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Coherence lengths for three-dimensional superconductors in the BCS-Bose picture
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Following an approach similar to that of Miyake or Randeria, Duan, and Shieh in two dimensions, we study

a three-dimensional many-fermion gas at zero temperature interacting via some short-ranged two-body poten-
tial. To accommodate a possible singularity (e.g., the Coulomb repulsion) in the interaction, the potential is

eliminated in favor of the two-body scattering t-matrix, the low-energy form of which is expressible in terms
of the s-wave scattering length a, . The BCS gap equation for s-wave pairing is then solved simultaneously

with the number equation in order to self-consistently obtain the zero-temperature BCS gap 6 as well as the

chemical potential p, as functions of the dimensionless coupling variable k=kFa, , where kF is the Fermi
momentum. Results are valid for arbitrary coupling strength, and in the weak coupling limit reproduce the
standard BCS results. Finally, root-mean-square pair sizes are obtained as a function of X and compared with

experimental values.

I. INTRODUCTION: BRIEF REVIEW OF BOSK-EINSTEIN
CONDENSATION IN SUPERCONDUCTIVITY

The notion of superconductivity as a Bose-Einstein (BE)-
like transition of bosonic objects is not new, going back at
least to Schafroth' in the mid-1950's. More recently, with the
discovery of the short-coherence-length cuprate supercon-
ductors, the idea has experienced a rebirth. Anderson envis-
ages crystalline electrons (or holes) as pair clusters of exci-
tations that are fermionic, chargeless "spinons" and bosonic,
charged "holons" —the latter susceptible to a kind of BE
condensation. Schrieffer and co-workers deal with a bosonic
"spin bag" which is shared by two holes. Lee and
co-workers achieve fits to the cuprate data of Uemura et al.
with a BE-like condensation in 2+ e dimensions by assum-
ing an effective carrier mass in the direction perpendicular to
the copper-oxide planes approaching the 10 anisotropy re-
ported experimentally, e.g. , in T1BaCaCuO. Indeed, the
value of e itself can be determined precisely in idealized
situations, and estimated to be about 0.03 in cuprate super-
conductors, its nonzero value being a manifestation of the
coupling between copper-oxide planes. Alexandrov and
Mott' focus on a bipolaronic picture and note an amazing
similarity between at least two cuprate superconductors and
liquid He as regards their empirical specific-heat singulari-

ties across T, . Introducing a bold, fascinating idea, Fujita
and co-workers" generalize the BCS formalism to include
hole-hole (as well as particle-particle) Cooper pairs, stressing
in addition that either type of pairs propagate like massless
(but number-conserving) bosons which may BE-condense in
two dimensions (2D) as well as in 3D according to very
specific, unique T, formulas which differ markedly from the
familiar BE T, formula, THE, for massive bosons. Indeed, a
BE paradigm in superconductivity would seem to be sup-
ported by the recent T, vs THE data extended by Uemura
et al. ' to virtually all exotic superconductors, whether 2D-
like or 3D-like, whose T, values span almost three orders of
magnitude and which reveal an intriguing universal behavior
roughly parallel to but shifted down from THE in the "Ue-
mura plot" of T, vs TF or THE, thus suggesting a sort of BE
mechanism somehow implicit in an appropriately general-
ized BCS formalism.

Based on earlier work by Eagles' and by Leggett, '

Miyake' and later Randeria, Duan, and Shieh' formulated
the 2D many-fermion problem at zero absolute temperature
(T= 0) within a BCS formalism whereby both the gap equa-
tion and the number equation are solved self-consistently'
but conveniently without explicit reference to a (possibly
singular) two-fermion interaction potential which is replaced
by a t matrix. The latter in turn is then related, at low-
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scattering energies, to the s-wave "scattering length. " The
many-fermion formalism is thus essentially exact provided
the interaction range is short compared to the average fermi-
onic spacing. This formulation in 2D has been extended to
finite T by van der Marel, ' as well as by Drechsler and
Zwerger' using an elegant functional integral approach
which in lowest order gives a Ginzburg-Landau theory. Fol-
lowing Ref. 16 a generalized coherence length within the
BCS-Bose picture was formulated in 1D, 2D, and 3D by
Casas et al. , and the 2D case compared with cuprate super-
conductor data. Their results suggested that these materials
might be moderately well described as weakly coupled
within the BCS-Bose formalism.

The 3D BCS-Bose problem was extensively analyzed by
Nozieres and Schmitt-Rink, ' in fact just before the 1986
discovery of high-T, cuprate superconductivity. Its defini-
tive formulation in two transparent papers ' by Haussmann
stressed the vital importance of triple self-consistency (viz. ,
in the gap, number, and single-particle-energy equations),
and leads via the Thouless criterion to a (mean-field) su-
perAuid transition temperature T, that increases monotoni-
cally and smoothly from the weak-coupling (BCS) to the
strong-coupling (Bose) extreme, the two limits exactly repro-
ducing, respectively, the BCS T, formula (given in terms of
the s-wave scattering length) and the familiar Bose-Einstein
condensation temperature formula.

In Sec. II we introduce notation by reducing the BCS
number equation to dimensionless form; in Sec. III the BCS
gap equation is similarly treated, after eliminating the (pos-
sibly singular) "bare" two-fermion interaction in favor of the
two-body scattering t matrix which is expressible in terms of
the s-wave scattering length; this is done by generalizing the
2D formulation of Ref. 16 to 3D. Section IV illustrates the
3D s-wave scattering length for a specific two-body poten-
tial, viz. , the hard-core-square-well potential shape also dis-
cussed in Ref. 16 but in 2D; Sec. V displays our numerical
results vs coupling strength for the gap energy, the chemical
potential; and, finally, we calculate the root-mean-square pair
radius which is compared to some empirical values of coher-
ence lengths of 3D-like superconductors. Lastly, Sec. VI
states our conclusions.

where V is the system volume. If e= ok= fi, 0 /2m one can
rewrite this as

V ~2m~'" ~-
N= 2 2 dope 1 ——

4qr I, fL t Jp
(4)

with E= g(k —p, ) + 6 . However, since for the ideal (inter-
actionless) Fermi gas

v ~kF, y, v (2m''" „,N=2( )s 4qrk dk 2—kF —
2 2 EF

(5)

where EF=fi kFI2m, then eliminating N from (4) and (5)
gives

—EF ding E 1 ——F

Setting e = elEF, E=ElEF—, (=(IEF, —p, = p, lEF,—and
5=—5/EF, one arrives at the reduced number equation

III. THE ZERO-TEMPERATURE BCS GAP EQUATION

Recall the zero-temperature BCS gap equation,

X 1 k, k'2E

To cope with a possibly ill-behaved potential Vk k, one can
renormalize the gap equation by introducing a momentum
cutoff A. ' The final results turn out to be independent of
A, so that one may take A~co at the very end. For k)A,
assume Ek=t k. Then

4 t e—p,
dE'p' 1

Jo g(- -)2+F2

This is the zero-temperature number equation in 3D but con-
tains two unknowns p, and 5 so that another equation is
required.

II. THE ZERO-TEMPERATURE NUMBER EQUATION

Consider the zero-temperature number equation from
BCS theory,

N=2+ vk.
k

~k= —2 I kk 2Ek'

where & ()) indicates summation over k'&A (k')A),
and where the pseudopotential I is defined by the (integral)
equations

The occupation probability vk that minimizes the BCS
model variational ground-state energy turns out to be

1
Fk, k' Vk, k' X ~k, k"

k"
' 2 6k"

(10)

v
EkJ

' (2)

Now eliminate the potential V in favor of the two-body scat-
tering t matrix via its definition in terms of I . In the low-
energy limit one has for the lth partial wave

with gk
——ek p, , @k=6 k 12m, —and Ek= V(k+6k where2 2 ! 2 2

b, k is the gap energy [see Eq. (8) below]. Recall that for
s-wave pairing, 5k= 5 for all k. Thus

4 & ", 6N=g 1 ——=
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6where the notation in Ref. 16 is followed, and where the free
two-body Green function Xo is just

16 151

I i I 1 I I I

t: ~o(2E) ]k,k' = (12)2(E—e„+i r/)
'

with the limit y~0 implied. The factor two has been intro-
duce or later convenience, since the energy variable E
is then given b E=fi,y — q /2m, with q the relative momen-
tum. For s-wave pairing (l =0), the gap function has
no angular dependence, and furthermore 5k=A for all k.
Introduce the low-energy form f th
(o)

or e s-wave t matrix,

t„k(2E)= rp(2E) to obtain
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Let @=e =A, /2m asLet e= e = A, q /2m as before, so that this integral becomes

g~' (I'~'" 1

r (2E) ( 2m( J k

Rececall that a=e/EF and note that E=EIEF=( —Ik th n
with the same def'.e def'. nitions of the other quantities with tildes as
before, one finds

4m fi,
e—

q /kF —ir/

In the low-energy limit ro(2E) may thus be
terms of the s-wave scattering length a, as

expressed in

1 m (1
rp(2E) 4 mfi I, a,

where, as before, q refers to the transferred (or relative) mo-
mentum variable. Substituting this form into Eq. (16) gives

(17)

—
I
—+qi ~ = d~P~

kF (a
This integral is evaluated in
reduced gap equation

1 1

e—(q /kF) —ir/

Ref. 26, and finally gives the

(19)d E''

&(~—
/ )'+ ~'

with k=k a . N ote that there is no dependence on the rela-
tive momentum q, which is as it should be, since an arbitrary
va ue may be assigned to the variable q. Equations (7) and

(19) agree with the results cited in Ref 27 'thwit out proof.

IV. SPECIFIC EXAMPLE OF AN 5-WAVE
SCATTERING LENGTH

We recall how the s-wave scattering len th a a
e asic equation of "effective range scatterin theo

namely
g eory,

(o) d
l k k~

= ro(2E) 1+ ro(2E)
J q~A(2m) 2(E—e +ir/)

(13)

Substitute this into Eq. (9) and take the limit A~eo to get

4 I I
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FIG. 1. Equation (21) graphed for R=2c, for the "hard-core-

p us-square-well" potential described in the text.

&s 1+
c

R —c tan[ gm Vp(R —c)/fi],
gm Vp(R —c)/fi.(21)

which evidently reduces to unit f V 0w
' '

y or o
—+ 'pure hard-

sp ere scattering). Equation (21) is plotted in Fig. 1 for the
concrete case R =2c. t; t"e poles denote critical attractive-well
strength/range values at which boundoun s-wave states occur,
namely, when the argument of the tangent in (21 1in equa s

Effective-range theory also relat d
oun states energies, if any, of the potential, throu h the

relation
ia, roug t e

mEp(2) 1 1 mEp(2)
fL a~ 2

—+ —+ — r + (22)

vahd for small Ep(2), which is the (positive) s-wave binding

ployed below.
energy of the (two-body) potential. This result will be em-

V. RESULTS

The reducedreduced number and gap equations (7) and (19) must
now be solved simultaneously for —~&1/X(+ I, and this

1 1
k cot 8'o(k)~ ——+ —r k +O(k ) 'f k

a, 2 ' ~0 (20)

where k is the relative wave number 6 k ht e s-wave scat-
tering phase shift and r the so-call d " ffe e ective range" of
an unspecified (or unknown) potential. Thus, low-energy

sha eb
scattering can empirically reveal tno a speci c potential

g s, a, an ro. Fors ape but merely two characteristic len ths d
concreteness, consider the 3D "hard- — 1ar -core-p us-square-well"
two-body potential discussed in 2D in Ref. 16 astw in e . as a specific

p e. r is the relative separation between the two par-
ticles, then V(r) =~ for r(c V( ) = —V f
Vr =0

r = —
0 or c~r~R, and

(r) =0 for r&R. Solutions of the two-b d S h "d'— o y c ro inger
equation for positive energies E—= f//k / )0 hm t en yields the
s-wave scattering phase shift Bo(k) such that (20) gives the
explicit, closed form expression
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FIG. 4. Decrease of root-mean-square pair radius rRMs as cou-
pling is increased from the BCS extreme of large, severely overlap-

ping, weakly bound Cooper pairs, to the Bose extreme of small,

nonoverlapping, tightly bound pairs.

FIG. 2. Behavior of gap parameter 5 (in units of EF) vs

1/P =—1/kFa, , with a, the s-wave scattering length of the two-
fermion interaction, obtained by solving (7) and (19) self-
consistently. Left dotted curve is the weak-coupling BCS result

(25); right dotted-curve is strong-coupling limit 5/EF~K "2 dis-
cussed in text.

but for k(0, the results agree with the well-known analyti-
cal form, (25) below, for the BCS gap energy. For I/)t =0,
d! and p, approach the limiting values 0.686 and 0.591, re-
spectively, as is easily seen analytically. For weak coupling
X.=—kFa, —+0, assume that 5= 6/FF&& 1 so that the number
equation (7) reduces to

was done numerically. The results for the zero-temperature

gap 6 and chemical potential p, , in units of FF, as functions
of the variable ), are displayed in Figs. 2 and 3.

We have verified that in the weak-coupling limit ~li. ~&&1,

p=FF, or p= 1.

Equation (19) then simplifies to

t A

00

(23)

(24)

where the limit A&&1 is implied. This integral too is done in
Ref. 26 and finally leaves

3, =(g/e )EF exp (25)

p/EF

-3-

-5 I

-2 0 1 2 3 4
1 1

kg a,

in agreement with the well-known result cited as Eq. (4.22)
in Ref. 23. Note that in 3D a necessary condition on the
two-body interaction for a many-body BCS instability is
merely that it be sufficiently attractive to give rise to a nega-
tive (s-wave) scattering length, whereas in 2D the two-body
interaction must be' ' attractive enough to actually bind.
Indeed, as compared with 3D Auctuation effects will be more
significant in 2D and in 1D. In 2D the anomalous nature of
the scattering length is fortuitously circumvented automati-
cally since, rather than X=kFa, , the relevant interaction
strength parameter within the BCS-Bose picture turns out to
be Eo(2)/EF= y~O instead. Thi—s manifests itself in the re-
markably simple exactly analytical relations' '

6= v 2 r/ and /t, = 1 ——(2D) .
2

(26)

FIG. 3. Drop of /J„/EF from weak-coupling (BCS extreme)

( I /X ~ —~) value of unity, as coupling increases to (Bose extreme)
1/X~+~. Dotted curve is strong-coupling limit of —1/X as ex-
hibited in (28).

The weak-binding result (25) for the 3D gap energy may
be compared to the Cooper pair binding energy in 3D given
by
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TABLE I. Experimental data for seven typical 3D-like superconductors, as discussed in the text.

Superconductor

Bai,K Bi03
Rb3 C6()

Nb3Sn

UPt3

Pb

Sn

T, (K)

36~4 Refs. 30,31

30.0~ 1.6 Refs. 30,32

17.9 Refs. 30,36

0.53 Refs. 30,37

7.22 Ref. 39

3.75 Ref. 39

1.2 Ref. 39

kF (A ')

0.2562~ 0.0287 Ref. 30

0.5399~0.0818 Refs. 33,34

1.1160~0.0920 Ref. 30

0.6146~ 0.0512 Ref. 30

1.62 Ref. 40

1.57 Ref. 40

1.75 Ref. 40

(o (~)

53~1 Ref. 31

26~4 Ref. 35

40 Ref. 36
106~ 14 Refs. 37,38

830 Ref. 39

2300 Ref. 39

16000 Ref. 39

(kF(o)'

(1.9~0.5) X 10'

(1.8~0.8) x 10'

(2.0~ 0.3)x 10'

(4.5~ 1.8) x 10'

1.8x 10'

1.3X 10'

7.8~ ]08

b, c=(8/e )EF exp (27)

—
2 Eo(2)
EF

A, /2ma,

fi kF/2m

1 1
(28)

(kFa, )

the curve of which is plotted in Fig. 3 as a dotted line.
Finally, Fig. 4 depicts the behavior of (kFr„Ms) vs I/k,

where rRMs is the root-mean-square pair radius obtained ana-
lytically for 1D, 2D, and 3D in Ref. 20, and which in 3D is
given explicitly by

where we note that for weak coupling A)&A&, as is well
known. For strong coupling, 1/k~+~, we verified that
b./EF & I/Qk, al—so in accordance with the asymptotic result
cited just below Eq. (4.25) of Ref. 23, and which implies that
5 itself vanishes in this limit too.

The resulting 3D behavior of p,/EF vs coupling as de-
picted in Fig. 3 is qualitatively similar to the 2D analytical
result of Ref. 16 given, according to (26), very simply by
p/EF= 1 Ep(2)/2EF . In this latter case weak (strong) cou-
pling means negligence (predominance) of the term
Eo(2)/2EF compared to unity. In Fig. 3 the chemical poten-
tial for weak coupling is just (23). On the other hand, for
strong coupling (or alternatively small kF) one can use (22)
for small Eo(2) =fi, /ma, to verify that p, /EF asymptotically
becomes just the negative of one-half the (positive) binding
energy of a single pair (expressed in units of EF), which
implies

where r ~ —
Vi, and f„=5/2Ei—, . ' ' Formulas (6) and (7)

are valid for any interaction leading to a k-independent gap
energy 5 and any coupling strength. In Ref. 20 r~Ms from
Eq. (29) was shown to reduce, in weak coupling to
(fiv F /Q8A), and in strong coupling to fi, /2mEo(2) where
Eo(2) is again the bare two-body interaction (positive) bind-

ing energy. The length gfi/2mEo(, 2) is just the size of the
two-body wave function of an isolated pair bound with en-

ergy —Eo(2). Note that in weak coupling rRMs differs from
the familiar Pippard coherence length go = fi v F /7rb, only by
the factor Q8 = 2.83 vs m in the denominator, this difference
being slight. As expected, a smooth shrinking of pair size is
clearly observed in Fig. 4 to develop as one goes from the
weak-coupling (BCS) regime to the strong-coupling (Bose)
extreme.

Lastly, Table I lists some empirical data for several 3D-
like superconductors with 0.5 K~T,» 40 K. The last col-
umn gives (kF(o) with (o the reported coherence length,
based largely on upper critical field H, 2(0) =(A, /2e)/2m go
data. All such (kFgo) values (with the exception of the
rather uncertain value for the fulleride superconductor Rb3
C6o) would fall on the (kFrRMs) vs I/X curve of Fig. 4 well
to the left of the point I/X =0. Note that the elemental super-
conductors Pb, Sn, and Al give empirical (kFgo) values
above the scale of the figure where, according to Fig. 3
p, =EF, and according to Fig. 2, 5 is small and well repre-
sented by the BCS limiting value (25) shown in Fig. 2 as the
dotted curve on the left.

VI. CONCLUSIONS

where

p, + —5 + —Aptan—
4 l 2 2

k,r,Ms
'=

2g2( -2+ g2)1/2

P= 7r+ tan '(6/p, ) (if p(0)

/=tan '(dip, ) (if p, ~0).

(29)

(30)

As with the three (2D-like) cuprate superconductors
(YBaCuO, BiSrCaCuO, and T1BaCaCuO) studied in Ref. 20,
we find in the present paper that the 3D-like superconductors
considered here can also be reasonably well described as
moderate-to-weakly coupled materials within the BCS-Bose
picture.
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