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The Hubbard model with occupation-dependent hopping rate exhibits superconductivity in a wide range of
parameters within mean-field (BCS) theory. Here we study pair binding energies in this model for small

clusters by exact diagonalization of the Hamiltonian. The model is defined by on-site and nearest-neighbor
repulsions U and V, and occupation-dependent hopping rate t(n) =t+ nest We . present results for one-

dimensional chains and for two-dimensional square lattices of sizes 4X4, 6&&6, and 8 X 8. As a function of
carrier density n the pair binding energy first increases and then decreases, and vanishes beyond a critical
density. BCS results for the pair binding energy are found to be in remarkably good agreement with the exact
results. In particular, BCS theory accurately reproduces the range of interaction parameters where pair binding
exists in the exact solution. The model is found to exhibit no tendency to phase separation or clustering of more
than two particles even for parameters giving rise to strong pair binding, in contrast to other tight-binding
models where pairing occurs.

I. INTRODUCTION

Even the simplest model to describe propagation of elec-
trons in narrow energy bands' should, in principle, allow for
the possibility that the probability amplitude for an electron
to hop from a site to a neighboring site may depend on the
occupation of the two sites involved in the hopping process.
In the spirit of the Hubbard model describing electrons in a
single band interacting via short-ranged Coulomb repulsion,
this line of reasoning leads to the Hamiltonian

H= —g t, (c, c +H.c.)+ Ug n;tn;t+ Vg n;n

(la)
with

explicitly attractive Coulomb interactions between
electrons, ' and without being in the neighborhood of phase
separation instabilities. ' An occupation-dependent hopping
of the form Eq. (lb) or (lc) can arise in a variety of ways
from elimination of other degrees of freedom in the process
of obtaining a single band effective Hamiltonian from a more
complicated one. ' ' However, not in all these cases will the
sign and magnitude of the parameters obtained be conducive
to superconductivity.

The parameter range of interest in the model Eq. (1) for
hole superconductivity is U, V, t, At~0, with the operators in
Eq. (1) describing holes, and the dilute hole concentration
regime. We denote by n the average hole concentration per
site. Within BCS theory, superconductivity arises in the low
hole concentration regime if the condition on the param-
eters

t;, = t (1o—n; )(1—n )+ ti(n; .+ n,

—2n; ~ / ~)+ 2n; ~nj (lb)

describing a hopping amplitude tp, tl, or t2 depending on
whether there are zero, one, or two additional electrons in the
two sites involved in the hopping process, respectively. For
the particular case where tp —

t& = t&
—t2, or in general in the

low-density regime where configurations with more than two
carriers at neighboring sites can be neglected due to Cou-
lomb repulsion, the hopping amplitude Eq. (lb) takes the
form

/c) g(1+u)(1+w) —1,

k=2zhtg,

u= Ug,

w=zVg,

(2a)

(2b)

(2c)

(2e)

t,,=t+/t t(n; +n, ) (lc)

with t=tp ol t=t2 depending on whether the low-density
regime of electrons or of holes is under consideration. This
Hamiltonian has been proposed to describe the low-energy
physics of high temperature and other sup erconductors
(model of hole superconductivity). Recent interest in this
and related models " arises from the fact that even small
differences in these hopping amplitudes can give rise to pair-
ing correlations and superconductivity, without introducing

is satisfied, with z being the number of nearest neighbors to
a site, g is the average density of states per site, and D is the
bandwidth. In a hypercubic lattice, D= 2zt. Furthermore, in
the dilute limit the exact condition for pairing of two holes in
a full band is also given by Eq. (2) in one and two
dimensions. ' First-principles calculations for simple di-
atomic molecules have indicated that the condition on the
parameters Eq. (2) may be realizable in real systems.

The purpose of this paper is to study pairing in the Hamil-
tonian Eq. (1) by exact diagonalization, and compare the
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results with the predictions of BCS theory. Given that in the
n —+0 limit BCS theory becomes exact, " it is of interest to
know for how wide a density range BCS theory remains
accurate. As is well known, BCS theory correctly describes
the binding of a single pair but does not treat exactly the
interference between pairs, except for effects arising from
the Pauli exclusion principle. Here we compare exact results
for finite lattices with BCS results for a wide range of den-
sities and interaction parameters. Overall, our results show
that BCS theory is remarkably accurate in reproducing the
exact results, for a large range of densities and interaction
strengths. BCS can either over- or underestimate the pair
binding depending on the parameters, but it generally be-
comes more accurate as the binding energy decreases. This is
to be expected, as the coherence length increases with de-
creasing pair binding energy. We also find no tendency to
clustering of more than two particles in the regime where
pairing occurs. Thus our results fully confirm the
expectation that the mean-field solution is accurate in the
regime of interest of this model for high-T, oxides.

Other studies of the Hamiltonian Eq. (1) by exact diago-
nalization have recently been reported. ' "These have been
mainly concerned with the one-dimensional case, although
some results in two dimensions have also been reported. "
These works also calculate other quantities that give indica-
tion of pairing in addition to pair binding energies, which
generally coincide to indicate pairing in the same regime
where pair binding energies are positive. No qualitative dif-
ference between one- and two-dimensional systems was
found in those studies nor in the present study for this Hamil-
tonian. These studies as well as the present study indicate
that this model is of considerable interest as the simplest
tight binding model that can describe superconductivity
without other competing instabilities.

II. EXACT DIAGONALIZATION

information on pairing in the low-dimensional systems is of
interest even if strictly speaking superconductivity does not
occur there. Concerning a CDW state, from the nature of the
pairing mechanism in this model, which is kinetic, it is clear
that such a state is not a realistic possibility in this case,
unlike the case of the attractive Hubbard model. Further-
more, in the dilute regime a CDW state cannot occur in the
absence of longer-ranged Coulomb interactions than consid-
ered here. Concerning clustering of more than two particles,
it is disfavored by the kinetic hopping I as well as by the
Coulomb repulsion V. The kinetic interaction At does not
lead to clustering either as our data will show. Even though
Eq. (lc) yields a larger hopping amplitude for a particle in
the presence of two other particles than in the presence of
one, two particles can lower their energy more effectively
than three by delocalization. [With the more general kinetic
energy of the form Eq. (lb) clustering of three particles
could be favored if the hopping t2 is sufficiently large, but
this does not seem to correspond to a physical parameter
regime. ] We have calculated the binding energy for three
particle clusters relative to a pair and a single particle

e „=2E(2)—E(4), (6)

and find them to be always negative, indicating no tendency
to clustering of more than two particles in the parameter
range of interest.

III. BCS THEORY ON FINITE CLUSTERS

The BCS equations for the model Eq. (1) at zero tempera-
ture are

e„=E(2) +E(1)—E(3)
and the binding energy for four-particle clusters relative to
two pairs

We find the ground state of the Hamiltonian Eq. (1) by
using a standard Lanczos technique. The largest Hilbert
space studied had dimension 4 064 256, corresponding to
two up-spin and two down-spin electrons on an 64-site lat-
tice. If E(Nh) is the ground-state energy for N„holes in the
system (Nh even), the pair binding energy for two additional
holes at density n =Nh/N is given by

with

1 =K(I, +clp)
—W(I2+ cIi ),

c = K(I2+ cI,) —U(I, + cIp)

K=2zhl;„

W=zV,

(7a)

(Sa)

(Sb)
ei, (n) = 2E(Nh+ 1)—E(Nh) —E(Ni, + 2) (3)

and the energy per particle that is required to break a pair is
1 1

I,=—g —g e'&'
N p 2Fp' (8c)

hp(n) = ei, (n)/2. (4)

This is the minimum quasiparticle excitation energy that will
be compared with the results of BCS theory.

A positive value of e& (or of b, p) implies that two par-
ticles at the Fermi surface will pair. Although this indicates a
tendency to superconductivity, in principle, other things
could come in the way, namely: (i) fluctuations could destroy
superconductivity in low dimensions, (ii) a charge-density
wave (CDW) state could develop instead of superconductiv-
ity, or (iii) there could be a tendency to clustering of more
than two particles or even phase separation. Concerning (i),
it is clear that an array of weakly coupled low-dimensional
systems will tend to stabilize the long-range order, so that

E,= 4(e„—I )'+~,'

e = —(t+nAt)g e'",
P

( e——+c
zt

together with the number equation

I Ep P
P p

(8d)

(Se)

(8f)
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relating the chemical potential p, to the number of particles.
In Eq. (Sc), b"s are vectors connecting a site to its nearest
neighbors, and F~ in Eq. (8d) is the quasiparticle excitation
energy. Equations (7a) and (7b) can be combined to yield

1 = 2KI, —WI2 UI—p+ (K2 —WU)(IpI2 —I,). (10)

In the limit n~0 it can be shown that Ap~0 (Ref. 23) and

p, falls below the bottom of the band, so that

1 1 . 1
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the minimum quasiparticle excitation energy is from Eq. (8d)
FIG. 1. Ground-state energy for a 12-site chain versus particle

number. Parameters in the Hamiltonian are U= 2.5, V= 0, t =0.2,
At =0.4.

D
~P=

2 /t (12)
A. Dependence on carrier concentration

and the pair binding energy is eI, = 25p. p is obtained from
solution of Eq. (10).This result, as well as results for the pair
wave function and the pair mobility obtained from BCS
theory, are identical to what is obtained by solving the
Schrodinger equation for two particles in the empty band. '

More generally, for finite n the minimum quasiparticle
excitation energy is given by

Ap=min[g(e„—p) +b,„]. (13)

If p, is below the bottom of the band, which occurs for small
n,

Ap= g( D/2 p, ) +—b,„—
while if p, is in the band, the particular value of p that mini-
mizes Eq. (13) is chosen. For an infinite lattice (continuous
p), the minimum quasiparticle excitation energy is found to
be

IV. RKSUITS

We have calculated pair binding energies for a wide range
of parameters for one- and two-dimensional lattices. The re-
sults are generally consistent with expectations based on
mean-field theory, as will be seen in the following.

The BCS equations (7)—(9) can be solved on a finite lat-
tice for comparison with the exact diagonalization results on
the same size lattices. Even for a finite lattice a solution of
the BCS equations usually can be found for arbitrary values
of n, as the finite gap smears the structure associated with
the discrete energy levels. However, as the lattice size be-
comes small or the gap becomes small, the BCS solution
becomes discontinuous at values of n corresponding to the
discrete allowed occupations of the finite system. Note that
the correct value of the single-particle hopping amplitude to
be used in the BCS equations includes the mean-field correc-
tion originating in b, t, as given by Eq. (Se).

Figure 1 shows an example of the behavior of the ground-
state energy of the system versus number of particles, for a
12-site system. Note that the energy shows negative curva-
ture between two subsequent even numbers of particles, in-
dicating a positive pair binding energy. However, the overall
curvature is non-negative, otherwise it would imply a ten-
dency to phase separation. The behavior in Fig. 1 is typical
of what is found in the entire parameter range where pairing
occurs. The minimum quasiparticle excitation energy 50 to
be. compared with the predictions of BCS theory is obtained
from the ground-state energies for varying particle number
through Eqs. (3), (4).

Figure 2 shows results for Ap versus density for N=12
and different sets of parameters. The dashed lines drawn
through the exact results are to guide the eye. We show the
BCS results both for the finite lattice and for an infinite
chain. In the finite lattice, discontinuities appear in the BCS
solution as the couplings become weaker, nevertheless the
BCS predictions for the finite and infinite lattices are quali-
tatively similar and in particular 60 goes to zero at similar
values of the density. Strictly speaking it is the finite lattice
BCS solution that should be compared with the exact solu-
tion, for the allowed discrete values of n. It can be seen from
these examples that the BCS results slightly overestimate the
exact results for b p for small n and underestimate Ap for
large n. They also generally predict a smaller range where
Ap is nonzero than obtained from the exact solution. When a
discontinuity occurs in the BCS solution it is always at a
discrete value of the density allowed for the finite lattice, and
it is always the limit of the BCS solution from above that
compares favorably with the exact solution. For n~O the
BCS solution on the finite lattice and the exact solution al-
ways coincide, as expected. Other parameters studied in one
dimension show similar agreement with the BCS solution to
what is seen in Fig. 2.

The BCS results for 50 for the infinite lattice are found to
always increase first as n increases, and decrease for larger
n. For the finite lattices, because only discrete values of n

are available, it is sometimes found that Ao decreases at the
lowest nonzero n, [e.g. , Figs. 2(a) and (c)]. However from
results for a large set of lattices and parameter ranges we
conclude that also in the exact solution the pair binding al-
ways first increases as the density increases from zero for a
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FIG. 2. Minimum quasiparticle energy Ao [Eq. (4)] versus den-

sity for various sets of parameters for the N= 12 chain. The dashed
line through the exact results (crosses) are drawn to guide the eye.
The BCS solution for the finite chain is given by the dash-dotted
line; the values at the discrete densities allowed for the finite lattice
are indicated by the diamonds. The full line gives the BCS results
for the infinite chain. The dotted line in Fig. 2(a) gives the infinite
chain BCS results if the single-particle hopping renormalization is
not included.

sufficiently large lattice. Also it is found generally that both
the exact and BCS results for the binding energy go to zero
as the density becomes high. However in Fig. 2(a) we find an
upturn at high density for these parameters for the exact so-
lution. We believe that this is a finite-size effect.

We also show in Fig. 2(a) the predictions of BCS theory
for the infinite chain if the single-particle renormalization of
the hopping amplitude is not included [i.e., taking t rather
than (t+ nest) as the prefactor in Eq. (8e)]. In that case BCS
theory generally overestimates the binding energy as well as
the density range where pairing occurs. The same is found
for the corresponding finite lattice calculation. We conclude
as expected that it is important to include the single-particle
hopping renormalization in the BCS calculation in this
model.

Within weak-coupling BCS theory one finds that super-
conductivity disappears beyond a maximum density n „,
determined by the condition

0 = 2k(1 n,„)—w(1 n,„) —u+ —(k2 —
w u—) (1 —n

+n,„/2). (16)

For the cases of Fig. 2 this yields n „=0.52, n,„=0.45,
and n,„=0.12 for the cases (a), (b), and (c), respectively.
These differ somewhat from the results shown in Fig. 2 be-
cause Eq. (16) is derived assuming a constant density of
states throughout the band.

Similarly, Fig. 3 shows results for various parameters for
a two-dimensional 4X4 cluster. Here we have only obtained
exact results up to Nh= 8, which allows to extract b, o(n) up
to n=0.375. Again it is seen that BCS generally underes-

timatess

the pair binding except at the lowest (nonzero) den-
sities.

FIG. 3. Minimum quasiparticle energy 60 [Eq. (4)] versus den-

sity for various sets of parameters for a two-dimensional 4X4 lat-
tice. Line and symbol conventions are the same as in Fig 2.



52 PAIRING IN A TIGHT-BINDING MODEL WITH 16 159

B. Dependence on parameters

As mentioned earlier, in the limit n —+0 the exact and BCS
results for the binding energy coincide. In that limit the bind-

ing energy increases as At increases, and decreases as U, V,
or t increase. In this section we study the dependence of pair
binding energy on the parameters in the Hamiltonian for the
lowest nonzero density that can be accomodated on 4X4,
6X6, and 8X8 lattices, which correspond to densities of
n=0. 125, n=0.0555, and n=0.031 25, respectively, and
compare the results with BCS theory. It should be noted that
within the model of hole superconductivity the parameters in
the Hamiltonian to reproduce the observed behavior in hi h-n ig-
T, oxides give rise to a maximum critical temperature at a
density value n-0.05, so that to study the accuracy of BCS
theory at these low densities is certainly relevant.

Figure 4 shows the dependence of the pair binding energy
on the single-particle hopping t for one representative set of
parameters. The dashed lines give the exact solutions (the
exact results obtained are densely spaced and the dashed
lines smoothly connect them), and the diamonds give the
BCS solutions. Note the excellent agreement between BCS
and exact results, particularly for the larger lattices (smaller
densities). For the 4X4 lattice the pair binding energy de-
creases as particles are added because it corresponds to a
higher density, while in the other cases it increases, as ex-
pected. Generally it is seen that as t increases the agreement
between BCS and exact results improves. This is to be ex-
pected, as increasing t corresponds to increasing coherence
length. Nevertheless, even for small t the agreement is re-
markably good, because of the fact that the densities are low.

For the parameters used here, the condition Eq. (2a) in the
limit as t—+~
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is satisfied. In that case, even though the pair binding energy
for n=O approaches zero on an infinite lattice as t —+~, it
remains finite on a finite lattice. This can be seen from the
exact solution determining the pair binding energy'

1+u
(1+u)(1+ w)+

(eh+ D)Io 1—(18)

As D +~ Eq. (18) bec—omes

FTCIG. 4. Pair binding energy versus single particle hopping t for
the first two particles (full lines) and the next two particles (dashed
lines) from exact diagonalization of finite lattices of size 4X4,
6X6, and 8X8. The full lines correspond to density n=0 and the
dashed lines to densities n =0.125, n = 0.0555, and n = 0.031 25,
respectively. The BCS results for n =0 coincide with the exact so-
lution, and for finite n are given by the diamonds.

U+zV 1
+

2z 4gIp
' (19)

For an infinite lattice, Ip~O for any eb as D —+~ and the
condition Eq. (19) cannot be satisfied. However for a finit
1 tattice it can be seen that Ip approaches a constant as
D~~ [given by the p =0 term in the sum Eq. (8c)] and Eq.
(19) yields a finite eb that approaches zero as 1IN as r~~, if
the parameters satisfy the condition Eq. (17).

Figure 5 shows the dependence of pair binding energy on
the hopping interaction At for one case. For the 4 X 4 lattice
the BCS solution considerably overestimates the binding en-

ergy eb for large At. However, it underestimates t for small
~ 4 ~

b

t, and in fact yields a slightly larger At needed for nonzero
binding than the exact solution. For the larger lattices BCS is
in good agreement with the exact results. Again, as a func-

tion of density it is seen that the binding energy first in-
creases as the density increases from zero (results for the
larger lattices) and decreases as the density increases further
(results for the 4 X4 lattice).

In Fig. 6 we show dependence on the nearest-neighbor
repulsion V. Because the value of At used is rather large, the
agreement between exact and BCS solution is not good for
the 4 X4 lattice, as expected from the results in Fig. 5. How-
ever, note that the agreement becomes better as V increases,
and BCS theory only slightly overestimates the maximum V
for which nonzero binding occurs. Again the agreement is
much better on the larger lattices. Similarly, Fig. 7 shows the
dependence of pair binding energy on the on-site repulsion
U. Again the agreement is less good for large values of the
binding energy and becomes excellent as the binding enerenergy
approaches zero.
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FIG. 5. Pair binding energy versus hopping interaction At. The
line and symbol conventions are the same as in Fig. 4.

FIG. 6. Pair binding energy versus nearest-neighbor repulsion

V. The line and symbol conventions are the same as in Fig 4.

For several of the cases shown, the BCS solution was
found to exhibit small discontinuities as a function of Hamil-
tonian parameters [e.g. , Fig. 5(c)].They occur because the p
values corresponding to the minimum quasiparticle energy
Eq. (13) shift at that point between two different values. The
discontinuities will of course disappear in the infinite lattice
limit.

C. Clustering

When the binding energy for two particles is positive,
indicating tendency for two particles to be bound, a natural

question to be addressed is whether the system favors three,
four, or more particles to be bound, leading to clustering. To
investigate such possibility, we have calculated the binding
energy for three- and four-particle clusters given by Eqs. (5)
and (6) for all the cases we have studied and found them to
be always negative, indicating no tendency to clustering. Ex-
amples for three representative cases are shown in Fig. 8. As
b t increases [Fig. 8(a)], these energies become less negative
but do not approach zero even when there is strong pair

binding [pair binding energies for this case are given in Fig
5(c)].Even for zero U and V there is no tendency to cluster-

ing, as seen in Fig. 8(b), and the energies become more nega-
tive as U increases [while the pair binding is also suppressed
as seen in the corresponding case in Fig. 7(b)] and as V

increases (not shown). The triplet and quartet energies also
become increasingly negative as the single-particle hopping t
increases [Fig. 8(c)], while the pair binding is suppressed

[Fig. 4(a)]. Note however that in fact for t= 0 we do find a
small positive triplet binding energy in Fig. 8(c). This is
easily understood: putting the third particle away from the

pair at a localized site will give an upper bound to the

ground-state energy of three particles. For t= 0 exactly, that

upper bound can be slightly improved by allowing the third

particle to be close to the pair. However for any small finite

t the third particle lowers its energy more by delocalizing
away from the pair, and the triplet pair binding is lost in the
example of Fig. 8(c) already for t=G. 2.0Furthermore, as
discussed below, two three-particle clusters will be unstable
towards decay into three pairs.
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FIG. 7. Pair binding energy versus on-site repulsion U. The line
and symbol conventions are the same as in Fig. 4,

FIG. g. Binding energy for clusters of three particles [Eq. (5),
dashed lines] and four particles [Eq. (6), solid lines] as a function of
(a) At, (b) U, and (c) t for three representative cases corresponding
to the parameters of Figs. 5(c), 7(b), and 4(a), respectively.

To examine this question further, we have studied the lim-
iting case where all parameters are zero except b, t [i.e.,
t= U= V=0, b, t= 1 in Eq. (1)], which should be the most
favorable case for clustering, and calculated the binding en-

ergy for three- and four-particle clusters. This is by analogy
to the t-1 model, where one can easily show that in the
limit t=0, clustering of particles is inevitable (regardless of
dimensionality) due to the attractive potential energy of the
antiferromagnet (J). For the model we studied in this work,
the potential energy is repulsive (U)0, V)0) and the at-
traction that leads to pairing comes from the kinetic interac-
tion At. For the one-dimensional case, the ground-state

energies are E(2) = —+86 t, E(3)= —3.361 7145,t, and

E(4) = ( —5.6570~ 0.0001)b, t (estimated by extrapolating
data from lattices up to 64 sites), respectively. We see that
E(3)( (2E)+ (El), which seems to indicate that it is fa-
vored to have three-particle clustering rather than to have a
pair plus a single electron. However, this is an artificial ef-
fect, due to the fact that the single electron is localized be-

cause t =0, and it does not indicate tendency to formation of
triplets for finite density of particles. If we have six particles
in the system, then it is more favorable to have three pairs of
paired particles [E=3 X(—2.828 427)b, t= —8.485 2815t]
than to have two three-particle clusters [E= 2
X(—3.361 714)b t= —6.723 428ht]. For the four-particle
cluster case, E(4) —2E(2) is zero within the estimated error,
and a small hopping amplitude or Coulomb repulsion wi11

certainly tilt the balance in favor of two pairs of paired par-
ticles. Thus, we conclude that there is generally no tendency
to formation of clusters of more than two particles nor to
phase separation in this model.

Finally one may ask whether the more general form of
kinetic energy Eq. (lb) will lead to clustering, even if the
particular form Eq. (lc) does not. In the hole representation
used here, the relation between the parameters in Eqs. (lb)
and (lc) is
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D. Phase diagram

The condition on the parameters for pairing to occur in
this model in the n —s0 limit is given exactly by Eq. (2), both
for infinite and finite lattices. For finite carrier density, BCS
theory for an infinite lattice yields the condition Eq. (16)
under the approximation of constant density of states. To
assess the validity of BCS theory to determine the regime
where pairing occurs for finite density we have calculated the
phase boundaries where pairing disappears for the 4X4 lat-

and we may consider the more general situation of arbitrary

to instead of Eq. (20c). rp gives the hopping amplitude for a
hole in the presence of two other holes, and it is clear that it
will stabilize clusters of three holes if it is sufficiently large.
In Fig. 9 we plot e„[Eq. (5)] versus to ltz for various cases
where pairing of two holes occurs. The most favorable situ-
ation for triplet clustering occurs for large values of tilt&
(large b t) and vanishing Coulomb repulsion U and V. Even
then, rather large values of tpltz are needed to stabilize
three-particle clusters, as seen in Fig. 9. These parameters are
far away from the physical values of parameters estimated
from the first-principles calculations of Ref. 20, where tp was
found to be comparable or only slightly larger than t&. Fur-
thermore as noted above the triplet binding energy Eq. (5)
being positive is a necessary but not sufficient condition for
pairing to be destroyed, as two three-particle clusters may
still be unstable to formation of three pairs. For the most
favorable case for clustering, tz = U= V=0, we find that two
three-particle clusters have lower energy than three pairs
only if tp ltI ~4.7. Thus, we conclude that even in this "ex-
tended parameter space"' clustering is not a likely possibil-
ity.

FIG. 10. Phase diagrams indicating where pairing occurs in the
Hamiltonian Eq. (1). The reduced parameters 6 tl t ( = k),
u = UI2zt, and w = VI2r are used. The solid lines are exact (equal to
BCS) results for n=O. The results for n=0.0556 and n= 012 5
were obtained from 6&&6 and 4&&4 lattices, respectively, as dis-
cussed in the text. The crosses and diamonds indicate exact and
BCS results, respectively. The dashed and dash-dotted lines are
drawn through the results for n =0.0556 and n = 0.125 to guide the

eye.

tices and 6X6 lattices with four particles. This corresponds
to pairing at densities n =0.125 and n =0.0556, respectively.
In Fig. 10 we show these phase boundaries obtained from
exact diagonalization and from BCS theory on the same size
lattice, for the case with V=O and for a case with nonzero
nearest-neighbor repulsion. In the BCS calculation the effec-
tive hopping t,rr= t+ nest was used.

It can be seen that BCS theory yields results for the phase
boundaries at finite densities that are essentially indistin-
guishable from the exact results. Small deviations start to
appear only for rather large At, and then BCS theory under-
estimates the parameter range where pairing occurs. It
should be remembered that within the model of hole super-
conductivity the parameters appropriate to describe high-T,
oxides give rise to a maximum T, at approximately
n-0.05 and T, goes to zero around n-0. 15, so that the
densities considered here are relevant for that case. If the
bare instead of the effective hopping amplitude is used in the
BCS calculation the agreement with the exact calculation is
appreciably worse, particularly for large At. As an example,
for ~=0, k= 1.125 the BCS result is larger than the exact
result about 5%, while with the effective hopping the differ-
ence is less than 1%. Note that in the presence of nearest-
neighbor repulsion [Fig. 10(b)j the maximum U that allows
pairing may increase as the density increases, contrary to the
behavior for V=O.
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V. CONCLUSIONS

The results from exact diagonalization discussed in this
paper indicate that pairing occurs in the model Hamiltonian
Eq. (1) for a wide range of parameters in the presence of
on-site and nearest-neighbor Coulomb repulsion. Pairing ex-
ists in a finite range of densities beyond the zero density
limit, and disappears for high density. In the presence of
nearest-neighbor repulsion it is possible for some parameter
ranges that pairing sets in at a finite carrier density rather
than at n=0. No tendency for clustering of more than two
particles is found in the parameter regime where pairing oc-
curs.

The fact that in other tight-binding models pairing occurs
in the same or nearby parameter range where clustering or
phase separation occurs' ' ' is not accidental: pairing oc-
curs in these models when the potential energy lowering due
to two particles being nearby overcomes the cost in kinetic
energy in localizing one particle near the other. Adding an
extra particle to an N-particle cluster will cost unity in ki-
netic energy but pay N in potential energy, and thus is fa-
vored even more. However, in models such as the one con-
sidered here where pairing energy and kinetic energy do not
compete but cooperate, this general trend' does not hold.

BCS theory was found to give good agreement with the
exact results for the pair binding energy in a wide range of
densities and interaction parameters. The agreement im™
proves as the pair binding energy decreases. It was found
that BCS theory sometimes over- and sometimes underesti-
mated the pair binding energy, the former occuring for
smaller carrier densities. Even for rather large carrier density
(above a quarter-filled band) BCS theory was found to give
reasonable estimates for the pair binding energies. Even
though we have not performed any finite temperature calcu-
lations here, since in this model the transition from the su-

perconducting to the normal state occurs through pair un-
binding rather than Bose decondensation these results for
the pair binding energies imply that BCS theory should also
yield reasonable estimates for the values of the critical tem-
perature in this model.

For determination of the parameter range where pairing
occurs in this model it was found that BCS theory yields

results that are in excellent agreement with those obtained by
exact diagonalization on the finite lattices. Furthermore,
where small deviations between BCS and exact results oc-
curred, BCS theory underestimated the values of the Cou-
lomb repulsion that would destroy pairing. It is reasonable to
assume that the agreement between BCS results and exact
results would be similar for the same densities on infinite
lattices. This implies then that BCS theory can be relied on to
accurately predict the magnitude of the parameters in the
Hamiltonian that will give rise to pairing and superconduc-
tivity in this model in the regime of densities appropriate to
high-T, oxides. With respect to the phase diagrams in Fig.
10, it should be noted that except for the n =0 case the phase
boundaries will depend on lattice size, and in particular the
range of parameters that gives rise to superconductivity
within BCS theory in the infinite lattice is substantially larger
than the corresponding range in the finite lattices.

We conclude that the predictions of BCS theory for this
Hamiltonian are reliable, in the sense that any discrepancy
between BCS theory and the exact results is likely to be
much smaller than the uncertainty involved in determining
what the size of the parameters in the Hamiltonian for a
given real system should be. The question whether the
Hamiltonian Eq. (1) is relevant to describe superconductivity
in any real material then reduces to the question whether the
parameters in the material are in the range where BCS theory
predicts superconductivity. The simple first-principles calcu-
lations of Ref. 20 suggested that the optimal situation re-
quires systems with densely packed negatively charged an-
ions. Realistic first-principles calculations for specific
materials need to be carried out.
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