PHYSICAL REVIEW B

VOLUME 52, NUMBER 22

1 DECEMBER 1995-11

Non-Arrhenius relaxation in micromagnetic models of systems with many degrees of freedom

J. M. Gonzalez, R. Ramirez, and R. Smirnov-Rueda
Institito de Ciencia de Materiales de Madrid del Consejo Superior de Investigaciones Cientificas, Serrano 144, 28006 Madrid, Spain

J. Gonzalez
Departamento de Fisica de Materiales, Facultad de Ciencias Quimicas, Universidad del Pais Vasco, 20009 San Sebastian, Spain
(Received 6 July 1995)

We present results corresponding to the simulation of the relaxation of simple magnetic systems consisting
of isolated and coupled grains. Those results, obtained in the framework of the micromagnetic approximation,
evidence remarkable differences with the classical two-level system predictions in which the experimental
treatment of the magnetic viscosity phenomenology is based. In particular, we show the existence of a “waiting
time” required to nucleate the well-defined magnetic moment structures which are responsible for the change
of the global state of the system. In addition to this, we observe the occurrence of nonequivalent relaxation

trajectories.

I. INTRODUCTION

As is well known! the phenomenology of magnetic hys-
teresis is based on the occurrence of what is commonly
called ““a distribution of energy barriers” which protects the
remanent-type magnetization configurations from decaying
towards the reversed states (those corresponding to a global
magnetization pointing essentially along the sense of the de-
magnetizing field). It is also known that the particular char-
acteristics of that “‘distribution of energy barriers” depend on
the field value as well as on intrinsic (i.e., anisotropy, satu-
ration magnetization, etc.) and extrinsic properties (linked, as
a general feature, to defects).? At finite temperatures and con-
stant applied demagnetizing fields, thermal fluctuations can
induce an irreversible change of the magnetization direction
by making the system overcome the barriers.> This phenom-
enology has been experimentally observed and discussed in a
wide variety of materials.*~'° In principle, and assuming that
the basic magnetization reversal mechanism is known, the
analysis of the experimental data corresponding to the time
evolution of the magnetization could yield information about
some of the characteristics of the distribution of energy
barriers.?

Nevertheless, and even in the case of samples having
well-controlled crystallochemical and microstructural prop-
erties, the correlation of the experimental information on
magnetization relaxation (magnetic viscosity) with the par-
ticular structured and morphological characteristics is far
from being clear.!! In the present work, trying to get a deeper
insight into this correlation, we have modeled, in terms of
the micromagnetic approximation, the evolution from the
metastable to the minimum-energy states of very simple
magnetic systems.

To end this Introduction we should point out that, unlike
previous simulations,'?!* our approach allows the validity of
Arrhenius kinetics' for the elemental processes involved in
the time evolution of the magnetization (i.e., those corre-
sponding to the overcoming of a local energy barrier) to be
examined. That kinetics is the key assumption for most of
the phenomenological treatments of the magnetization
viscosity!>!® and it is linked to the possibility of describing
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the relaxing system in terms of a reduced number of degrees
of freedom. Since, with just a few exceptions, the hysteretic
behavior of real materials shows large departures from the
predictions of the Stoner-Wohlfarth demagnetization
mechanism,'” which is only compatible with that reduced
number of degrees of freedom, we will emphasize the con-
sequences of considering a larger number of them.

II. DESCRIPTION OF THE MODEL AND RESULTS

Our model of a relaxing magnetic system consists of a
long chain of parallel infinite planes, each one representing
an atomic plane in a real material. The concrete number of
planes is, in every case, the minimum required to get, to a
sufficient approximation, weakly size-dependent results for
the system under consideration. As a general feature the total
size of the system is one order of magnitude larger than the
correlation length relevant for the particular problem. For the
sake of simplicity, intraplane and interplane exchange con-
stants are considered infinite and finite, respectively [which
renders our model one dimensional (1D), although the mag-
netic moments associated with each plane are allowed to
orient in 3D]. Local magnetic properties are defined by (1)
the exchange-to-anisotropy ratio, a=Ad 2K (where A, d,
and K are the exchange constant, the interplanar distance,
and the anisotropy constant, respectively); (2) the square of
the magnetization-to-anisotropy ratio, m= uoM §/ 2K (where
M is the saturation magnetization); and (3) the local easy-
axis orientation. Grain boundaries are defined by discontinui-
ties in the local easy-axis orientation. A coefficient g, repre-
senting the grain boundary structure, is used as intergrain
exchange coupling coefficient. In all cases we consider val-
ues of the above parameters which correspond to highly an-
isotropic materials. The internal energy of the system in-
cludes the anisotropy energy (local, uniaxial), the Zeeman
energy (local, unidirectional), and the exchange energy (first
neighbors), as well as the magnetostatic energy (many-body
interaction although in 1D it can be reduced to a local form).
Explicitly, the total internal energy E is written as'®
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Here u,,;, uy;, uy, and u, are unit vectors along the di-
rections of the moment at the ith position in the chain repre-
senting the system, the easy axis corresponding to that posi-
tion, the applied field, and the OZ axis of the considered
reference system, respectively. The applied field H is ex-
pressed as H,,,=uoMH/2K.

The evolution of the total internal energy is followed by a
Monte Carlo algorithm with Metropolis dynamics in a ca-
nonical ensemble (at a temperature corresponding to 2X10™*
of the maximum anisotropy energy attainable by the system).
We define a Monte Carlo step (MCS) as the process corre-
sponding to the consecutive introduction of random modifi-
cations (moves) in all the degrees of freedom of the system.
If the attempt frequency (that is, the time rate at which a real
system can modify its degrees of freedom) is known
(through independent physical arguments) the number of
Monte Carlo steps can be converted into time units. The
bounds for the modification of the degrees of freedom of the
system (two angles for the magnetic moment representing
each plane) are arbitrarily chosen so as to result in a percent-
age of accepted moves of the order of 50%. Finally, as we
are studying transitions from a well-defined initial state
(saturation) to a well-defined final state (globally reversed
magnetization state) neither initial configuration averages
nor termination criteria are required.

A. Relaxation of an isolated grain

In the following we discuss the relaxation of three differ-
ent simple systems: an isolated grain, a system with short-
range coupling, and, finally, a system with many-body inter-
actions. Consider a single-grain system (A), in which the
easy-axis direction and the magnitude of all the other local
magnetic properties are independent of the position. After
initial saturation along the positive OZ axis (that of the easy
direction, see Fig. 1), a demagnetizing field H,,, pointing
along the negative OZ axis is applied and the system is al-
lowed to relax.

The evolution of the reduced magnetization of the system
with the number of MCS’s is shown in Fig. 1 for a=5,
m=0.15, d=2.5x107'" m, and H,,,=1.1. A range of
MCS’s exists in which the fluctuations in the orientation of
the magnetic moments representing each plane (simulated by
means of the Monte Carlo algorithm) do not lead to any
macroscopic change in the state of the system. After this, a
region of reversed magnetization is nucleated and magneti-
zation reversal proceeds through displacement of 180°
domain-wall-like structures which sweep through the system.
A relevant consequence of this is the fact that dissipation
should occur during the propagation of these structures,
which will lead to the occurrence of different proportionality
constants between real time and the number of MCS’s for the
different relaxation stages in Fig. 1.

These nucleation and propagation processes are illustrated
in Fig. 2 where the components along the field direction of
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FIG. 1. System A. Typical example of the evolution of the re-
duced magnetization with the number of MCS’s. Magnetization is
measured along the OZ direction and it is considered positive when
it points antiparallel to the applied magnetic field.

the magnetic moments representing the different planes in
the system are plotted for different relaxation stages. It is
important to note that nucleation occurs preferentially at the
edges of the system, although this fact is influenced by the
considered value of the bound used for the random modifi-
cation of the local moment orientation.

Considering the stochastic nature of our energy-
minimizing procedure, and in order to get statistical informa-
tion about the number of MCS’s required to observe the
reversal of the system, we calculated 9X10° independent re-
laxation processes in order to evaluate (1) the frequency dis-
tribution of reversal events (i.e., the negative saturation) and
(2) the average time (number of MCS’s) evolution of the
total magnetization of the system. The results for the distri-
bution of reversal events are plotted in Fig. 3. The value
obtained for the lifetime of the unreversed state was stable
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FIG. 2. System A. System configurations observed along the
relaxation process. We have plotted the component along the field
direction of the reduced magnetic moments representing the differ-
ent planes in the system as a function of their position in the chain
of planes.
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FIG. 3. System A. Distribution of reversal events plotted as a
function of the number of MCS’s.

after 10° independent runs of the relaxation process. The
probability of magnetization reversal after a given number of
MCS’s (obtained by integration of the results in Fig. 3) is
shown in Fig. 4. This probability is zero for a number of
MCS’s less than 1500. This marks a clear difference with the
classical Arrhenius description of relaxation for which the
probability is nonzero for arbitrarily small times.!* In fact,
our results clearly show the occurrence of a “waiting time,”
already observable in Fig. 1, during which the thermally in-
duced magnetization fluctuations are either not stable or not
able to produce the relaxation (i.e., not able to initiate the
reversed magnetization nucleus). In order to highlight the
difference between the calculated probability and that pre-
dicted by Arrhenius kinetics we also show in Fig. 4 the curve
[1—exp(—Npcs/{Nmes))] where (Nycs) is the average value
corresponding to the distribution in Fig. 3.

The average time evolution (number of MCS’s) of the
total magnetization component along the applied field is
shown in Fig. 5. The data correspond to an average carried
out over 500 independent runs of the relaxation process. One
sees that magnetization evolution is far from the exponential
decay corresponding to identical, noninteracting two-level
systems.

o
=)
T

o
»
T

Probability

o
N

|
0 1000 2000 3000 4000
Monte Carlo steps

o
(=]

FIG. 4. System A. Probability of magnetization reversal as a
function of the number of MCS’s. For the sake of comparison, the
Arrhenius prediction for the average number of MCS’s required to
accomplish the reversal (calculated from the distribution in Fig. 3)
is also presented as the curve with finite slope at the origin.
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FIG. 5. System A. Average evolution of the reduced magnetiza-
tion as a function of the number of MCS’s.

B. Relaxation of a system with short-range coupling

Consider now two coupled grains whose easy axes are
mutually perpendicular and both of them parallel to the grain
boundary plane. In one of the grains the easy axis is directed
parallel to the OZ axis of our reference system and the ap-
plied demagnetizing field H,,, points along the negative OZ
direction (the geometry of the system is illustrated in Fig. 6).
This particular configuration is characterized by the fact that
the orientation of the magnetic moments parallel to the plane
of the interface is favored. Then, a small derivative with
respect to the position of the component of the magnetic
moments perpendicular to that interface is expected which
has as a consequence the fact that the magnetostatic energy
stored in the system should be much smaller than the other
energies involved in the problem. As a consequence, inter-
granular coupling is mainly related to exchange.

In Fig. 6 we present the evolution of the reduced magne-
tization of the system with the number of Monte Carlo steps
for a=5.0, m=0.3, g=0.8, d=2.5x10"'" m, and

=0.47. This field value was slightly lower than the co-
ercive force of a hysteresis loop calculated by decreasing the
field from the positive saturation in steps of AH,, -10—
and allowing a relaxation at each field value of 5%10°
MCS’s (as discussed in Ref. 19 the intergranular exchange
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FIG. 6. System B. Typical example of the evolution of the re-
duced magnetization with the number of MCS’s. Magnetization is
measured along the OZ direction and it is considered positive when
it points antiparallel to the applied magnetic field.
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FIG. 7. System B. Configuration observed before the global
magnetization reversal occurs. We have plotted the component
along the field direction of the reduced magnetic moments repre-
senting the different planes in the system as a function of their
position in the chain of planes (the grain boundary is located at
position 100 in interplanar distance units).

coupling significantly reduces the field value at which irre-
versibilities occur, which in the present case and in the ab-
sence of intergranular exchange should be Happ=1). As is
apparent from the figure, after an initial thermalization from
the positive saturation, the system stays in remanence-type
states for, approximately 7000 MCS’s and then decays (irre-
versibly) towards a globally reversed state. There are a few
points to comment on regarding the results in this figure.
First, the remanence-type states corresponded, essentially, to
a distribution of moments in which most of those in the
left-hand grain (with easy axis directed parallel to the field
direction) pointed antiparallel to the field, whereas those in
the right-hand grain were directed along an intermediate di-
rection between that of the local easy axis and the field di-
rection. Also, a transition structure for the directions of the
magnetic moments at the grain boundary region was formed.
Obviously that structure is required to minimize the total
internal energy since it enables the exchange energy to be
significantly reduced. A second interesting point is that there
exists a distribution of almost energetically equivalent
remanence-type states: a transition between two of these
states takes place at ca. 1600 MCS’s in our relaxation ex-
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FIG. 8. System B. Propagation of a 180° domain-wall-like struc-
ture leading to the global reversal of the system (the grain boundary
is located at position 100 in interplanar distance units).
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FIG. 9. System B. Distribution of reversal events plotted as a
function of the number of MCS’s.

ample shown in Fig. 6. The equivalent states differ in the
presence (see Fig. 7) or absence of structures clearly analo-
gous to 360° domain walls which allow the magnetostatic
contribution to the total internal energy to be minimized. The
third point is that, as in the case of system A, relaxation takes
place through propagation of a domain-wall-like structure
(the interfacial transition structure, which unpins from the
grain boundary, transforms into a 180° domain-wall-like
structure and sweeps that grain; see Fig. 8) into the grain in
which the moments point antiparallel to the demagnetizing
field.

All these three points clearly indicate that relaxation pro-
ceeds through the formation of finite structures in which a
considerable number of degrees of freedom are involved.

Our results for the distribution of reversal events in sys-
tem B (10* independent relaxation runs) are shown in Fig. 9
where the statistical frequency is plotted as a function of the
number of MCS’s. As in the case of system A, the reversal
event is associated with the achievement of the minimum-
energy state (which in the system under consideration and
for the applied field value did not correspond to negative
saturation).

In Fig. 10 we have plotted the probability of magnetiza-
tion reversal after a given number of MCS’s (obtained by
integrating the results in Fig. 9). The average time evolution

IL
7/ T T T

1.0f ]
0.8} 4

£ o6} s ]

el 5

8 o4l N ]

s} s

o s 1
0.2} o ]
0.0 mm“‘"f . . T ]

08000 10000 12000 14000 16000
Monte Carlo steps

FIG. 10. System B. Probability of magnetization reversal as a
function of the number of MCS’s.
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FIG. 11. System B. Averaged evolution of the reduced magne-
tization as a function of the number of MCS’s.

(number of MCS’s) of the magnetization component along
the applied field direction is shown in Fig. 11. The data cor-
respond to an average carried out over 200 independent runs
of the relaxation process. The initial thermalization of the
system has been included in the figure in order to give an
idea about the number of steps required by our Monte Carlo
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FIG. 12. System C. Examples of the (a) fast- and (b) slow-
relaxation processes.
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FIG. 13. System C. Distribution of reversal events plotted as a
function of the number of MCS’s.

algorithm to modify the state of the system in a case in
which barriers are not involved.

C. Relaxation of a system with many-body interactions

Our third system (C) is again a two-grain system with
mutually perpendicular easy axes. As in the case of system
(B) one of the easy axes is parallel to the OZ axis, whereas
the second one points perpendicularly to the plane of the
interface [see an illustration of the geometry of the system in
Fig. 12(b)]. The concrete parameters used in the relaxation
study were a=5, m=0.15, g=0.8,d=2.5X10""'"m, and
H,,,=0.51. In contrast to system B, the particular easy-axes
configuration here is such that one expects a gradual change
across the interface of the component of the magnetic mo-
ment direction perpendicular to that interface. Therefore the
grains in system C are both exchange and magnetostatically
coupled. In Figs. 12(a) and 12(b) we present two typical
examples of the evolution of the magnetization of system C
with the number of MCS’s. Apart from the very different
number of MCS’s corresponding to the reversal event, it is
especially remarkable that in the case of Fig. 12(a) the sys-
tem undergoes relaxation through a process clearly distin-
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FIG. 14. System C. Fast-relaxation process. Evolution with the
number of MCS’s of the different energy terms describing the sys-
tem (absolute energy units are arbitrary but the same for all the
different combinations).
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FIG. 15. System C. Slow-relaxation process. Evolution with the
number of MCS’s of the different energy terms describing the sys-
tem (energy units as in Fig. 14).

guishable from that corresponding to Fig. 12(b): in this sec-
ond case the system is trapped for a long MCS interval in a
remanent-type state whereas in the first one thermalization is
immediately followed by the accomplishment of the reversal.

The distribution of relaxation events (1.7X10* indepen-
dent runs; Fig. 13) confirmed in statistical terms the occur-
rence of two nonequivalent relaxation paths since, as it is
possible to conclude from the figure, the fast relaxation pro-
cesses are clearly distinguishable from the tails of the slow-
processes distribution (see Fig. 13).

In order to identify the nature of these two inequivalent
trajectories we have followed (in two particularly fast and
slow relaxation runs) the evolution of the different energy
terms involved in the total free energy. The results are plotted
in Figs. 14 (fast-relaxation case) and 15 (slow-relaxation
case). The most remarkable difference between the two sets
of data is related to the magnetostatic energy. In the fast-
relaxation case, the system, after thermalization, suffers a
large (in percentage) reduction of that term which, from the
examination of the magnetic moment configuration, is iden-
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FIG. 16. System C. Reduced magnetic moment distributions
observed, before the global reversal, in the cases of the fast and
slow relaxation (the grain boundary is located at position 50 in
interplanar distance units).
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FIG. 17. System B. Probability of magnetization reversal as a
function of the number of MCS’s.

tified as corresponding to the formation of undulations of the
magnetic moments in the grain in which the local easy axis
points along the OY direction of our reference system (Fig.
16). Those undulations, although effective in reducing the
magnetostatic energy (through the increase of the order of
the total multipolar moment of the system), provide a suffi-
cient degree of magnetic moment direction inhomogeneity so
as to render the system highly unstable against thermal fluc-
tuations. On the other hand, in the case of slow relaxation,
the system gets trapped in a state in which magnetic poles
are more localized at the interfacial region. According to Fig.
16 the magnetostatic energy corresponding to that
remanence-type state can only be lowered when propagation
of the transition structure at the interface occurs. The final
energy values reached after both were the same (to within the
resolution of the calculation).

The probability of magnetization reversal as a function of
the number of MCS’s evaluated from the results for the dis-
tribution of reversal events is shown in Fig. 17. In contrast to
system B, the fast-relaxation mode makes a nonzero reversal
probability for short times (small number of MCS’s) pos-
sible. Nevertheless, we should point out that, strictly speak-
ing, a “‘waiting time,” similar to that observed in the previ-
ously discussed systems, is also detected here. The reversal
probability linked to the activation of the slow process seems
to evolve with the number of MCS’s in a similar way (except
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FIG. 18. System B. Averaged evolution of the reduced magne-
tization as a function of the number of MCS’s.
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for the scales involved) to that described in the case of sys-
tem B. Finally, a plot of the evolution with the number of
MCS’s of the magnetization of system C (average evolution
over 500 independent runs, initial thermalization process
plotted) is presented in Fig. 18. The complexity of this evo-
lution clearly highlights the limitations of Arrhenius kinetics
when applied to describe magnetic relaxation.

III. CONCLUSIONS

From our results the following conclusions can be drawn.
(1) Like hysteresis, magnetic relaxation of simple systems
occurs through the formation and propagation of structures
(of the domain-wall type) involving a fraction of the total
number of magnetic moments of the system. (2) The relax-
ation of one of these model systems possessing many de-
grees of freedom cannot be qualitatively described in terms
of a two-level system. Although the transition from a meta-
stable state to a stable state in a complex energy surface
could, in some cases, be described as a simple transition
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between two levels (ignoring, for instance, the possible cor-
rugation of that energy surface in the region close to the local
minimum) the crucial difference is the possibility of in-
equivalent (either not simply connected or, as we observed in
the case of system B, involving clearly distinct time scales)
trajectories linking those minima. (3) The time evolution of
the magnetization depends markedly on the involved inter-
actions but in the three cases we studied here it cannot be
described in terms of Arrhenius kinetics. In particular, the
occurrence of a very slow (if compared to the Arrhenius
predictions) relaxation rate prior to the propagation of the
magnetic moment structures responsible for the global mag-
netization reversal (a “waiting time” which seems to be in
agreement with the experimental results presented in Ref. 20
for the relaxation of an individual single-domain particle)
and the clear evidence of the occurrence of distinguishable
relaxation trajectories (which in system C were identified as
linked to the dipolar energy) support the idea?! that a two-
level-system description of the relaxation in systems bearing
many degrees of freedom is far from being realistic.
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