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Calculation of the magnetic fiux density distribution in type-II superconductors
with finite thickness and well-defined geometry
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The distribution of the critical current density j,(r) in hard type-II superconductors depends strongly on their
sample geometry. Rules are given for the construction of j,(r). Samples with homogeneous thickness are
divided into cakelike regions with a unique current direction. The spatial magnetic flux density distribution and
the magnetic polarization of such a cakelike unit cell with homogeneous current density are calculated ana-

lytically. The magnetic polarization and magnetic Aux density distribution of a superconductor in the mixed
state is then given by an adequate superposition of the unit cell solutions. The theoretical results show good
agreement with magneto-optically determined magnetic Aux density distributions of a quadratic thin supercon-
ducting YBa2Cu307 film. The current density distribution is discussed for several sample geometries.

I. INTRODUCTION macroscopic magnetic polarization ~M given by

After the cooling of a type-II superconductor in zero mag-
netic field from T)T, to T~T, and application of external
magnetic fields ppH, „,, the penetration of magnetic flux into
the sample takes place in several steps.

(I) Meissner phase (ppH, „,(ppH, &): Meissner surface
currents jM(r), flowing in a depth k, prevent the penetration
of magnetic Aux into the sample. The magnetic flux density
B; inside of the sample is zero.

(II) Partly penetrated Shubnikov phase (ppH, &(p pH t(ppH*): Quantized magnetic fiux enters the
sample. Due to pinning forces, acting on the fIux lines, the
quantized fIux cannot fill up the sample homogeneously. Ac-
cordingly, a fIux front builds up, penetrating into the sample
up to a certain penetration depth determined by the applied
field. With increasing external magnetic field, the flux front
penetrates deeper into the sample. The inhomogeneous dis-
tribution of magnetic fIux causes a critical current density

j,(r), producing a Lorentz force acting on the fiux lines. The
Lorentz force is balanced by the pinning forces. The critical
current density causes a magnetic stray field in the fIux-free
region. This stray field will be compensated by the stray field
of additional inner shielding currents j,(r). The critical cur-
rent density j,(r) flows only in the region where magnetic
fiux has penetrated, whereas the inner shielding currents j,(r)
flow in the surface region of the flux-free zone. For thin
samples, j,(r) fiows in the whole fiux-free zone.

(III) Fully penetrated Shubnikov phase (ppH*(p, p H,„,
(ppH, 2): At ppH, „,=ppH* the fiux front has reached the
sample center. Now in the whole sample the critical current
density fIows. With increasing external magnetic field, the
sample fills up further with magnetic flux. Caused by the
increase of the local magnetic fIux density, the pinning forces
and therefore the local critical current density change.

(IV) Normal conducting state (ppH, „,)ppH, 2): At
ppH, „,=p,pH, 2 the currents have decreased to zero, and in
the field range p,pH,„,)/LpH, 2 the sample behaves as in the
normal conducting state. Only the fIuxon is quantized, and
some quantization remains until ppH 3= 1.7ppH

The electric current density distribution j(r) fiowing in the
volume V of the superconductor in steps I—III produces a

p, pM= rXj(r)d r
V

and a magnetic self-field ppH„tt(r), which can be calculated
from the Biot-Savart law

p p I j(r') X (r—r')
p, H„,t(r)=, ,

i

d r'.
4~ Jv Ir r

The local magnetic fiux density B(r) is then a superposition
of the self-field ppH„z(r) of the sample and the external
magnetic field p,pH„„

B(r) = ppH„,t(r)+ ppH, „,.

Within the Bean model, as first introduced by Bean, ' the
absolute value ~j,(r)~ of the critical current density is spa-
tially constant, but the direction of j,(r) depends strongly on
the sample geometry. Under the assumption of such a field-
independent critical current density and by neglecting the
Meissner surface currents jl(r), the magnetic polarization
and the magnetic flux density distribution can be calculated
for special geometries of the sample.

For partially penetrated magnetic fIux and in the one-
dimensional cases of thin strips and circular disks of thick-
ness much less than the lateral extension, Brandt el; al. and
Mikheenko and Kuzovlev calculated the inner shielding cur-
rents j, required to keep the central zone fIux free. The ana-
lytical solutions for the magnetic flux density distribution
and magnetic polarization depend on the penetration depth of
the Aux front. For thin rectangular samples, an analytical
B(r) solution was found recently for the fully penetrated
state. For partially penetrated flux, only numerical results
exist. The numerical solutions based on time integration of a
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nonlocal (due to the transverse geometry) and nonlinear (due
to the strongly nonlinear current-voltage curve of supercon-
ductors) diffusion equation have the advantage that any

j,(B) dependence may be assumed. These points are dis-
cussed in some detail in the comprehensive and excellent
review paper of Brandt. Besides these "first-principles cal-
culations" of 1 and 0, mathematical algorithms were devel-
oped to calculate j(r) from experimental B(r) data ' by
inverting Ampere's law.

For samples with finite thickness, there exists an analyti-
cal B(r) solution only for strips in the fully penetrated state.
The results show that for samples with a ratio thickness D to
width W smaller than about 0.2 the Aux density profiles are
curved and the calculation of j, from experimental data re-
quires a detailed analysis as performed in Ref. 9. Also, the
calculation of j, from magnetization measurements has to
take into account the real shape of the sample. ' " The
present paper is a further contribution towards this goal.

Using the Bean model, i.e., ~j, (r)~=const, this paper de-
scribes the distribution of the direction of j,(r) in samples
with homogeneous finite thickness and for well-defined ge-
ometry. Further on, it is shown how to get analytical B(r)
distributions in the fully penetrated state, for example, in a
quadratic sample with anisotropic critical current density.
The calculations are compared with B(r) distributions mea-
sured by the magneto-optical Faraday effect, and good agree-
ment is obtained.

II. EXPERIMENTAL BACKGROUND AND RESULTS

The magneto-optical Faraday effect serves as an excellent
tool for the visualization of the magnetic Aux density on the
surface of superconductors. For the application of this tech-
nique, a first reAective layer, e.g. , Al, and a second magneto-
optical layer, composed of a mixture of EuS diluted by EuF2,
is evaporated onto the sample. The EuS/EuF2 layer shows a
high Verdet's constant at temperatures T~17 K. Therefore
the polarization of a linearly polarized light beam, passing
through the magneto-optical layer, will be rotated by an
angle which is proportional to the local magnetic Aux density

B~~ parallel to the beam direction. Regions with different
magnetic Aux densities are seen through an analyzer with
different light intensities, i.e., dark and bright areas. The Al
layer increases the surface reAectivity and therefore the con-
trast. Usually, the light beam is perpendicular to the sample
surface. Therefore the calibration of light intensities yields
the 8, component of the magnetic flux density in the surface
of the superconductor. Using an air coil, magnetic fields up
to 400 mT can be applied. For details, see Ref. 12.

c-axis-oriented YBa2Cu307 -films with a thickness of
300 nm were evaporated onto SrTi03 substrates by laser
ablation. ' Then quadratic samples with a 2-mm edge length
were patterned by standard lithographic techniques. After
evaporation of Al (thickness d~, =200 nm) and EuS/EuF2
(thickness dF„=250nm), the samples were cooled in zero
magnetic field from room temperature to helium tempera-
ture. For this, a cryostat was used which is designed for light
microscopical investigations. In external applied magnetic
fields, the occurrence of magnetic flux is seen as an increase
of the light intensity. These changes are detected by a low-

III. CALCULATION OF MAGNETIC FLUX DENSITY
DISTRIBUTION

The central idea of this paper is the analytical calculation
of the magnetic flux density distribution B(r) of a homoge-
neous current density distribution j(r) flowing in a cakelike
region W as shown in Fig. 5(a). This basic "brick' may then
be used to calculate more complicated specimen shapes by
linear superposition. In a Cartesian x,y, z-coordinate system,
the current density distribution is then given by

j(r) = (J, , O, O), (4)

light-level video camera, which is connected to a digital
image-processing system for quantitative analysis. The ob-
served flux patterns are represented in Figs. 1(a)—1(f) for
different applied magnetic fields. Bright areas belong to re-
gions with penetrated magnetic flux.

At p,oH,„,=26.5 mT magnetic flux has penetrated partly
into the film, building up a flux front. The inner part of the
sample and the corners are Aux free, whereas in the middle
of the edges the flux could penetrate deeper [Fig. 1(a)].
Caused by some inhomogeneities in the film morphology, the
Aux front itself is not homogeneous. At the boarder some
irregularities rise to a funnel-like Aux pattern. With increas-
ing poH,„,the flux penetrates deeper into the sample [Figs.
1(b) and 1(c)]. The diagonals still stay flux free up to
poH,„,=110 mT as indicated by a dark cross pattern. With
further increase of poH,„,, the diagonals also fill up with
magnetic flux, and at poH„,= 155.5 mT, only a small part in
the middle of the sample is flux free [Fig. 1(e)]. In the rem-
anent state after reducing the external field to zero [Fig. 1(f)],
the Aux is kept in the sample by the pinning forces. The dark
region in the center of the sample indicates that there no flux
had penetrated at POH„,=155.5 mT. The field H* necessary
for full Aux penetration is reached when in the remanent
state no dark region in the center is visible. This is the case at
poH,„,=263.2 mT. For fields H,„,~H* the flux pattern does
not change and the local Aux density increases with increas-

g p'OHext
In Figs. 2(a)—2(f) the flux penetration is shown for a tri-

angular patterned film. Here also magnetic flux starts to pen-
etrate at the middle of the edges, whereas the corners rest
Aux free up to a certain external field. This result was also
obtained in Ref. 14. In the remanent state the bisectors are
full with flux. This is also observed in the remanent state of
other sample geometries, ' ' for example, in rectangular
structured films [Figs. 3(a)—3(f)].

From the above observations and from the knowledge
about the current density distributions in circular-shaped and
strip-structured films, ' a current model, as shown in Fig. 4,
can be derived for the fully penetrated state of a quadratic
sample with isotropic current density. The critical current
density j,(r) flows in the whole sample and parallel to the
nearest edge. This requires that the currents change direction
by crossing the diagonals. Therefore the sample can be di-
vided into four isosceles triangles, each with a homogeneous
current density parallel to the base line. To prove the validity
of this model, the self-field of the current density distribution
has to be calculated and compared with the experimentally
determined B, distribution.
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FIG. 1. Magnetic flux distribu-
tion pattern of a 300-nm-thick
square-shaped YBa2Cu307 film
after zero-field cooling and appli-
cation of external magnetic fields

paH, „,of (a) 26.5 mT, (b) 44.3
mT, (c) 73.2 mT, (d) 100.3 mT, (e)
155.5 mT perpendicular to the film
and (f) in the remanent state.

flowing in the region

k&y ~x~k2y,
&=~ R&~y~R2,

—D/2~z~+ DI2.
(5)

R 2 R ] the depth of the cake. The volume is given by
V= (D&2)(~',—~ ', ) ([k, ~+ [k,)).

The Biot-Savart law yields the magnetic flux density dis-
tribution

B(r)= (O,B~(x,y, z), B,(x,y, z)),

The parameters k, and kz are related to the angles 8', and 8z
of Fig. 5(a) by 8, 2

——arccot~k, 2~. D is the thickness and where
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FIG. 2. Magnetic Aux distri-
bution pattern of a 300-nm-thick
triangular-shaped YBa~Cu307
film after zero-field cooling and

application of external magnetic
fields poH,„,of (a) 19.5 mT, (b)
38.0 mT, (c) 56.3 mT, (d) 75.4
mT, (e) 135.3 mT perpendicular
to the film and (f) in the rema-
nent state after application of a
maximum external field of 222.3
mT.

d~

dd

d

g

': '.d
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Pod.
(K, ,,(ni Vi. Si)+K, ,,(n2 Vi Ci)

kj(a+ rg) ks
K,(n, rg, S) = rl arctan + —ln

gv'n2+ g2

Ky, z( n 1 d 711 s 2) Ky, z( n2 d Vl d s2)

(nl 72 41) K, (n2 72 Cl)
ink

+ arctan
v0+

I CI r
nk

Ky, d(nl d 72 ~ S2) + Ky, d( n2 d 72 d (2))~ (7)

with the abbreviations n, q= —x/0) q
—y, y] q=y —R] q, and

S', 2=z~D(2 The functions K .and K, are given by

vnks
+

l l

ln [p +$ 2vlsl pr]

K (n, g, s)= g arctan
gr+ go + j —vnk

j(k+ vr)

vfnls+ ln [a P(P —2k')+ ( k ] ~,
2 o.'

J

(9)
P'g

+ ln [y +o. —2kcpv(n+ rl)]2

0+7
1n

r(y +rr ) +2@( rl+k(n+ g))
'

(8)

where the abbreviations t/i= i7r + ak + g$ +(rlr + nk ),
g= gn k +( r, k=nk+lnlvr, o.= gag +k (n+ rg),
=j+ vo. +g, and r= $1+k have been used.

By means of Eqs. (7)—(9), it is possible to determine the
self-field B„,&(r) of a type-II superconductor in the fully pen-
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FIG. 3. Magnetic flux distribu-
tion pattern of a 300 nm thick
rectangular-shaped YBa2Cu307
film after zero-field cooling and

application of external magnetic
fields poH,„,of (a) 32.9 mT, (b)
65.8 mT, (c) 98.7 mT, (d) 131.6
mT, (e) 197.4 mT perpendicular to
the film and (f) in the remanent
state after application of a maxi-
mum external field of 263.5 mT,

etrated state. The sample has to be divided into N cake-
shaped regions .A, (i =1,2, . . . , N) with homogeneous cur-
rent yielding a self-field B; „&&(r) according Eqs.
(7)—(9). B,dr(r) is then given by the superposition of all

B; „~r(r),i.e.,

X;V;poM;

l l

where the magnetic polarization poM; of the region M; de-
pends on the coordinate system according to Eq. (1). In the
general case of Fig. 5(b), poM; is given by

N

i=1
(10)

POJcD
poM;= 0,0, (tan8&+ tan82) (xo cosO

2V,

The magnetic polarization of the sample is then given by

2 1 2 1R —R R —R2 2 3 3

+yo sinO) + (12)
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FIG. 4. Model of the current density distribution in a quadratic
sample for fully penetrated magnetic Aux.

where V;=(D/2)(Rz —R, )(tanb', +tan8z) is the volume of
the region M;; i.e., the volume V of the whole sample is
given by V=X;V;.

IV. DISCUSSION

In the following the current density distribution j,(r) in
step (III) of Aux penetration will be described for four dif-
ferent samples.

(a) Regular polygons with N corners (N=3,4,5,...). The
sample is divided into isosceles triangles with R&=0 and
—k, =k2=tan(m/N). The simplest case N=2, i.e., k, 2~~~,
yields the field distribution in a bar, the limit N~~; i.e.,

k&2—+~0 yields the distribution in a cylinder. An example
for the construction of the current path is shown in Fig. 4 for

(a)

N=4. Figure 6(a) shows the current paths of a triangular
sample and, accordingly, Fig. 6(b) the calculated Aux distri-
bution in the surface, i.e., the B, component of the magnetic
Aux density, which agrees with the experimentally deter-
mined density of Fig. 2(e). The calculations were performed
with the sample dimensions of Figs. 2(a)—2(f) (thickness
D =300 nm, edge length 2 mm, height above center,
D/2+ d ~i+dE„/2=475 nm).

(b) Irregular polygons. An example for the current and
magnetic Aux density distribution in irregularly shaped
samples with straight edges is shown in Figs. 6(c) and 6(d).
The current Aows always parallel to the nearest edge. There-
fore the current path changes direction by crossing the angle
bisectors (dashed lines). The regions with homogeneous cur-
rent direction can always be divided into cakelike regions.
Figure 6(e) shows the current paths of a quadratic sample
and, accordingly, Fig. 6(f) the Aux distribution in the surface,
which agrees with the experimentally determined of Fig.
1(e). The calculations were performed with the sample di-
mensions of Figs. 1(a)—1(f) (thickness D=300 nm, edge
length 2 mm, height above center, DI2+dA, +dE„/2=475
nm).

(c) Anisotropic current density. The current and magnetic
Aux density distribution shown in Figs. 6(g) and 6(h) belong
to a quadratic sample with anisotropic critical current den-
sity. This means that a higher current density j,z fiows along
one edge direction than j,&

in the other edge direction, i.e.,j,=Aj,z. The anisotropy factor A of Fig. 6(g) has been
chosen to be A =0.5. The current paths lie all parallel to the
edges and change direction at points which belong to the
so-called discontinuity planes. The discontinuity planes sepa-
rate regions with different current densities j& and j2. For the
construction of the discontinuity plane, it has to be taken into
account that the current density has no drains and sources,
i.e., V j(r)=0 . This yi.elds the general condition

ji(r) f=j2(r) f. (13)

where f is the normal vector of the discontinuity plane.
Therefore the anisotropy factor A= j„/j,„ofFig. 6(g) is
connected to the angle p by tan p=A and to the width b by

= X A=1 —b/R. (14)

(b

t 2~i
~ ~

~Sfe ~ oogease ~ os ~ ~ ~ ~ ~ ~ aoeos ~ ~ se ~ os ~ s ~ ~ ~ osooso ~ ~ ~ ~ ~ aa ~ ~ ~

(x..y.)
= X

FIG. 5. (a) Cake-shaped region 98 with homogeneous current
density. The parameters of 98 are R &,R2, 8&,+ and the thickness D
(b) Schematic representation of the used coordinate system for the
calculation of poM; [Eq. (12)].

This yields in the isotropic case, i.e., A=1.0, p=vr/4, and
b=0 (Fig. 4).

In Figs. 6(f) and 6(h) calculated Aux patterns, i.e., the
distribution of the B, component, are presented for a qua-
dratic sample with anisotropy factor A of (a) 1.0 and (b) 0.5.
The calculations were performed with the sample dimensions
of Figs. 1(a)—1(f) (thickness D =300 nm, edge length 2 mm,
height above center, D/2+dA, +dE„/2=475 nm). The pat-
terns belong to the case when the flux front has just reached
the center. Bright areas represent regions with high Aux den-
sity, and dark areas, i.e., the diagonals, represent regions
where Aux could not penetrate easily. This agrees with the
experimental observations in Fig. 1(e). The 8, profiles along
the diagonal and median of Fig. 6(f), which are represented
in Fig. 7, show this strong difference very clear.
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FIG. 6. Current paths and calculated distribution of the 8, component of the magnetic flux density distribution for different sample
geometries. Dashed lines belong to the cut of the discontinuity planes with the xy plane; i.e., here the currents change direction. The external

magnetic field is always applied perpendicular to the observation plane. (a) and (b) Triangular sample, (c) and (d) irregular polygon-shaped
sample, (e) and (f) quadratic sample with anisotropy factor A =1.0, (g) and (h) quadratic sample with anisotropic current, i.e., parallel to the
horizontal edge flows a lower current j,&= 0.5j,h than parallel to the vertical edge (j,.i, ), (i) and (j) rectangular sample with semicircular
defect at the edge (radius R). For details see the text.

(d) Samples with curved boundary. The current density
distribution shown in Figs. 6(i) and 6(j) belong to an elon-
gated sample (width W, length L) with a semicircular defect
(radius R) at the edge and isotropic current density. The cur-
rent path runs parallel to the edges. That means in a well-
defined region M, near the defect the current fIows on a
circular path [Fig. 6(i)].'

There exist several discontinuity planes. At the left and
right ends of the sample are the same branches as in a qua-
dratic or rectangular sample. Around the defect three further
planes exist. From Eq. (13) the discontinuity planes can be
calculated. They are all parallel to the z axis and cut the xy
plane by curves I., and I 2 given by the parabolas
y=(x —R )/2R and y=[(W+R) —x ]/2(W+R), where
x and y are defined by the coordinate system of Fig. 6(i).

There are two kinds of current paths depending on their
distance to the edge. For distances smaller than (R —W)/2,
the path goes through the left and right parts of the sample,
and for distances between (R —W)/2 and R/2 the path keeps
only in the left or right part [Fig. 6(i)].

The self-field of the circular current in M~-;, is given by a
sum over M cake like regions with angles 8, =+=m/M,
R& =R, and R2 according to L& 2. This summation does not
give the exact self-field of M~, , but is a very good approxi-
mation for M =50. This is seen from Fig. 8 where the radial
distribution of the 8, component in the surface of cylindrical
samples is shown for different thicknesses. The profiles are
taken by summing up over l00 cakes and show a smooth
change.

In Fig. 9 the remanent state of the sample of Figs. 1(a)—
1(f) is represented after application of poH„,=400 mT. After
reducing the external field to zero, the currents and self-field
have just changed sign. That means that the Aux density
profiles of Fig. 9 have to be compared with the calculations
of Figs. 6(f) and 6(h) by reversing the light intensities or the
associated Aux density profiles. In Fig. 9 the discontinuity
planes are seen as bright lines where the maximum flux den-
sity is kept in the sample.

The funnel-like Aux patterns on the right side and on the
lower part of Fig. 9 are caused by defects in the morphology
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FIG. 7. Calculated B, component along the diagonal (1) and the
median (2) of a quadratic thin film according to Fig. 6(f).

FIG. 9. Remanent magnetic flux distribution pattern of the film
shown in Figs. 1(a)—1(f) after application of an external field

poH„,of 400 mT and reducing to zero.

of the film, giving rise to a current distribution similar to this
one in Fig. 6(i). The currents have to go around the defect,
and in increasing field the Aux can penetrate deeper into the
sample compared to regions with smaller defects. Therefore
the discontinuity planes do not meet in the geometrical cen-
ter of the sample. This is also seen in Fig. 9. The disconti-
nuity planes build a small belt of width b =100 pm whose
center is S8 p,m perpendicularly and 48 pm horizontally
shifted from the geometrical center. This is a consequence of
the obviously higher amount of defects in the lower part than
in the upper part of the sample and in the left part than in the
right. Two other effects can also generate such a belt: first,
a variation of the film thickness. Measurements of the thick-
ness show a change of + 2%, which cannot explain the ob-
served great shift. A further explanation is an anisotropy of
the critical current as expected by comparing Fig. 9 with Fig.
6(h). According to Eq. (14), the belt width of 100 pm would
yield an anisotropy factor A of 0.95. This anisotropy could
explain the belt, but not the shift.

Figure 10 shows the measured B, profiles according to
Fig. 9. Along line 1 the width and shift of the bright belt are
represented. This profile shows good agreement with the cal-
culated curve (2) of Fig. 7. The maximum 8, values of lines
2 and 3 of Fig. 10 indicate two discontinuity planes. The
negative values of B, in line 4 indicate a negative Aux in the
remanent state. The wavy shape (wavelength 60—70 /Lm) of
line 4 is caused by macroscopic defects. As mentioned
above, the current has to go around the defects and therefore
the negative Aux can penetrate deeper. Local changes of the
film thickness are seen in the measured fIux density profiles
of Fig. 10 as fluctuations with wavelength of about 5—15
p,m.

Circular-shaped samples in general show a homogeneous
symmetric fIux pattern around the center. ' lf the morphol-

ogy is disturbed, also a Aux belt near the middle of the
sample exists. Such a flux distribution is shown in Figs.
11(a)—11(f) for different applied fields. Scratches on the left
and right sides of the sample reduce the thickness, leading to

1.0 .

. 8
Bz(r,z=D/2)

Bz(r=0,z=D/2)

. 2

cylinder

200'
z (mT)-

100~

0.
—. 2

-100-

0
center

R
edge

-'t 000 0 1000
x (ym)

FIG. 8. Calculated radial distribution of the B, component in the
surface of cylinders for different ratios of thickness to radius.

FIG. 10. Representation of the measured B, profiles according
to Fig. 9.
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FIG. 11. Magnetic Aux distri-
bution pattern of a 300-nm-thick
circular-shaped YBa2Cu307
film after zero-field cooling and

application of external magnetic
fields poH„, of (a) 24.6 mT, (b)
50.7 mT, (c) 76.4 mT, (d) 140.3
mT, (e) 187.4 mT perpendicular to
the film and (f) in the remanent
state after application of a maxi-
mum external field of 227.2 mT.

an unsymmetric current density and magnetic flux density
distribution.

V. SUMMARY

By means of the magneto-optical Faraday effect, the mag-
netic Aux density distribution was measured on the surface of
a quadratic patterned superconducting YBa2Cu307 thin
film. The flux penetration takes place in several steps. The
pattern observed after full flux penetration can be explained
by a simple model. The currents Aow parallel to the sample
boarder in well-defined regions. These regions are separated
by discontinuity planes where the current lines are discon-
tinuous. This model can be applied to other geometries. For
samples with homogeneous thickness and straight edges, an
analytical B(r) solution can be given by superposition of the

B(r) solution of cake like unit cells. For curved boundaries
the B(r) distribution has to be computed numerically with
modest effort. As an example, the B,(r) distribution of a
cylindrical sample is presented.

The current has to adapt to macroscopic defects of the
superconductor and flows around them, giving rise to a dras-
tic change in the flux density distribution. These changes can
also be calculated and are observed by the Faraday effect as
funnel-like regions.
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