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We study disordered Josephson-junction arrays with long-range interaction and charging effects. The model
consists of two orthogonal sets of positionally disordered N parallel filaments (or wires) Josephson coupled at

each crossing and in the presence of a homogeneous and transverse magnetic field. The large charging energy
(resulting from small self-capacitance of the ultrathin wires) introduces important quantum fluctuations of the

superconducting phase within each filament. Positional disorder and magnetic-field frustration induce spin-

glass-like ground states, characterized by not having long-range order of the phases. The stability of this phase
is destroyed for sufficiently large charging energy. We have evaluated the temperature vs charging energy phase

diagram by extending the methods developed in the theory of infinite-range spin glasses, in the limit of large

magnetic field. The phase diagram in the different temperature regimes is evaluated by using a variety of
methods, to wit: semiclassical WKB and variational methods, Rayleigh-Schrodinger perturbation theory, and

pseudospin effective Hamiltonians. Possible experimental consequences of these results are briefly discussed.

I. INTRODUCTION AND MODEL HAMILTONIAN

Josephson-junction arrays (JJA) have been the subject of
considerable recent research activity. ' Such systems consist
of superconducting grains embedded in a nonsuperconduct-
ing host and coupled together by the Josephson effect. Re-
cently there has been a surge of both theoretical and experi-
mental interest in studying disordered Josephson-coupled

systems in an applied magnetic field. Theoretically, it has
been shown that in the presence of sufficiently strong mag-
netic fields the system may freeze into a state exhibiting
spin-glass-like type order among the superconducting
grains. From the experimental viewpoint the interest is mo-
tivated by the existence of irreversibility lines in the
temperature-field diagram, in virtually all high-T, supercon-
ductors, thus suggesting the existence of a glassy phase.

For sufficiently small grains, the behavior of each junc-
tion in the JJA is modified by the quantum effects which
arise from the small capacitances that lead to large charging
energies. The competition between phase coherent ordering
and charging effects in periodic JJA has been the subject of a
number of studies and it is by now well established that for
sufficiently large charging energy quantum phase Auctua-
tions lead to the complete suppression of long-range super-
conducting order.

In disordered JJA with small capacitances thermal, ran-
dom, and quantum fluctuations will determine the physics of
the system and an interesting question arises regarding the
competition between them. The problem we would like to
address in this paper is then: What is the effect of having a
competition between the thermal, quantum, and random Auc-
tuations on the long-range properties of a Josephson-junction
network? This is a highly nontrivial question in general but
partial answers can be obtained in certain limits. Since there
are only very limited studies on this issue (see, e.g. , Ref. 10),
the purpose of this paper is to investigate these quantum-
fluctuation effects systematically in a mean-field-like ap-
proximation, to be specified below. We shall study a quantum
model of a disordered JJA system which, in principle, could

be realized experimentally and simultaneously allowing for a
detailed theoretical treatment thus constituting an attractive
setting for the study of the complicated interplay between
quenched disorder, interactions, and quantum fluctuations.

To be specific, we will study a stack of two sets of N
mutually perpendicular parallel wires (or filaments) Joseph-
son coupled at nodes (see Fig. l). Since each horizontal (ver-
tical) filament of the system is directly coupled to every
other vertical (horizontal) filament, the number of nearest
neighbors g in this model is z=N. This is then a realization
of a JJA with long range (infin-ite-range, in the thermody-
namic limit N~~) interactions which differ from the con-
ventional two-dimensional (2D) Josephson-junctions arrays.
Furthermore, we assume that the distance between neighbor-
ing parallel wires varies randomly around some average
value l. Finally, the system is placed in a transverse magnetic
field B and we shall assume that the Josephson couplings are
sufficiently small so that the induced magnetic fields are neg-
ligible in comparison with B so that the phase gradient along

VI

FIG. 1. Disordered Josephson-coupled array of 2W supercon-
ducting wires (straight horizontal and vertical lines, square box de-
notes the junction at a node). Each wire has small self-capacitance
C and is characterized by the superconducting phase P;. The mag-
netic field B is applied perpendicular to the array.
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any filament results only from the presence of the external
magnetic field. The dynamical variables of this system are
the superconducting phases associated with each wire. The
properties of the (classical) model defined above have been
studied some time ago. Very recently the thermodynamical
properties of this system (both periodic and positionally dis-
ordered version) have been investigated theoretically and
experimentally. " '

An important ingredient in our present considerations is
that we allow for quantum phase fluctuation within a wire
assuming the node junctions have a sufficiently small self-
capacitance C. In this case the charging energy becomes a
dominant quantity considerably affecting the properties of
the array in the low-temperature regime. More precisely, we
are interested in the behavior where the quantum fluctuations
compete with the formation of the superconducting glassy
phase due to randomness and magnetic frustration.

In the low-temperature regime we expect to have a glassy
phase with randomly frozen superconducting phases. To ex-
amine the extent to which the system is frozen, it is conve-
nient to introduce the Edwards-Anderson order parameter'
defined by

qE~= I:(S,)r]-
where

S;=[5', , S, ]=—[ o (@,), (@;)], (2)

while (. . . ) z. and [.. . ]„denote thermodynamic and con-
figurational averaging, respectively. In a disordered state the
phases will randomly sample their entire phase space and

q =0, while in a frozen system q 4 0 and [(S;)r],„=0 indi-
cating the absence of long-range order. The spin-glass-like
ground state may be destabilized by quantum fluctuations. '

As one varies the strength of the charging energy (i.e., in-

creasing the strength of the quantum fluctuations) there can
be a phase transition at zero temperature between the glassy
phase and the paracoherent disordered ground states. This
quantum phase transition in random spin systems has re-
ceived much attention recently. ' However, its corresponding
nature in quantum disordered Josephson-coupled systems
has not been previously studied. The goal of this paper is to
examine this problem in some detail starting from a quantum
gauge-glass model defined in Eq. (3) below.

As discussed in the main body of the paper, we need to
use different complementary calculational techniques to at-
tack the problem, for each one of them is by nature approxi-
mate and their regions of validity are different. It is also
important that using only one of these techniques by itself
may lead to spurious results that can only be validated by an
independent check. A case in point will be the reentrant tran-
sition found in the variational calculation, which is valid in
the semiclassical region, and which is not found in our low-
temperature expansion.

We now describe the main body of the paper. In Sec. II
we define the model Hamiltonian, we perform the quenched
average over the disorder, followed by a functional integral
formulation of the mean-held theory and the derivation of
the saddle-point equations in the N~~ limit. This consti-
tutes an exact self-consistency condition for the glass order
parameters. Section III presents the phase diagram for the

model preceded by an exhaustive investigation of the self-
consistency equations via a variety of approaches including
semiclassical WKB and variational methods, Rayleigh-
Schrodinger perturbation theory, and pseudospin effective
Hamiltonians in a truncated charge Hilbert space. Finally, in
Sec. IV, we discuss our results and present our conclusions.

II. THE MODEL

H=Hg+HJ,

N N

X 2 II —cos(@h, —4.,—f„)]
Ni lj==i

(3)

Here, n;=(2e/i)8/8$; is the charge operator while

(P„) represent the superconducting phase of the ith hori-
zontal (jth vertical) wire, respectively; EJ is the Josephson
coupling and K=4e /C is the charging, respectively. In or-
der to have a well defined thermodynamic limit we have to
scale the Josephson coupling energy by a factor +N. Further-

more, f; = (2 vr/4O) f"A.dl is the line integral of the vector
r

potential A and 40 is the elementary Aux quantum.
It is clear that Ej is a positive quantity (and it may depend

only on the distance between wires which we are neglecting)
and it does not introduce any frustration in the system. Mag-
netic field and random location of the wires are what gener-
ate variations of the phase parameters f;, , thus allowing for
the random frustration present in the system. ' The relevant
quantity is thus the effective random coupling matrix in the
Josephson part of the Hamiltonian (3)

e 'j-
N

whose density of the eigenvalues is given by

p(E) = —(I/m) Im[E6', J
—J; +i0],, ',

where the bar denotes averaging over the positional disorder.
The behavior of (5) varies with increasing the strength of the
magnetic field. In the case of large magnetic field, so that the
flux per average plaquette @=Bi is much larger than the
elementary Aux quantum 4/+o&&1, the frustration param-
eters f;, acquire random values and fill the interval (0,2~]
uniformly. In this limit the effects of disorder become espe-
cially apparent and the behavior moves toward the asymp-
totic regime which is essentially field independent. In this
case correlations between the matrix elements J, vanish and
the density of states (5) approaches the Wigner semicircular
law

P(E) ~Pw(E) = (7rEJ) '0l —(E/2EJ)',

The quantum Hamiltonian of the disordered system of
Josephson-coupled wires is given by
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implying that the random matrix (4) belongs to the Gaussian
unitary ensemble with only the second moment nonvanish-
ing,

(7)

1
PM~= —lim lim ((Z")„—1).

N~~ n —+0

It is convenient to express the replicated partition function
Z"=Tr exp (—X pH ) in the interaction representation as

Therefore, in the high-field regime, we can implement a
mean-field theory of our quantum gauge-glass problem in a

way closely resembling the infinite-range interaction
Sherrington-Kirkpatrick magnetic spin-glass model. ' How-
ever, the resulting formulation is not just a quantum exten-
sion of the planar spin-glass model. Unlike the random bond
XY spin glass, the improper global rotation P;~ —@; (i.e.,
time reversal) is not a symmetry of our quantum gauge-glass
model. To make this observation apparent we introduce the
two component "spin" vector (2) so that the Josephson part
of the Hamiltonian (3) reads

with the interaction picture Hamiltonian

and the free part

Ht ( r) = e' OHt e

A
( pZ"=Tre t OT, exp —g drHt (r)

u 00
(10)

(12)

N N

HJ= — g g [e' 'j(Sh; S„—iz Sh;XS„)+H.c.],
2 Ni=i j=i

(8)

where z is a unit vector perpendicular to the plane containing
S;. We note that in addition to the conventional XY coupling
SI„"S,~

there is a cross term Sh; X S,~
which is the analog of

the spin-orbit [i.e., Dzialoshinsky-Moriya (DM)] interaction
in magnetic systems —essentially violating the time-
reversal symmetry. ' Thus, the present quantum gauge-glass
problem formally resembles more closely the quantum spin-
glass formulation in the presence of the DM anisotropy.

III. DISORDER AVERAGE AND MEAN-FIELD
FORMULATION

where H =H0+H~ is the total Hamiltonian. For the inter-
action Hamiltonian one has explicitly

N N

H (7)= g g e'f [S„,(7) S„(r)—iz S„,(r)
2 N i ij==i

(13)

so that the statistical average can be taken in the ensemble
given by H0. Here T, is the Matsubara "imaginary time"
ordering operator allowing us to treat the time-dependent
operators S, (r) =e ' oS, e' ' as c numbers within the
time-ordered exponential (10). Consequently, the Gaussian
average (7) readily gives

In a random system we need to calculate the average of
the free-energy density .M~= —(1/p) ln Z/2N over the disor-
der (7). This is done by using the replica method permitting
to average the replicated partition function Z" instead of
lnZ,

(Z"),„=Tre PHOT, exp

where

00

fp ~p
d 7. d r' I),( r, r' ),

3o
(14)

p2 N N

A(r, 'r')=4 g g g ([Sh,(r) S„,(r)][S&;(~') S„(r')+[Sh,(~)xS„(r)] [Si„(7')xS„,(~')]j.4& =i ~=i ~p
(15)

To make further progress we utilize the vector identity (Ax B) (CX D) =(A C)(B D) —(B C)(A D) to reduce mixed vector
products along with integrations over auxiliary variables according to the formulas

t dxdy dx
exp(~ab) = . exp[~(xy —ax —by)], exp (a /2) = exp( —x /2 —ax),2 il l J

(16)

allowing to decouple various quartic interactions in Eq. (15) and reduce Eq. (14) to the effective single-filament problem. In
terms of the functional integrals

(Z)„= g P D0 ~DR ~DP, ~QP ~„exp( —2NL[P, ,P,Q,R]),
np p~

(17)

involving the nonlocal (in time) tensor fields X ~(r, r') (X—=Pi,Pz,Q) and R ~(r, 7') where p, , v=x, y. The effective local
Lagrangian reads

L[Pi, P2, Q,R]= TrP, P2+ TrQ + TrR —ln ixi[Pi, P2, Q,R],
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with

Here,

TrXY=
"p ~p

dr dr'g g X ~(r, r') Y~ (r', r), TrR =
JQ op pv &o

fP fP
dr dr'g R"~(r, r')R~ (r', r).

DQ np

tP fP
4'[Pt Pt2, Q,R]=Tre oT, exp — dr dr'H, &t(r, r )

Jo o

is the effective time-dependent single-filament Hamiltonian describing interactions between replicas

(20)

1 1
H, tt(r, r')= FJQ $— Q „(r,r') ——P,„,(r, r')+R (r, r')8 „——P2, (r, r') S (r)S,(r').

np pv
(21)

In the thermodynamic limit, N~~, the steepest descent method can be used which amounts to finding the stationary points

Xo„,and Rop determined by the extremal conditions

Thus, one obtains

8'L[Pt, P2, Q,R]/BX ~=0, BL[P, ,P2, Q,R]/BR ~=0. (22)

EJ
Q ~o„(r r')= ——G ~(r r'), R—o~(r —r')= —g G ~(r—r'), Po~&„„(r—r')=Po~2, „(r—r')= —G ~(r —r'),

p

where the correlation function describing the dynamic self-interaction is

(23)

G ~(r—r') =
Tre P OT exp

rp
dr2Hett(r& rz)

fp
d7j

~oJo

Tre oT,S ( )rS( r) exp — dr, drzH, tt(r&, r2)
Jo o

(24)

Equation (24) represents an exact self-consistency condition
for the replica-dependent matrix Green function
G„~(r r') of the qua—ntum disordered Josephson model (3).
For classical spin glasses, this is a matrix G p, where the
off-diagonal components of q p can be related to the spin-
glass-like Edwards-Anderson order parameter

qE~=max ~&(q ~), q ~=G ~(r —r')8„„, (25)

which is purely static (i.e. , "imaginary-time" independent)
and vanishes on the superconducting-glass-paracoherent
phase boundary. However, for the quantum problem the
time-dependent fluctuations of the replica-diagonal compo-
nents G „(r r') must be con—sidered in the "imaginary"
Matsubara time v.. More precisely, the replica-diagonal part
G is not an order parameter because its expectation value
is nonzero on both sides of the transition; nonetheless it has
to be determined self-consistently along with the glass order
parameter q p.

G„~(r)= [r8 p+ q(1 —8 p)]8„ (26)

and the effective Hamiltonian becomes

F.J
2

H, tt(r, r') = ——g g [2r8' p
np p,

time dependence of replica-diagonal dynamic parameters

G~„(r—r') have to be determined self-consistently. There-
fore, we employed here the static ansatz (cf. Ref. 21)
which retains only the ~~ 0 Fourier component
r 8,= (1/p) fo~G „(r) of the dynamic self-interaction. Fur-
thermore, since we are here interested mainly in the critical
line separating the glass and paracoherent phases (where
qE~= 0) we employ the replica-symmetry assumption

(q t —= q for nW p). In this way we avoid the subtle intrica-
cies of the replica symmetry breaking (which, however, will
be important inside the glass-phase region). Therefore,

IV. CALCULATION OF THE PHASE DIAGRAM +2q(l —8 &)] S(. ) S(r~'). (27)
A general solution of the self-consistency equation (24)

poses a rather difficult problem since the quantum-
mechanical nature of the problem requires that the

Consequently, the averaged free-energy density (9), in the
replica n~O limit, becomes
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/3W„= (—/3EJ) (r q—) — o.do.e ' ln Z(o.),
3o

Z(o.) = pdpe
Jo

+(rr.p).@(rr p) =Try exp I P+~y(& p)]

K 8
Wc-@(o,p) = ——

z
—EJ+2(o Qq+ p gr q) c—os( @).

(28)

Here we have employed integrations over the auxiliary vari-
ables ar, p and Tr&. . . =X/( Ij'E(P)I. . . I'Ij'6(@)), with
'tIrg(@)) being the eigenstates of the operator .Xr &(a,p)

and

To proceed, we have to explicitly evaluate H(P, O) which
amounts to finding the eigenenergy of the effective quantum
rotor Hamiltonian (33) as a function of (arbitrary positive)
p. This is a standard eigenvalue problem involving a
Mathieu-type differential equation. Unfortunately, it is diffi-
cult to obtain a useful analytical solution for general values
of K and p, in this way. Therefore, we treat the problem in
various charging energy-temperature regimes using a combi-
nation of calculational approaches to construct the entire
phase diagram.

A. Semiclassical WKB limit

For k~T~~ EJ, K/EJ&&1 the charging energy is expected
to play a subdominant role. Our approach here is to consider
the "potential energy" p, cos (P) in the quantum rotor
Hamiltonian (33) as the leading contribution and treat charg-
ing energy perturbatively. At lowest order in K one obtains

where

I™ z„ 2
q = rrdrre ' (cos(@))

Jo

f m

3o
ordoe ( cos ((6)) (29)

,Xc.'@(p) = EJp ~2r [—1 —(PK/24) ]cos( P) .

Furthermore, by using the identity

f 2~de
I„(P ) = e "'~~icos(n@),

Jp 2~

(36)

(37)

1(. . . ) = pdpe

where I„(X) is the modified Bessel function of nth order.
Using Eq. (34), the critical boundary for small K is readily
obtained from

&& Tr~. . . exp [—PAY~&(o. ,p)]. (30)

The freezing temperature, i.e. , the onset of the glassy
phase, is marked by a nonzero value of the spin-glass order
parameter q. We can now establish the equation for the criti-
cal line T,(E) by expanding the free energy in powers of q
and equating the coefficient of q to zero. We find that

—p/2 2pdpe ~ (5 —
p )Io p/2PEJ 1—p~

0

= 1. (38)

B. Variational method

For K= 0 at the classical critical point we have

ksT, /EJ= +2/2=0. 71 (cf. Ref. 23).

p, EJr(p, , K) = 1,

and the self-consistency equation for r is [cf. Eq. (28)]

2/2
fo pdpe ~ ' Tr~ cos (cb) exp [—P&if~(P,O)]r=

2/2
fo pdpe ~ ' Tr~ exp [—P&c-'p(P, O)]

(31) The quantum-mechanical partition function ~(P,O) in
Eq. (34) can be approximated by an effective classical func-
tion via the path-integral formalism using a variational
method. Following Refs. 24,25 (see the Appendix for details
pertaining to this problem) we obtain the critical boundary
between the glassy and paracoherent phases from

with the effective single site quantum rotor Hamiltonian

(32)
PEA, (p)(5 —p )/2

sinh [PKA, ( p)/2]

K
My(p 0) =

2 &
z /L cos (P), (33) a, (p)

X exp 2 (39)

where p, =EJP~2r Finally, using pa.rtial integrations it is
convenient to represent the self-consistency equation for r as

where s,. , a, , and A, are determined (for a given value of
p) from the set of self-consistency equations:

pd pe ' "~(p 0)[2(PE1)'r'+ 3 —p'] = ~(0,0),

(34)

where W(0,0) = g&(O, PK/2), and 83(O,PK/2) is the theta
function

$,(p) = A, a, ,

pram, t /3rcn, ~

coth

03(g, t)=1+2+ cos (2kz)e
k=1

(35)
$2P E0,= p exp (40)
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Numerical evaluation of Eq. (39) reveals a reentrance in the
low-temperature region from the glassy phase back to the
paracoherent state (see Fig. 2) and the zero-temperature criti-
cal value of reduced charging energy n, = K/EJ= 1.1. In the
opposite semiclassical limit, K~O Eq. (39) reduces to Eq.
(38) (see the Appendix). The important question arises as to
whether the predicted reentrant feature is a genuine property
of the model or is an artifact of the approximation. We note
that the variational method implementation ' considers
that the paths must satisfy the boundary condition
P(0) = P(P), appropriate for a quantum particle in a peri-
odic potential rather than a quantum rotor system [Eq. (33)]
with 2m periodic wave functions. Therefore, the proper
boundary conditions for the latter must be
P(0) = P(P)+2nm (where m =0,~ 1,+ 2, . . . are the wind-

ing numbers) which appear not to be accounted for consis-
tently in this approach. This might have consequences for the
low-temperature behavior of the system and we are therefore
motivated to look for an alternative method to study the
quantum T—+0 limit.

As we shall see next, the reentrant transition found in the
variational approximation is not found in the low-
temperature expansion. Thus it is most likely an artifact of
the variational approach, which is strictly a high-temperature
approximation.

8.0

6.0

+ 4.0

2.0

I VM
A 3-state TCSM

M

M

e p(xim P). (41)

To lowest nontrivial order we get

C. Perturbation expansion about the quantum limit

Assuming that K&&EJ, the potential energy of the quan-
tum rotor (33) p, cos (@)may be treated perturbatively using
the standard Rayleigh-Schrodinger approach. The unper-
turbed part is then —(K/2)8 /8$ with eigenfunctions

0.0
0.0 0.2 0.4

kB T/E,
0.6 0.8

FIG. 2. Temperature-charging energy, T—n, phase diagram of
the disordered Josephson-coupled array of superconducting wires
with self-charging energies. Here n=KlEJ, with K the charging
energy and FJ the Josephson coupling energy. The results were
obtained from variational method (VM) and truncated charge state
models (TCSM) for different numbers of charge states as indicated.
We note, as discussed in the text, that the reentrant behavior ob-
tained from the variational calculation does not emerge from the
low-temperature analysis and thus it must be an artifact of the varia-
tional approximation.

so that

K 4(EJ/K) rp
1-4 ~ (42) (43)

and the critical boundary condition is implemented after per-
forming the integration obtaining

16m +8m [3(EJ/K) —1]—8(EJ/K) —6(EJ/K)+1
e

—m P~A/2

[4m +4(E /K) —1] (44)

At T= 0 the I= 0 term is the only one that contributes and
thus

1 2

1 —4[EJ/K, (T=0)] 1 —4[EJ/K, (T=0)]
5— =1

that gives n,.(T=O) =(6+2 v17)/2=7. 1231 which differs
quite significantly from the critical value of n obtained pre-
viously by the variational method. "' We attribute this dif-
ference again to the fact that in the present formulation of the
variational method "' the boundary conditions for the su-
perconducting phase variables are not compatible with the
discrete nature of the charge-transfer process which becomes
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especially important as T~O. As a result, a discrepancy in
the low-temperature limit is expected, whereas in the classi-
cal limit (K—+0) T, is reproduced correctly.

D. Truncated charge space projection method

The expansion about the quantum limit from the previous
subsection is not sufficient to treat the critical boundary away
from the quantum critical point n, .(T= 0), where the condi-

tion n&) 1 is no longer valid. A nonperturbative approach is
sought and of particular interest are the truncated charge
state models (TSCM) spanned by the charge states of the
operator —(It/2)8 /8$ in a restricted, finite-dimensional,
Hilbert space. This can be interpreted as an approximation of
a suitable quasispin model. Using the eigenstates of the
charge operator (41) one can readily calculate the matrix
elements of the operators involved:

rz~dP i 2e
N„=(4„(P)n(@)l4 (P))= exp( —ik(b) —. exp(im@) =2em6k

Qp 7T l

[S,]k„,.=(@k(@)l cos (p)l4&(p)) =
2 exp[ —i(k —m)p]cos(p) =

2
(8'k, o+ Bk +to).

Jp 2m (46)

In particular, for k, m=0, ~1, one has

&k =I~1k (47)

where W, (a = z,x) are given by

H = (E/2)W (p, /Q2). 5, . — (49)

In the context of magnetic spin glasses the first charging
energy term in Eq. (49) refers to a single-ion crystal anisot-
ropy, which opposes ordering in the x-y plane. Thus the
system will exhibit a phase transition driven by quantum
fluctuations of the transverse (pseudo)spin component. Cor-
respondingly, for the statistical sum H(p, O) we have

p,.z~
K(p, O)=Ms &(p,O) = exp

while

/ v'(/3, J:)'+(u, F-,)'p'~
+2 exp — '

cosh~
/

(50)

pdpe ~ ' H(p, O)(5 —p )=W(0,0),
Jp

(51)

and the critical line T,(a) can be readily calculated numeri-
cally using Eq. (51) (see Fig. 2). We found n, (T=0)=7 in
good agreement with the perturbative approach. The classical
value T,(n=O) is underestimated as a result of restricting

(1 0 0 (0 1 Oi
1

0 0 0 ~ = 1 0 1 (4g)

iO 0 —1 0 1 Of

Consequently, the lowest-order quasispin model belongs to
M= 1 and its Hilbert space is spanned by the charge states

l0), l~ 1). It is now useful to recast the quantum rotor
Hamiltonian (33) in the W= 1 pseudospin language as

the original charge state Hilbert space. We have also exam-
ined models spanned by five (l0), l

~1),l~2)) and seven

(l 0), l

~ I ), l

~ 2),
l

~ 3)) charge states which better approxi-
mate the behavior at high temperatures. For both cases it is
possible to derive critical line equations analogous to Eq.
(50) analytically. However, the corresponding formulas are
too lengthy to reproduce here. We found that close to
T,(n=O) TCSM exhibit a small reentrance for a certain
interval of u's. However, as the number of charge states
m, b g, increases this interval became narrower and presum-
ably disappears for m, &„g,~~ indicating that this might be a
spurious feature due to the restriction imposed on the origi-
nal infinite-dimensional Hilbert space of charge states.

V. CONCLUSIONS

In this paper we have studied the competition between
quantum and thermal fluctuations in a superconducting glass
state using a positionally disordered model of ulthrathin Jo-
sephson coupled wires in a transverse magnetic field. We
focused our attention in the regime where the magnetic field
produces large frustration in a system of randomly spaced
Josephson microjunctions with a large number of nearest
neighbors z=¹We investigated this model by spin-glass-
inspired techniques in the N~~ limit, showing that that the
model is a superconducting analog of a quantum spin glass
with Dzialoshinsky-Moriya time-reversal breaking interac-
tion.

We studied the phase boundary separating the paracoher-
ent from glassy phases as a function of the charging energy
associated with the small capacitance of an individual wire.
We found that, for sufficiently large charging energy, the
glassy ground state is destabilized due to the strong quantum
fluctuations. This is reminiscent of the scenario found in or-
dered Josephson-junction arrays, where charging energy ef-
fects can lead to the destruction of long-range phase coher-
ence by zero-point quantum fluctuations. However, this
analogy is not complete as in the glassy phase there is no
long-range order and, therefore, the destructive role of quan-
tum fluctuations is less transparent. We note that it is not
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easy to improve our static ansatz analytically. We expect that
a direct quantum Monte Carlo calculation, where the imagi-
nary time, direction is discretized, will yield information in-
side the phase boundary. The shortcoming of this approach is
that one cannot get too close to the T=O region. We leave
this problem for the future.

The results presented here can be tested experimentally in
artificially fabricated disordered arrays of ultrathin filaments
provided that the charging energy of a wire is large enough
to produce substantial superconducting quantum phase fiuc-
tuations. For example, T,(a) should be observable by resis-
tivity measurements. In obtaining our results for the phase
diagram we considered the solution which does not break the
replica symmetry. Although a broken replica symmetry solu-
tion is not required to trace the critical phase boundary
(where the order parameter vanishes) it is important when
distinguishing equilibrium from nonequilibrium properties of
the glassy phase. In the low-temperature phase, as usual, the
strongest signatures of glassiness are in the dynamical prop-
erties. Similar to the magnetic spin glasses, nonergodic be-
havior is likely to manifest itself in differences between
field-cooled and zero-field prepared samples via typical ef-
fects like hysteresis, remanence, aging effects, etc. In the
classical limit of our model (vanishing of charging energy)
all these history-dependent signatures of a glassy state have

been observed. ' ' ' The corresponding nonequilibrium
metastable states might be probed, e.g. , via ac conductivity
measurements determining the barriers separating rnetastable
states and the associated distribution of relaxation times as a
function of charging energy.

Although the system of superconducting ultrathin wires
constitutes an interesting experimental setting to test the pre-
dictions of the infinite-range interaction theory, the investi-
gation of the behavior of disordered quantum truly 2D array
would require knowledge relevant to short-range spin glasses
and presents a difficult subject for further study.
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APPENDIX: VARIATIONAL METHOD

In this appendix we give the specific details of the deri-
vation of Eq. (39) based on the variational approach. ' The
path-integral formulation of the partition function involves
an infinite product of periodic paths P(r) = Po
+X~,"(/Ye'" '+c.c.) in the form

P
dr cos Po+ g (P~e ' ~+c.c.)

(A 1)

d4o
~(p,O) = . . .

/ g 2 «xp ' P&X —~~IIVI'-~j 2 ~pgp='p J 77/ /co~ /= 1 J p

The essence of the variational method ' is to approximate
(52) by an effective classical partition function

(0 =—exp ——cos(Pp).K ( 2) (A4)

d4'o
K(p,O) = e

—PVek ~0~

$2mPZ

Here, the associated effective potential V,qq is given by

(A2) For low temperatures we seek for the uniform solution (i.e.,
with go=0) of Eq. (A4) [cf. Eq. (40)]. In the regime of high
temperature and small quantum Auctuations by using the ex-
pansion

1 sinh (PEA/2) K
V,z= —ln + V, z ——II a . (A3)

The unknown functions a ( Pp), V,z( Po), and 0( Po) are
determined by using the extremal principle from the self-
consistency conditions

1 PKQ ( PKQ)

1 x (xi x x'
——coth ——1 = —— + O(x ),x 2 (2( 12 720

we have for V,rr(gp)

(A5)

(+- dP
V„z= —p, exp-

j -- $2ma'
(4' —4'o)'

2(y )
cos($)~

( pre~
M(p, O)-+ —EJp~2r exp —

~ cos(Po),24)

prci
EJp ~2r 1 — cos( P—o),24) (A6)

t
a'~

= —~ exp ——cos(Po), i.e., V,tt(@p) reduces to the semiclassical WKB result (36).



16 148 T. K. KOPEC AND J. V. JOSE

On leave of absence from Institute for Low Temperature and

Structure Research, Polish Academy of Sciences, P.O.B. 937,
50-950 %roclaw, Poland.

For reviews, see, e.g., the articles in Coherence in Superconduct-
ing Networks, edited by J. E. Mooij and G. B. J. Schon (North-

Holland, Amsterdam, 1988, Physica 8 152), pp. 1—302; Pro
ceedings of the 2nd CTP Workshop on Statistical Physics: ET
Transition and Superconducting Arrays, edited by D. Kim et al.
(Min Eum Sa, Seoul, Korea, 1993).

V. M. Vinokur, L. B. Ioffe, I. Larkin, and M. V. Feigelman, Sov.
Phys. JETP 66, 198 (1987).

3M. V. Feigelman and L. B. Ioffe (unpublished).
D. Sherrington and M. Simkin, J. Phys A 26, L1201 (1993).

s J. V. Jose and G. Ramirez-Santiago, J. Phys A 26, L535 (1993).
S. John and T. C. Lubensky, Phys. Rev. Lett. 55, 1014 (1985); T.

C. Halsey, ibid 55, 10. 18 (1985).
For a recent review, see also G. Blatter et. al. , Rev. Mod. Phys.

66, 1125 (1994).
P. W Anderson, Lectures on the Many Body Problem, edited by
E. R. Caianello (Academic, New York, 1964), Vol II; B. Abeles,
Phys. Rev. 15, 2828 (1977); E. Simanek, Solid State Commun.

31, 419 (1979); Phys. Rev. 8 25, 237 (1982); S. Doniach, ibid
24, 5063 (1981).

E. Simanek, Phys. Rev. 8 25, 237 (1982); S. Doniach, ibid 24, .

5063 (1981);L. Jacobs, J. Jose, and M. A. Novotny, Phys. Rev.
Lett. 53, 2177 (1984).

' M. Y. Choi and D. Stroud, Phys. Rev. 8 32, 7173 (1985).
"L.L. Sohn, M. S. Rzchowski, J. U. Free, and M. Tinkham, Phys.

Rev. 8 47, 967 (1993).
' L. L. Sohn, M. T. Tuominen, M. S. Rzchowski, J. U. Free, and M.

Tinkham, Phys. Rev. 8 4'7, 975 (1993).
' P. Chandra, L. B. Ioffe, and D. Shemngton (unpublished).
'"K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).
' K. D. Usadel, G. Buttner, and T. K. Kopec, Phys. Rev. B 44,

12 582 (1990).

' T. K. Kopec, J. Phys. C 21, 297 (1988); T. K. Kopec, K. D.
Usadel, and G. Biittner, Phys. Rev. 8 39, 12418 (1989); D. A.
Huse and J. Miller, Phys. Rev. Lett. 70, 3147 (1993).

' However, if the symmetry of the order parameter is of d-wave

type then in the disordered granular d-wave superconductor
frustration will be present even without an applied magnetic
field; anisotropy of the superconducting wave function can give
rise to random sign changing in the Josephson couplings, i.e., to
a spin-glass-like problem. See M. Sigrist and T. M. Rice, J.
Phys. Soc. Jpn. 61, 4283 (1992).

' In the recent work (see Ref. 4) on classical Sherrington-

Kirkpatrick superconducting glass it was assumed differently
that f;, are Gaussian distributed: P(f;,)-exp( f;,l2o—) which
reduces to the case of uniform distribution of f;J considered here

only in the limit cr—+00.
' M. J. P. Gingras, Phys. Rev. 8 44, 7139 (1991).

T. K. Kopec and G. Biittner, Phys. Rev. 8 43, 10 853 (1991);45,
5703 (1992).

' A. J. Bray and M. A. Moore, J. Phys. C 13, L655 (1980); H. -J.
Sommers and K. D. Usadel, Z. Phys. 8 47, 63 (1982).

J. V. Jose, Phys. Rev. 8 29, 2836 (1984).
Note that the classical critical temperature found here is higher

than the value found in Ref. 2 (TIJ=0.5) for the disordered

array. A similar discrepancy has been reported in Ref. 11 where
Monte Carlo simulations gave (Tl1=0.75). We believe that this

difference is due to a simplified assumption made in Ref. 2 that

the gauge glass can be mapped onto a pure XF spin-glass prob-
lem [without the time-reversal breaking Dzialoshinsky-Moriya
interaction, see Eq. (8) and the argumentation below].

R. P. Feynman and H. Kleinert Phys. Rev. 8 34, 5080 (1986).
R. Giachetti and V. Tognetti, Phys. Rev. Lett. 55, 912 (1985).
K. D. Usadel, K. Bien, and H.-J. Sommers, Phys. Rev. B 27, 6957

(1983); T. K. Kopec, G. Biittner, and K. D. Usadel, ibid 41, .
9221 (1990).

J. Z. Choi and J. V. Jose, Phys. Rev. Lett. 62, 320 (1989).


