the DOS at E_f into account, the corrected λ values would place all three compounds into the very strongcoupling regime.

The specific-heat jump $(\Delta C)_{T_c}$ is determined from the zero-field data by assuming an idealized sharp, entropy conserving superconducting transition (see Fig. 2) yielding \bar{T}_c given in Table II. In case of YNi₂B₂C (ΔC)_{T_c = 460 mJ/} mol K is by about 7% larger than our previous value¹² but this is still 6% smaller than that of a single-crystal measurement by Movshovich et al.¹

FIG. 2. Specific-heat jump at T_c ; the solid line shows the idealized jump under the constraint of entropy conservation. The filled symbols correspond to the zero field and the hollowed symbols to the 9 T measurements.

1. Thermodynamic- and upper critical field and an estimate for the gap-to-critical temperature ratio

The temperature dependence of the upper critical field derived from specific-heat measurements is displayed in Fig. 3 where in the inset the field dependence of the specific-heat jump of $LuNi₂B₂C$ is shown in the low-field regime. Both compounds YNi_2B_2C and $LuNi_2B_2C$ exhibit a significant positive deviation of $\mu_0 H_{c2}(T)$ from the initially linear dependence below 2 T being consistent with magnetic and resistivity measurements. This feature has been already noted for $\text{YNi}_{2}\text{B}_{2}\text{C}$. ements. This feature has been already noted 2.21 As a consequence of this positive deviation, the Werthamer formula $H_{c2}(0) \approx -0.7T_c(dH_{c2}/dT)_{T_c}$ underestimates the upper critical field $H_{c2}(0)$ of $YNi₂B₂C$ and $LuNi₂B₂C$ which will be discussed in Sec. IV C. From the low-temperature extrapolation of $H_{c2}(T)$ and the thermodynamic critical field given below we obtain the Ginzburg-Landau parameter $\kappa_1(0) = H_{c2}(0)/[\sqrt{2}H_c(0)] = 16$ for $YNi₂B₂C$ which is significantly higher than our previous value¹² [$\kappa_1(0)$ = 10.5] using the Werthamer formula but is in reasonable agreement with that deduced from magnetic measurements on single crystals by Xu *et al.*²² [$\kappa_1(0)$ = 13–15] and from the combination of magnetic and μ SR data by Cywinski et al.²¹ $[\kappa_1(0)=13]$. For LuNi₂B₂C and LaPt_{1.5}Au_{0.5}B₂C we obtain $\kappa_1(0) = 21$ and 7, respectively.

The temperature dependence of the thermodynamic critical field $H_c(T)$ is obtained by integrating the entropy difference between the normal and superconducting state:

$$
\frac{\mu_0 H_c^2(T)}{2} = \int_{T_c}^{T} \int_{T_c}^{T'} \frac{(C_s - C_n)}{T''} dT'' dT'.
$$
 (1)

The application of the above relation to the data in Figs. $1(a)-1(c)$ (close to T_c we used the idealized data shown in Fig. 2) gives $H_c(T)$, displayed in Fig. 4 from which $H'_c(T_c)$ the slope of H_c at T_c is derived. Note, that for all three compounds the 9 T measurement is used for the normal-state heat capacity. The uncertainty of $H_c(T)$ and its derivative is again largest for the La compound because of the field dependence of the normal-state heat capacity and the more restricted temperature range for the evaluation. Thus, we present in Fig. 5 the deviation function $D(t)$ from the purely quadratic temperature dependence of $H_c(T)$: $D(T/T_c) = D(t) = [H_c(t)/H_c(0)] - [1 - (t)^2]$ for the Y and Lu compound only. As can be seen from the comparison with a BCS superconductor, $LuNi₂B₂C$ exhibits a positive deviation of about 0.7% which is indicative for moderately strong coupling while the deviation for $YNi₂B₂C$ with a small positive and negative deviation can be regarded as typical for medium to moderately strong coupling. A similar shape of $D(t)$ is observed for LaPt_{1.5}Au_{0.5}B₂C with a less pronounced deviation from the parabolic law which, however, is not shown because due to the large phonon contributions to the total heat capacity the evaluation of deviations of $H_c(T)$ of about 1% might overstrain our data. (The lattice heat capacity is at 10 K about ten times larger than the electronic one.)

The shape of the deviation function $D(t)$ can be used to obtain a quantitative estimate of the coupling strength via the gap-to-critical temperature ratio $\Delta(0)/k_B T_c \equiv \alpha$ in terms of the phenomenological α model by Padamsee *et al.*²³ From the comparison of the experimental data in Fig. 5 with the

Reference 17.

TABLE II. Calorimetrically determined parameters characterizing the thermodynamic properties of the superconducting borocarbides. The results of Movshovich *et al.* (Ref. 17) on $\text{YN}_2\text{B}_2\text{C}$ and that of Carter *et al.* (Ref. 18) on LuNi₂B₂C and LaPt_{1 7}Au₀₃B₂C are included for comparison.

	YNi_2B_2C	LuNi ₂ B ₂ C	LaPt ₁₅ Au ₀₅ B ₂ C
T_c ; T_c onset (K)	14.25; 14.6	16.1; 16.6	10.65:10.8
	14.9; 15.2^a	$16.5(1)^{b}$	$10.2(1)^{b}$
ΔC (mJ/mol K)	460(5)	693(5)	120(15)
	493 ^a	$561(17)^{b}$	$133(20)^{b}$
$\Delta C/\gamma T_c$	1.77(4)	2.21(5)	1.8(2)
(BCS: 1.43)	$1.77^{\rm a}$	$1.8(2)^{b}$	$1.7(2)^{b}$
$\mu_0H_c(0)(T)$	0.229(2)	0.306(3)	0.10(1)
	$0.248^{\rm a}$		
$\mu_0 H'_c(T_c)(mT/K)$	$-30.6(5)$	$-37.5(5)$	$-18(1)$
	-32.4°		
$H_c(0)/H_c'(T_c)T_c$	0.53(2)	0.51(1)	0.52(4)
(BCS: 0.576)	0.514^a		
$\gamma T_c^2/H_c^2(0)$	$0.178/0.160^c$	0.143(5)	0.14(1)
(BCS: 0.168)	0.171^a		
$\Delta(0)/k_B T_c$	2.10(5)	2.20(5)	2.1(1)
(BCS: 1.76)	$1.95^{\rm a}$		

^aReference 17.

^bReference 18.

'Corrected value; see text.

calculated $D(t)$ functions presented in Fig. 1 of Ref. 23, $\Delta(0)/k_B T_c$ is estimated to be 2.2 and 2.1 for LuNi₂B₂C and $YNi₂B₂C$, respectively, whilst for LaPt_{1.5}Au_{0.5}B₂C only a rough estimate can be made ranging between 2.0 and 2.2.

In a previous work¹² we demonstrated for $YNi₂B₂C$ that the electronic specific heat in the superconducting state follows a power law $C_{eS} = 3 \gamma T_c (T/T_c)^a$, with an exponent a close to 3, rather than the expected exponential behavior. This can qualitatively be seen from the rather linear behavior of the C_p/T versus T^2 plots of the data below T_c for all three compounds. Carter *et al.*¹⁸ reported a similar temperature dependence of C_{eS} on LuNi₂B₂C and LaPt_{1.7}Au_{0.3}B₂C. Therefore a determination of the gap with the BCS formula $C_{eS}(T) = 8.5\gamma T_c \exp[-0.82\Delta(0)/k_B T]$ (2.5< $T_c/T < 6$)

FIG. 3. Upper critical field of YNi_2B_2C , Lu Ni_2B_2C , and LaPt_{1.5}Au_{0.5}B₂C as a function of temperature for various fields; inset: low-field variation of the specific-heat jump of $LuNi₂B₂C$.

cannot be performed. For a more detailed analysis of $C_{eS}(T)$ of YNi₂B₂C we refer to Ref. 12.

2. Thermodynamic BCS ratios

It is instructive to compare the experimental results of the dimensionless ratios $\Delta(0)/k_B\overline{T}_c$, $(\Delta C)_{T_c}/\gamma\overline{T}_c$, $h_c(0)$ $=H_c(0)/H_c'(\bar{T}_c)\bar{T}_c$, and $\gamma \bar{T}_c/H_c^2(0)$ summarized in Table II and their deviations from the BCS values with λ given in Table I. As strong coupling modifies these ratios which are universal in the BCS limit but not in the Eliashberg theory, the deviations can be regarded as a measure of the coupling

FIG. 4. Thermodynamic critical field for YNi_2B_2C , Lu Ni_2B_2C , and LaPt_{1.5}Au_{0.5}B₂C determined by integrating the entropy difference between the normal state and superconducting state [see also Eq. (1)] using the data of Figs. $1(a)-1(c)$ and Fig. 2; the solid lines show the parabolas used to obtain the deviation functions.

FIG. 5. Deviation function $D(t) = [H_c(t)/H_c(0)] - [1-t^2]$ for $YNi₂B₂C$, and $LuNi₂B₂C$ as a function of the reduced temperature $t = T/T_c$; solid line: weak-coupling (BCS) result.

strength and have been expressed as a function of the strongcoupling parameter T_c/ω_{ln} (for a review see, e.g., Carbotte and references therein¹⁶). The characteristic phonon energy ω _{In} is the logarithmic moment of the electron-phonon spectral function $\alpha^2 F(\omega)$. An increase of the coupling strength enhances the first two ratios while the latter two are reduced with respect to the BCS values given also in Table II. Note, these data are rather consistent with each other with the exception of $\gamma \bar{T}_{c}^{2}/H_{c}^{2}(0)$ for YNi₂B₂C which is beyond the BCS regime. As errors of $H_c(0)$ and \overline{T}_c enter quadratically into this ratio, a correction of our $H_c(0)$ due to 5% secondary phases yields a consistent value for $\gamma T_c^2/H_c^2(0) = 0.160$ referred to as corrected in Table II. (The same value is obtained with the single-crystal data of Movshovich¹⁷ using a slightly reduced \bar{T}_c =14.6 K derived from a reanalysis of their specific-heat jump.)

According to the deviation of these three ratios from the BCS values given in Table II and the estimates for $\Delta(0)/k_BT_c$ we deduce that the coupling strength is largest for LuNi₂B₂C and is slightly reduced for both $YNi₂B₂C$ and LaPt_{1.5}Au_{0.5}B₂C. This tendency is not in line with the λ values derived from the ratio $\gamma/\gamma_{\text{band}}$ where λ is largest for $YNi₂B₂C$ and rather small for $LaPt_{1.5}Au_{0.5}B₂C$ (0.1–0.3). This discrepancy is suggested to arise from the presence of electron-electron correlations and will be discussed together with λ values derived from the Allen and Dynes formula²⁴ in Sec. IV B.

3. Normal-state heat capacity

An overview of the heat capacity of superconducting $LuNi₂B₂C$ and the two nonsuperconducting reference compounds $LaNi₂B₂C$ and $YCo₂B₂$ in Fig. 6 displays the general low- and high-temperature features of these systems in the normal state. Note, $C_p(T)$ is given in J/gat K in order to compare the phonon contribution of $YCo₂B₂$ (crystallizing in the unfilled $ThCr₂Si₂$ structure) with those of the borocarbides; for the low-temperature C_P/T versus T^2 plot in the inset of Fig. 6 the unit mJ/mol K is used. From the slope of the C_P/T vs T^2 plot (which is inversely related to the lowtemperature value of Θ_D^{LT}) it is obvious that the low-energy

FIG. 6. Normal-state heat capacity of superconducting LuNi₂B₂C and nonsuperconducting LaNi₂B₂C and YCo₂B₂, inset C_P/T versus T^2 plot for both latter compounds.

modes of the borocarbides are considerably softer than those of YCo₂B₂ whilst the crossover of the $C_p(T)$ data at about 120 K reveals a stiffening of the high-energy optical modes in the borocarbides with respect to $YCo₂B₂$. The former feature is also reflected by the variation of $\overline{\Theta}_{D}^{\text{LT}}$ in these compounds (see Table I). The analysis of $C_p(T)$ in terms of a model phonon density of states $F(\omega)$ is given in the next section.

8. Numerical analysis of the heat capacity

In order to elaborate the differences in the lattice properties of the compounds investigated we analyzed their normal-state specific heat from 2 to 300 K. This temperature range is sufficient to obtain enough information about the phonon density of states $F(\omega)$ to perform a reliable calculation of the moments of the phonon spectrum, which are rather insensitive to shape details of the spectrum as shown by Junod and co-workers.^{25,26}

In a previous publication⁴ we gave a rough parametric description of $C_p(20-100 \text{ K})$ with one Debye and two Einstein functions, but this set of parameters is too simple to account for all features of the measurements in the extended temperature range from 2 to 300 K. It is obvious that the description of $C_p(T)$ can be improved by increasing the number of Einstein functions, but this leads to ambiguous results and a loss of physical significance.

Due to the lack of reference phonon spectra from neutron or tunneling experiments we constructed a simple model spectrum $F(\omega)$ containing one Debye spectrum and three Gaussian contributions and evaluated the Einstein integrals of $F(\omega)$

$$
C_{\rm ph}(T) = \int_0^\infty F(\omega) \frac{\left(\frac{\omega}{2T}\right)^2}{\sinh^2\left(\frac{\omega}{2T}\right)} d\omega \tag{2}
$$

to obtain a satisfactory agreement with the experimental specific heat by adjusting a minimum set of free parameters. The Debye spectrum with the Debye temperature Θ_D as the free

TABLE III. Fixed parameters of the model spectrum.

$\bm{\Theta}_{\bm{D}}$	Θ_E	Θ_{E_2}	Θ_{E_2} (cutoff)
	18	140	300
	1.5	8.5	

parameter represents the spectral weight of the three acoustic branches of the phonon spectrum (mainly determined by the specific heat at low temperatures) and three Gaussians contributions account for the 15 optical branches. The free parameters are the peak positions Θ_{E_i} . In order to obtain a high-energy limit of the phonon spectrum the Gaussian contribution with the highest energy was cut off at the peak position. Gaussians were chosen because they are smooth and easy to normalize. The "hidden" parameters of the and easy to normalize. The "hidden" parameters of the
model spectrum—the widths and weights of the Gaussiar contributions to the Einstein integrals—were adjusted to obtain a satisfactory fit under the constraint of minimal variation of the hidden parameters for the compound series investigated. To avoid finite spectral density at $\omega = 0$ the Einstein integrals of the Gaussian contributions were calculated from 50 K up to the cutoff energy. This leads to a negligible error in the normalization (less than 0.002), which has no influence on the moments of the spectrum. (Only in the case of $LaPt_{1.5}Au_{0.5}B₂C$ it was necessary to readjust the spectral

FIG. 7. Model phonon spectra $F(\omega)$ for YNi₂B₂C, LuNi₂B₂C, and $LaNi₂B₂C$ (a) and the same for $LaPt_{1.5}Au_{0.5}B₂C$, $YNi₂B₂C$, and $YCo₂B₂$ (b).

FIG. 8. Normal-state heat capacity of superconducting $YNi₂B₂C$, LuNi₂B₂C, LaPt_{1.5}Au_{0.5}B₂C, and nonsuperconducting $YCo₂B₂$; solid lines represent the fit of the model phonon spectra $F(\omega)$ [see Figs. 7(a) and 7(b)] to $C_p(T)$ according to Eq. (2).

weight of the contribution corresponding to Θ_{E_2} to 8.5.) The choice for the hidden parameters is listed in Table III. This procedure provides a satisfactory description of the $C_p(T)$ data from 2 up to 300 K shown as full lines in Fig. 8 where the logarithmic representation is used to emphasize the distinct features of the low- and medium-temperature normalstate heat capacity of this compound series. (For the superconducting compounds $L u Ni₂B₂C$, $YNi₂B₂C$, and $LaPt_{1.5}Au_{0.5}B₂C$, the normal-state data of the 9 T measurements are shown; the data of the nonsuperconducting $\text{LaNi}_2\text{B}_2\text{C}$ are not included for clarity, since they are situated just in between $LuNi₂B₂C$ and $YNi₂B₂C$.)

The corresponding model spectra $F(\omega)$ are displayed in Figs. 7(a) and 7(b) and the numerical results of the characeristic temperatures are summarized in Table IV. A remarkable feature of the model spectra is the sharp low-frequency contribution (Θ_{E_1}) with a weight of 1.5. If this weight is changed it is hardly possible to describe the distinct lowtemperature features of the heat capacities in Fig. 8 and the associated curvatures of the C_P/T vs T^2 plots in Figs. 1(a)– 1(c) and Fig. 6 inset at about 80, 120, and 80 K^2 for $_2B_2C$, YNi_2B_2C , and LaNi_2B_2C , respectively. From the comparison of the characteristic temperatures and the model spectra one can hardly deduce a decisive hint for the disappearance of superconductivity in $\text{LANi}_2\text{B}_2\text{C}$: Its The frequency contribution (Θ_{E_1}) is situated in between those of the superconducting compounds and the high-frequency

TABLE IV. Numerical results of the model ^spectrum fit to the measured heat capacities.

	Θ_D (K)	Θ_E (K)	Θ_{E_2} (K)	Θ_{E_3} (K)
YNi ₂ B ₂ C	282	187	439	1272
LuNi ₂ B ₂ C	260	117	441	1257
LaNi ₂ B ₂ C	250	151	404	1246
LaPt ₁₅ Au ₀₅ B ₂ C	159	127	310	1325
YCo ₂ B ₂	304	207	507	931

modes of these three compounds have nearly the same energies. In the case of LaPt₁₅Au₀₅B₂C the Debye contribution (Θ_D) is situated at about 160 K, close to the low-energy Einstein contribution (Θ_{E1}) and causes a rather prominent maximum in the phonon density of states displayed in Fig. 7(b). In comparison to the Ni compounds the latter spectrum describes a much softer lattice.

A significant difference of the lattice properties between the filled and unfilled version of the $ThCr₂Si₂$ structure emerges from the comparison of the model phonon spectra of $YNi₂B₂C$ and $YCo₂B₂$ also displayed in Fig. 7(b). With regard to the missing light carbon atom in $YCo₂B₂$, the corresponding spectral weight of the high-energy contribution (Θ_{E_3}) was reduced from five to two and simultaneously the width of this part of the model spectrum was reduced to 150 K, because the fiat high-energy contribution of the borocarbides cannot account for the high-temperature specific heat of $YCo₂B₂$. This modification yields the model spectrum of $YCo₂B₂$ where the high-energy cutoff is significantly decreased to 930 K but the low-frequency modes are shifted to higher energies. The latter is also evident from a comparison of the low-temperature $\Theta_{D_{\infty}}^{\text{LT}}$ values of YNi₂B₂C $\left[\Theta_{D}^{\text{LT}}\right]$ 490(5) K] and YCo_2B_2 $\begin{bmatrix} 0 & 0 \\ 0 & b \end{bmatrix}$ = 570(10) K] indicating an overall lattice stiffening in the low-temperature regime, whilst the high-frequency modes soften which is also evident from the crossover of the $C_p(T)$ data in Fig. 6.

The phonon spectrum of $YNi₂B₂C$ can be compared with the results of Raman spectroscopy reported by Hadjiev et al ²⁷. They detected four Raman-active modes with the energies corresponding to 285 K (B_{1g}), 406 K (E_{1g}), 676 K (E_g) , and 1197 K (A_{1g}) . The high-energy mode coincides quite well with the cutoff temperature of the fit and supports the applicability of the model spectrum proposed.

Comparison of a characteristic phonon frequency $\tilde{\omega}$ with the model spectrum

Kresin and Parkhomenko²⁸ demonstrated that several thermodynamic properties of strong-coupling superconductors can be described in terms of the ratio $T_c/\tilde{\omega}$. For a very simple phonon spectrum, consisting of sharp well separated maxima, the characteristic phonon frequency $\tilde{\omega}$ corresponds to the energy of the first prominent maximum of the electronphonon spectral function $\alpha^2 F(\omega)$. If corrections proportional to $(T_c/\omega)^2$ due to contributions of higher energies have to be taken into account, the value of $\tilde{\omega}$ might be slightly higher. Applying the formula

$$
\frac{(\Delta C)_{T_c}}{\gamma T_c} = 1.43 \left[1 + 1.8 \left(\ln \frac{\tilde{\omega}}{T_c} + 0.5 \right) \left(\frac{\pi T_c}{\tilde{\omega}} \right)^2 \right] \tag{3}
$$

to the experimental values of the normalized specific-heat jump $(\Delta C)_{T_c}/\gamma T_c$, we obtain $\tilde{\omega} \approx 200$ and 150 K for $YNi₂B₂C$ and $LuNi₂B₂C$, respectively. These values are in agreement with those resulting from the model spectra (see Θ_{E_1} in Table IV).

A similar formula for the strong-coupling correction to the normalized gap ratio by Geilikman and Kresin:²⁹

TABLE V. Estimates for the superconducting gap.

	α model	Eq. (4)	Eq. (13)
YNi_2B_2C	2.10(5)	1.90	1.95(8)
LuNi ₂ B ₂ C	2.20(5)	2.11	2.09(8)
LaPt ₁₅ Au ₀₅ B ₂ C	2.1(1)	1.92	2.05(10)

$$
\frac{\Delta(0)}{k_B T_c} = 1.76 \left[1 + 5.3 \left(\frac{T_c}{\tilde{\omega}} \right)^2 \ln \left(\frac{\tilde{\omega}}{T_c} \right) \right]
$$
(4)

yields $\Delta(0)/k_B T_c = 2.11$ and 1.90 for LuNi₂B₂C and YNi₂B₂C, respectively, taking $\tilde{\omega}(\approx \Theta_E)$ from our model spectra. Table V gives an overview for the estimates of $\Delta(0)/k_B T_c$ according to the α model (Sec. III A 1), Eqs. (4) and (13).Although Eq. (13) is given in Sec. IV A and contains T_c/ω_{ln} which will be evaluated in the next section, we present these results in Table V for the convenience of a comparison since both expressions are of similar shape. Ekino et al .³⁰ performed tunneling measurements on YNi₂B₂C and reported Δ (4.2K)/ $k_B T_c \approx 1.8$ which is in reasonable agreement with the estimates collected in Table V.

IV. DISCUSSION

A. Analysis of the thermodynamic ratios in terms of the strong-coupling corrections to the BCS values

The ratio between the critical temperature and a quantity representing a characteristic phonon frequency such as, e.g., Θ_D (Ref. 32) or $\tilde{\omega}$ (Ref. 28) [see Eqs. (3), (4)] has been used for a discussion of the coupling strength by various authors. Rainer and Bergmann¹⁴ applied the Eliashberg theory for strong-coupling superconductors to several realistic superconductors and demonstrated that the magnitude of the deviations of the critical fields from BCS predictions can be estimated from the ratio $T_c/\bar{\omega}_1$ with $\bar{\omega}_1$ the first generalized moment of the electron-phonon spectral function $\alpha^2(\omega)F(\omega)$. The moments of $\alpha^2(\omega)F(\omega)$ are defined as²⁴

$$
\langle \omega^n \rangle = \frac{2}{\lambda} \int_0^\infty d\omega \alpha^2(\omega) F(\omega) \omega^{n-1}.
$$
 (5)

The electron-phonon interaction parameter λ is a dimensionless measure of the coupling strength

$$
\lambda = 2 \int_0^\infty d\omega \frac{\alpha^2(\omega) F(\omega)}{\omega}.
$$
 (6)

The logarithmic average frequency ω_{ln} , equal to the $n \rightarrow 0$ limit of the sequence of average frequencies

$$
\bar{\omega}_n \equiv \langle \omega^n \rangle^{1/n} \tag{7}
$$

can be written in the form

$$
\omega_{\rm in} = \lim_{n \to 0} \bar{\omega}_n = \exp \left(\frac{2}{\lambda} \int_0^\infty \frac{d\omega}{\omega} \alpha^2 F(\omega) \ln(\omega) \right). \tag{8}
$$

In the framework of the Eliashberg theory, using a squarewell model for the gap, Marsiglio and Carbotte¹⁵ (see also

		YNi_2B_2C			LuNi ₂ B ₂ C			LaNi ₂ B ₂ C			La $Pt_{1.5}Au_{0.5}B_2C$	
$\alpha^2(\omega) \propto \omega^s$	$\omega_{\text{ln}}(K)$	$\bar{\omega}_1(K)$	$\bar{\omega}_{2}(K)$	$\omega_{\text{ln}}(K)$	$\bar{\omega}_1(\mathrm{K})$	$\bar{\omega}_{2}(\mathrm{K})$	$\omega_{\rm ln}$ (K)	$\bar{\omega}_1(K)$	$\bar{\omega}_{2}(K)$	$\omega_{\rm ln}(\rm K)$	$\bar{\omega}_1(K)$	$\bar{\omega}_{2}(K)$
$s = -1/2$	220	279	351	173	232	311	187	241	312	123	165	235
$s=0$	279	351	438	232	312	408	241	311	401	163	229	335
$s=-1$	164	218	277	131	175	234	138	186	240	88	122	167

TABLE VI. Generalized moments of the electron-phonon spectral function.

Ref. 16 for a review and references therein) derived approximate formulas for the strong-coupling corrections to the dimensionless BCS ratios:

$$
\frac{(\Delta C)\tau_c}{\gamma T_c} = 1.43 \left[1 + 53 \left(\frac{T_c}{\omega_{\text{ln}}} \right)^2 \ln \left(\frac{\omega_{\text{ln}}}{3 T_c} \right) \right],\tag{9}
$$

$$
\frac{\gamma T_c^2}{H_c^2(0)} = 0.168 \left[1 - 12.2 \left(\frac{T_c}{\omega_{\text{ln}}} \right)^2 \ln \left(\frac{\omega_{\text{ln}}}{3 T_c} \right) \right],\tag{10}
$$

$$
h_c(0) = 0.576 \left[1 - 13.4 \left(\frac{T_c}{\omega_{\text{ln}}} \right)^2 \ln \left(\frac{\omega_{\text{ln}}}{3.5T_c} \right) \right],
$$
 (11)

$$
\frac{\Delta(0)}{k_B T_c} = 1.76 \left[1 + 12.5 \left(\frac{T_c}{\omega_{\text{In}}} \right)^2 \ln \left(\frac{\omega_{\text{In}}}{2 T_c} \right) \right].
$$
 (12)

The strong-coupling variable is the ratio T_c / ω_{ln} with the average phonon frequency ω_{ln} given by Eq. (8). It was shown¹⁶ that these equations provide a satisfactory description of the strong-coupling corrections to the BCS ratios for a large number of electron-phonon-mediated superconductors with an accuracy of about 10%. Entering the experimentally determined thermodynamic ratios in Eqs. (9) – (12) , we evaluate the ratios T_c/ω_{ln} and obtain a rough estimate for ω_{ln} which is about 240 K for YNi₂B₂C, 160 K for LuNi₂B₂C, and 130 K in the case of LaPt_{1.5}Au_{0.5}B₂C. In order to estimate the generalized moments $\bar{\omega}_1$ and $\bar{\omega}_2$ which are, e.g., needed to determine the ratio $\bar{\omega}_2/\omega_{\rm ln}$ for the shape factor of the Allen and Dynes formula (see below), one has to assume a reasonable frequency dependence of $\alpha^2(\omega)$ in Eqs. $(5)-(8)$.

The simplest assumption is a frequency independent $\alpha^2(\omega)$. Since this approximation yields $\omega_{\rm ln}$ values which are larger than the above given estimates (unambiguously too large for LuNi₂B₂C), the use of decreasing functions for $\alpha^2(\omega)$ seems to be reasonable. Thus we follow the approach of Junod *et al.* ²⁶ They suggested the approximation $\alpha^2(\omega) \propto \omega^{-1/2}$ and used the assumptions $\alpha^2(\omega) \propto 1$ and $\alpha^2(\omega)$ $\propto \omega^{-1}$ as limiting cases for the calculation of $\omega_{\rm ln}$, $\bar{\omega}_1$, and $\bar{\omega}_2$. The corresponding results for the average frequencies ω_{\ln} , $\bar{\omega}_1$, and $\bar{\omega}_2$ with the proposed assumptions on the frequency dependence of α^2 are summarized in Table VI.

The thermodynamic ratios given in Table II are displayed in Fig. 9 to classify the coupling strength of the compounds investigated. The solid lines in Figs. 9(a)—9(d) represent the general trend according to Eqs. (10) - (13) typical for many superconductors which allow an apparent graphical comparison with our results for the borocarbides. The open symbols displayed in Figs. 9(a)–9(d) correspond to ω_{ln} values determined under the assumption of $\alpha^2(\omega) \propto \omega^{-1/2}$ and the associated horizontal error bars correspond to ω_{ln} values deter-

mined with $\alpha^2(\omega) \propto \omega^{-1}$ and $\alpha^2(\omega) \propto 1$, respectively. Figure 9 further illustrates that the coupling strength of these three superconductors is of the same magnitude and decreases slightly in the sequence: $LuNi₂B₂C$, $LaPt_{1.50.5}B₂C$, and $YNi₂B₂C$.

The $\bar{\omega}_1$ values of Table VI can be compared with the theoretical predictions of Rainer and Bergmann¹⁴ for the magnitude of the strong-coupling correction of the thermodynamic critical field H_c from BCS at given ratios of $T_c/\bar{\omega}_1$. The numerical results for the enhancement parameters $\eta_{H_s}(T_c)$ and $\eta_{H_s}(0)$ of the thermodynamic critical field

$$
H_c(T) = \eta_{H_c}(T)H_c^{\text{BCS}}(T) \tag{13}
$$

as well as $\eta_{H_{c2}}(T_c)$ and $\eta_{H_{c2}}(0)$, the enhancement parameters of the upper critical field, can be deduced from Fig. ¹ of Ref. 14. Calculations for the upper critical field have been performed in the dirty-limit approximation, which cannot be applied to the $RNi₂B₂C$ compounds because they are cleanlimit superconductors.³¹

The experimental values of the enhancement parameters $\eta_{H_c}(0)$ and $\eta_{H_c}(T_c)$ were determined from the velations $\gamma T_c^2/H_c^2(0) = 0.168 \eta_{H_c}^{-2}(0)$ and $(\Delta C)_{T_c}/\gamma T_c$ = 1.43 $\eta_{H_c}^2(T_c)$. Table VII contains our experimental enhancement factors of the thermodynamic critical field and those taken from Rainer and Bergmann¹⁴ for the $T_c/\bar{\omega}_1$ values corresponding to Table VI. The comparison of the data in Table VII reveals that the approximation $\alpha^2 \propto \omega^{-1/2}$ appears to be a reasonable approach.

B. Determination of the electron-phonon interaction parameter

For the evaluation of λ we use the Allen and Dynes formula²⁴ with a Coulomb pseudopotential μ ^{*} = 0.13 (see, e.g., Ref. 32)

$$
T_c = \frac{f_1 f_2 \omega_{\text{ln}}}{1.20} \exp\left(-\frac{1.04(1+\lambda)}{\lambda - \mu^* - 0.62\lambda \mu^*}\right),\tag{14}
$$

where f_1 and f_2 are corrective factors given by

$$
f_1 = \left[1 + \left(\frac{\lambda}{2.46(1 + 3.8\mu^*)}\right)^{\frac{3}{2}}\right]^{\frac{1}{3}},\tag{15}
$$

$$
f_2 = 1 + \frac{\left(\frac{\omega_2}{\omega_{\text{ln}}} - 1\right)\lambda^2}{\lambda^2 + 1.82(1 + 6.3\mu^*)\frac{\bar{\omega}_2}{\omega_{\text{ln}}}}.
$$
 (16)

FIG. 9. (a)—(d) Strong-coupling correction to he dimensionless BCS ratios $(\Delta C)_{T_c}/\gamma T_c$, $\Delta(0)/k_B T_c$, $\gamma T_c^2/H_c^2(0)$, and $h_c(0)$ as a function of the strong-coupling variable T_c/ω_{ln} for
YNi₂B₂C (\square), LuNi_2B_2C (\triangle), and LuNi₂B₂C (\triangle), La $Pt_{1.5}Au_{0.5}B_2C$ (O).

For the three superconducting compounds we obtain λ values of about 1, while for LaNi_2B_2C only an upper limit $(\lambda \le 0.5)$ can be estimated since it is nonsuperconducting down to 1.5 K. It should be noted that due to the large ratio $\bar{\omega}_2/\omega_{\text{ln}}$ ~1.8 the McMillan formula³² yields λ values by about 20% smaller than those from the Allen and Dynes expression. These λ values labeled as λ_{AD} and the average of the function $\alpha^2(\omega)$, $\bar{\alpha}^2 \equiv (1/2)\lambda \bar{\omega}_1$, are listed in Table VIII together with those given in Table I that were determined from the ratio $\gamma_{\rm exp}/\gamma_{\rm band} = (1+\lambda_{\rm tot})$. As the latter contain the total mass enhancement (electron correlations and electron-phonon interaction), λ_{tot} should be larger than λ_{AD} . Hence, the difference between both sets of λ values in Table VIII indicates that band-structure calculations overestimate $N(E_f)$. This is in agreement with conclusions from timate $N(E_f)$. This is in agreement with conclusions from spectroscopic measurements⁹⁻¹¹ where the calculated DOS peak at E_f is found to be reduced by electron correlations. On the other hand we concluded⁴ in agreement with Carter

TABLE VII. Comparison the enhancement factors of the thermodynamic critical field obtained from theory and specific heat.

		YNi_2B_2C	LuNi ₂ B ₂ C		
	$\eta_{H_c}(0)$	$\eta_{H_c}(T_c)$	$\eta_{H_c}(0)$	$\eta_{H_c}(T_c)$	
Expt.	1.02(2)	1.12(1)	1.08(2)	1.23(1)	
$\alpha^2 \propto \omega^{-1/2}$	1.04	1.13	1.06	1.19	
$\alpha^2 \propto 1$	1.03	1.09	1.04	1.13	
$\alpha^2 \propto \omega^{-1}$	1.06	1.19	1.09	1.27	

et al ¹⁸ from the comparison of the Pauli susceptibility with γ values and band-structure data that the static susceptibility is not significantly enhanced.

Although the general trend of the variation of γ_{band} within his compound series qualitatively follows that of γ_{exp} , it is remarkable that the largest discrepancy between the two sets of λ is found for LaPt_{1.5}Au_{0.5}B₂C (λ = 0.1 and 1.1) where we observe a significant field dependence of the lowtemperature normal-state heat capacity which may arise from spin fluctuations. For LaPt_{1.5}Au_{0.5}B₂C, λ_{AD} =1.1 appears to be of reasonable magnitude being in agreement with its coupling strength T_c/ω_{ln} (Fig. 9), while $\lambda_{\text{tot}}=0.1$ can be regarded as too small because not even $\lambda \sim 0.3$ can account for superconductivity above the mK regime using the phonon frequencies from Table VI.

The T_c reduction of LaPt_{1.5}Au_{0.5}B₂C with respect to the superconducting Ni compounds and the disappearance of superconductivity in LaNi₂B₂C is reflected in the variation of

TABLE VIII. Comparison of the electron-phonon mass enhancement factors $\lambda_{\text{tot}}(=\gamma_{\text{exp}}/\gamma_{\text{band}}-1)$ with λ_{AD} and the average value $\bar{\alpha}^2 (= 1/2\lambda_{AD}\bar{\omega}_1).$

	λ_{tot}	λ_{AD}	$\tilde{\alpha}^2$
YNi_2B_2C	0.9	0.95(5)	133(7)
LuNi ₂ B ₂ C	0.75	1.15(5)	133(7)
LaNi ₂ B ₂ C	0.4	< 0.5	< 60
LaPt ₁₅ Au ₀₅ B ₂ C	0.1	1.1(1)	100(10)

 $\bar{\alpha}^2 = (1/2)\lambda \bar{\omega}_1$. Although it is difficult to disentangle the phononic and electronic contribution one can use the relation $\lambda = N(E_f)\langle I^2 \rangle / (M\bar{\omega}_2^2)$ for a qualitative discussion (with $\langle I^2 \rangle$ the average of the electron-phonon matrix elements and M the mean atomic mass). The denominator, a phonon quantity, varies for these four compounds only by about 10% and is similar to the relative variation of λ_{AD} for the three superconducting compounds which implies that the nominator, the electronic Hopfield parameter η , remains approximately constant for LuNi₂B₂C, YNi₂B₂C, and LaPt_{1.5}Au_{0.5}B₂C, although γ of the latter is by 65% smaller than γ of the two other superconductors. Hence, the softening of the lowfrequency modes, represented by ω_{\ln} , has a detrimental effect upon T_c of LaPt_{1.5}Au_{0.5}B₂C. On the other hand, the disappearance of superconductivity in $\text{LANi}_2\text{B}_2\text{C}$ may be associated with the reduced DOS at E_f , since the overall feature of our model phonon spectra is rather similar for LaNi₂B₂C, YNi₂B₂C, and LuNi₂B₂C.

In this context it is of interest that Mattheiss et al^{33} attributed the superconducting properties to an electronphonon mechanism in which high-frequency boron A_{1} phonons couple strongly to an energy band of the Ni-B-C manifold whose position is sensitive to the geometry of the $NiB₄$ tetrahedron and modulate the Ni-B-Ni bond angle. It is proposed that superconductivity occurs only when a special $s-p$ band is optimally aligned to E_f which happens to occur for nearly ideal NiB₄ angles in $YNi₂B₂C$ and LuNi₂B₂C concomitant with a high DOS at E_f . As a result of the deviation from the idealized structure due to the larger La ionic radius with respect to Lu or Y the relevant $s-p$ band is shifted to higher energies yielding a reduction of $N(E_f)$ by -47% for LaNi₂B₂C with respect to LuNi₂B₂C. This is in agreement with the experiment where we observe a reduction of -57% (see Table I). However, the low characteristic frequencies $\bar{\omega}_1$ and ω_{\ln} (Table VI), derived from our model phonon spectra which provides a satisfactory description of the strong-coupling corrections, seem to contradict the suggestion of Mattheiss et al^{33} that the mechanism for superconductivity is based on high-frequency boron A_{1g} optical phonons with energies equivalent to 1200 K.

C. The upper critical field

In order to quantitatively examine the upward curvature of $H_{c2}(T)$ we plot in Fig. 10 the normalized upper critical field $h_{c2}(T) = H_{c2}(T)/(T_c dH_{c2}/dT)_{T_c}$ as a function of the reduced temperature $t = T/T_c$ together with the weakcoupling result labeled as "BCS." From the temperature dependence of the thermodynamic and upper critical field (in Figs. 3 and 4) one obtains the normalized ratio $k(T) = \kappa_1(T)/\kappa_1(T_c)$ of the Ginzburg-Landau parameter $\kappa_1(T) = H_{c2}(T)/\sqrt{2H_c(T)}$ displayed in the inset of Fig. 10. The data of LaPt_{1.5}Au_{0.5}B₂C are close to the BCS result but exhibit considerable scatter and are therefore not shown. The extrapolated values for $k(0) = \kappa_1(0)/\kappa_1(T_c)$ are about 1.5(1), 2.0(1), and 1.3(3) for YNi_2B_2C , LuNi₂B₂C, and LaPt_{1.5}Au_{0.5}B₂C, respectively. The former two are significantly enhanced with respect to the weak-coupling ("BCS") result in the clean limit (1.26) . Carbotte¹⁶ showed that $h_{c2}(0)$ and $k(0)$ follow approximate relations that contain the strong-coupling correction $(T_c/\omega_{\text{ln}})^2 \text{ln}(\omega_{\text{ln}}/bT_c)$ in a

FIG. 10. Normalized upper critical field $h_{c2}(T) = H_{c2}(T)$ / $(T_c dH_{c2}/dT)_{T_c}$ as a function of the reduced temperature T/T_c for $YNi₂B₂C$, LuNi₂B₂C, and LaPt_{1.5}Au_{0.5}B₂C; inset: normalized Ginzburg-Landau parameter for YNi₂B₂C, LuNi₂B₂C; dashed lines: weak-coupling BCS result for a comparison.

similar way to Eqs. (10) – (13) for the dimensionless BCS ratios. A comparison of $k(0)$ with the data compiled in Ref. 16 of a large number of electron-phonon-mediated superconductors, which are in the range $0 < T_c / \omega_{\text{ln}} < 0.2$ for $1.2 \le k(0) \le 1.8$ shows that $k(0) = 1.5$ yields T_c / ω_{ln} of about 0.15 for YNi₂B₂C while a remarkably high $T_c/\omega_{\text{ln}} > 0.2$ would be required to account for $k(0) \approx 2$ of LuNi₂B₂C. Both values are significantly higher than the rather consistent T_c/ω_{ln} values derived from the four dimensionless ratios [Eqs. (10) – (13)] ranging between 0.06 and 0.1. Not even very strong coupling can account for the pronounced upward curvature and enhancement of $h_{c2}(0)$ for LuNi₂B₂C which is reminiscent of a calculation using a δ -function-based phonon spectrum with $T_c/\omega_E \approx 1$ (Ref. 16) where ω_E is the Einstein frequency of the δ function. However, a dominant Einstein frequency at about 15 K is not compatible with the specific-heat data from which we obtain $\Theta_{E1} = 117$ K as the low-frequency Einstein mode for $LuNi₂B₂C$.

Although various properties in the superconducting state of these borocarbides can be explained rather consistently with the model phonon spectra, the significant upturn of $h_{c2}(0)$ and the enhancement of the normalized Ginzburg-Landau parameter remain to be resolved.

V. CONCLUSION

We determined the thermodynamic BCS ratios of $YNi₂B₂C$, LuNi₂B₂C, and LaPt_{1.5}Au_{0.5}B₂C from specificheat measurements and deduced according to their deviation from the weak-coupling BCS values the strong-coupling correction in terms of T_c/ω_{ln} .

From the normal-state specific heat between 2 and 300 K of these superconductors and the nonsuperconducting reference compounds LANi_2B_2C and YCo_2B_2 we constructed model phonon spectra yielding the moments of the phonon density of states $F(\omega)$. A remarkable reduction of the highfrequency modes is obtained for $YCo₂B₂$ with respect to the borocarbides investigated due to the missing carbon atoms in

the former. The model phonon spectra of the superconducting compounds YNi_2B_2C , Lu Ni_2B_2C , and LaPt_{1.5}Au_{0.5}B₂C are (with the exception of a softening of the low-frequency modes of the latter) essentially the same as for nonsuperconducting $\text{LaNi}_2\text{B}_2\text{C}$. The former three compounds can be classified as moderately strong coupled superconductors since the electron-phonon enhancement parameter λ derived from the Allen and Dynes formula ranges between 0.95 and 1.15.

The difference between these λ values and those deduced from $\gamma_{\rm exp}/\gamma_{\rm band}$ shows that band-structure calculations overestimate $N(E_f)$ in particular for LaPt_{1.5}Au_{0.5}B₂C and that electron-electron correlations may be important. As the λ values from the Allen and Dynes formula are of the same magnitude for the three superconducting compounds, the lower T_c of LaPt_{1.5}Au_{0.5}B₂C is suggested to be associated with the softening of the low-frequency modes, while the disappearance of superconductivity in $\text{LaNi}_2\text{B}_2\text{C}$ may be at-

of $N(E_f)$ is in agreement with band-structure calculations and was attributed to the deviation from the ideal $NiB₄$ tetrahedral angle by Mattheiss et al.³³ For YNi₂B₂C and especially $LuNi₂B₂C$ our data reveal an anomalous upward curvature of $H_{c2}(T)$ and $\kappa_1(T)/\kappa_1(T_c)$ which cannot be described in terms of the strong-coupling corrections T_c/ω_{ln} and remains to be resolved.

ACKNOWLEDGMENTS

tributed to the smaller γ value reduced by about 50% with respect to those of $YNi₂B₂C$ and LuNi₂B₂C. This reduction

We are indebted to N.M. Hong and M. Vybornov for their support in sample preparation and x-ray characterization. This work was supported by the Austrian Science Foundation under Grants No. 11090, S5604, and by the Kärntner Elektrizitatsgesellschaft (KELAG).

¹R. J. Cava, H. Takagi, H. W. Zandbergen, J. J. Krajewski, W. F. Peck, Jr., T. Sigrist, B. Batlogg, R. B. van Dover, R. J. Felder, K. Mizuhashi, J. O. Lee, H. Eisaki, and S. Uchida, Nature (London) 367, 254 (1994).

- ${}^{2}R$. Nagarajan, C. Mazumdar, Z. Hossain, S. K. Dhar, K. V. Gopalakrishnan, L. C. Gupta, C. Godart, B. D. Padalia, and R. Vijayaraghavan, Phys. Rev. Lett. 72, 274 (1994).
- ³T. Siegrist, H. W. Zandbergen, R. J. Cava, J. J. Krajewski, and W. F. Peck, Jr., Nature (London) 367, 146 (1994).
- ⁴G. Hilscher, H. Michor, N. M. Hong, W. Perthold, M. Vybornov, and P. Rogl, Physica B 206 & 207, 542 (1995).
- ⁵L. F. Mattheiss, Phys. Rev. B **49**, 13 279 (1994).
- W. E. Pickett and D. J. Singh, Phys. Rev. Lett. 72, 3702 (1994).
- $⁷$ J. I. Lee, T. S. Zhao, I. G. Kim, B. I. Min, and S. J. Youn, Phys.</sup> Rev. B 50, 4030 (1994).
- D. J. Singh, Phys. Rev. B 50, 6486 (1994).
- ⁹A. Fujimori, K. Kobayashi, T. Mizokawa, K. Mamiya, and A. Sekiyama, Phys. Rev. B 50, 9660 (1994).
- 10 M. S. Golden, M. Kupfer, M. Kielwein, M. Buchgeister, J. Fink, D. Teehan, W. E. Pickett, and D. J. Singh, Europhys. Lett. 28, 369 (1994).
- 11 E. Pellegrin, C. T. Chen, G. Meigs, R. J. Cava, J. J. Krajewski, and W. F. Peck, Jr., Phys. Rev. B 51, 16 159 (1995).
- 12 N. M. Hong, H. Michor, M. Vybornov, T. Holubar, P. Hundegger W. Perthold, G. Hilscher, and P. Rogl, Physica C 227, 85 (1994).
- ¹³ R. J. Cava, B. Batlogg, J. J. Krajewski, F. W. Peck, Jr., T. Sigrist, R. M. Fleming, S. Carter, H. Takagi, R. J. Felder, R. V. van Dover, and L. W. Rupp, Jr., Physica C 226, 170 (1994).
- ¹⁴D. Rainer and G. Bergmann, J. Low Temp. Phys. **14**, 501 (1974).
- 15 F. Marsiglio and J. P. Carbotte, Phys. Rev. B 33, 6141 (1986).
- ¹⁶ J. P. Carbotte, Rev. Mod. Phys. **62**, 1027 (1990).
- $17R$. Movshovich, M. F. Hundley, J. D. Thompson, P. C. Canfield, B. K. Cho, and A. V. Chubukov, Physica C 227, 381 (1994).
- ¹⁸ S. A. Carter, B. Batlogg, R. J. Cava, J. J. Krajewski, and W. F.
- Peck, Jr., Phys. Rev. B 50, 4216 (1994).
- ⁹ J. S. Kim, W. W. Kim, and G. R. Stewart, Phys. Rev. B 50, 3485 (1994).
- ²⁰C. Godart, L. C. Gupta, R. Nagarajan, S. K. Dhar, H. Noel, M. Potel, C. Mazurndar, Z. Hossain, C. Levy-Clement, G. Schiffmacher, B. D. Padalia, and R. Vijayaraghavan, Phys. Rev. B 51, 489 (1995).
- ²¹ R. Cywinski, Z. P. Han, R. Bewley, R. Cubitt, M. T. Wylie, E. M. Forgan, S. L. Lee, M. Warden, and S. H. Kilcoyne, Physica C 233, 273 (1994).
- 22 Ming Xu, P. C. Canfield, J. E. Ostenson, D. K. Finnemore, B. K. Cho, Z. R. Wang, and D. C. Johnson, Physica C 227, 321 (1994).
- 23 H. Padamsee, J. E. Neighbor, and C. A. Shiffman, J. Low Temp. Phys. 12, 387 (1973).
- 24 P. B. Allen and R.C. Dynes, Phys. Rev. B 12, 905 (1975).
- 25 A. Junod, T. Jarlborg, and J. Muller, Phys. Rev. B 27, 1568 (1983).
- 26 A. Junod, D. Bichsel, and J. Muller, Helv. Phys. Acta 52, 580 (1979).
- 27 V. G. Hadjiev, L. N. Bozukov, and M. G. Baychev, Phys. Rev. B 50, 16 726 (1994).
- 2s V. Z. Kresin and V. P. Parkhomenko, Fiz. Tverd. Tela (Leningrad) 16, 3363 (1974) [Sov. Phys. Solid State 16, 2180 (1975)].
- 29 B. T. Geilikman and V. Z. Kresin, Fiz. Tverd. Tela (Leningrad) 7, 3294 (1965) [Sov. Phys. Solid State 7, 2659 (1966)].
- ³⁰T. Ekino, H. Fujii, M. Kosugi, Y. Zenitani, and J. Akimitsu, Physica C 235-240, 2529 (1994).
- ³¹ H. Takagi, R. J. Cava, H. Eisaki, J. O. Lee, K. Mizuhashi, B. Batlogg, S. Uchida, J. J. Krajewski, and W. F. Peck, Jr., Physica C 228, 389 (1994).
- 32 W. L. McMillan, Phys. Rev. 167, 331 (1968).
- ³³ L. F. Mattheiss, T. Siegrist, and R. J. Cava, Solid State Commun. 91, 587 (1994).