PHYSICAL REVIEW B

VOLUME 52, NUMBER 22

1 DECEMBER 1995-11

Theory for the magnetic phase diagram of thin films: Role of domain formation

P. J. Jensen and K. H. Bennemann
Institut fiir Theoretische Physik, Freie Universitat Berlin, Arnimallee 14, D-14195 Berlin, Germany
(Received 8 May 1995; revised manuscript received 10 July 1995)

The magnetic phase diagram of a thin film is determined at 7=0. The exchange coupling, the magnetic
dipole coupling, as well as the second- and fourth-order lattice anisotropies are taken into account. The
long-range dipole coupling causes an instability of the uniform magnetization with perpendicular orientation
and leads to a domain phase. Four different phases, in particular stripe domain structures with perpendicular
and canted orientations of the domain magnetization, are found to be stable. The parameter region near the
magnetic reorientation is studied in greater detail. It is shown that the higher-order lattice anisotropies may
induce a continuous reorientation from a perpendicular to an in-plane magnetization, also for a domain phase.
By carrying out lattice sums we conclude that a periodic array of straight domain walls should be stable against
spatial dislocations. Our results suggest that the domain phases may alter the nature of the phase transitions at
finite temperatures in thin films. Rather than phase transitions with critical phenomena a simple rotation of the

magnetization might occur.

L. INTRODUCTION

Recently, the magnetic properties of ultrathin ferromag-
netic films have been studied intensively both experimentally
and theoretically.! A two-dimensional (2D) Heisenberg mag-
net with isotropic interactions only should not exhibit any
long-range order at finite temperatures,2 However, due to an-
isotropic interactions which are always present in magnetic
systems an ordered state may occur with a Curie temperature
T of the order of the strong exchange coupling.® Indeed,
ferromagnetic thin films with a few atomic layers are ob-
served at room temperatures.

Furthermore, the anisotropic interactions determine the
direction of the magnetization relative to the atomic lattice. A
rotation from a perpendicular to an in-plane magnetization
with increasing temperature has been observed for a number
of thin-film systems like Fe/Cu(100),*-¢ Fe/Ag(100),’
Co/Au(111),% and others.® The reason for this magnetic re-
orientation is the larger entropy for the in-plane
mag,gnf::tization,10’11 which becomes more important at higher
temperatures. In addition, the reorientation is accompanied
by a region of strongly reduced or even vanishing global
thin-film magnetization. In a previous publication'? we have
investigated this loss of the global magnetization, which, in
principle, could result from a mutual cancellation of aniso-
tropic interactions near the magnetic reorientation. Then the
long-range magnetic order may disappear due to the vanish-
ing remanent magnetization. The width of this vanishing
magnetization AT was estimated by a simple scaling law."
However, we have shown that the calculated size of AT is
comparable to the measured one only if the reorientation
temperature is close to 7. Thus, in general different mecha-
nisms have to be considered which cause the loss of the
global magnetization. An alternative explanation for this be-
havior is due to the appearance of a magnetic domain struc-
ture. Such a phase exhibits a finite remanent but a vanishing
global magnetization. Experiments with an improved spatial

0163-1829/95/52(22)/16012(8)/$06.00 52

resolution have observed such a domain structure.’ The theo-
retical investigation of domain phases in presence of long-
range interactions have attracted much effort recently.!4-20

It is not known exactly whether the magnetic reorientation
at finite temperatures represents a phase transition or not.!
Around a second-order phase transition the free energy ex-
hibits a nonanalytical behavior leading to critical fluctuations
of the order parameter. In a magnetic-field induced reorien-
tation a strong increase of inelastically scattered light was
observed.?? However, it is not clear whether this property is
caused by a magnetic domain structure or by critical phe-
nomena. Calculations obtain a strong increase of transversal
fluctuations, leading to a diminished magnetization.> How-
ever, we would like to emphasize that the consideration of
additional phases like domain structures may alter the nature
of the reorientation transition.

The main anisotropic interactions in thin magnetic films
are the following. First, the long-range magnetic dipole in-
teraction (shape anisotropy, demagnetizing field) is present
which prefers always an in-plane magnetic orientation. The
dipole energy per unit area of a thin film is almost propor-
tional to the film thickness. Secondly, lattice anisotropies are
present originating from the relativistic spin-orbit coupling.
Due to the broken cubic symmetry for surface or interface
layers a second-order anisotropy is induced which may be
100 times larger than in bulk.>* Since such a strong anisot-
ropy is confined only to the surface or interface layers, only
for very thin films this anisotropy may be strong enough to
overcome the dipole coupling, causing then a perpendicular
orientation of the magnetization. Consequently, a magnetic
reorientation from perpendicular to in-plane direction of the
thin-film magnetization is observed for increasing film
thickness. ™8

A peculiar feature of the thin-film magnetization is that
the long-range property of the dipole interaction leads to an
instability of the uniform perpendicular magnetization.'*~!”
The ferromagnetic phase breaks up into a periodic structure
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of striped shaped regions with uniform magnetic order and
alternating orientation along the film normal (stripe do-
mains). The periodicity and the wall width are found to de-
pend sensitively on the involved coupling parameters. A re-
cent calculation has shown that with increasing temperature
the magnetic structure of a thin film may undergo a series of
phase transitions corresponding to different domain
structures.'®

In previous calculations of the direction of the magnetiza-
tion only the dipole coupling and the second-order surface
anisotropy were considered. However, it is known that also
the higher-order lattice anisotropies have an important influ-
ence on the magnetic phases and also on the shape of mag-
netic domain walls.” For example, an uniform magnetization
with a canted orientation may exist for certain values of the
second- and fourth-order anisotropies. Therefore, in order to
determine the global magnetic phase diagram of thin films,
we consider in this publication higher-order anisotropies as
well as different domain phases. In particular, the phase
boundaries are calculated near the magnetic reorientation,
since we expect that in this region domain phases corre-
sponding to a vanishing global magnetization are most likely
to occur. We limit here our calculations to T=0, the case
T>0 will be studied separately. In Sec. II we present the
theory and the method of calculation. The results are outlined
in Sec. III. A discussion is given in Sec. IV. In the Appendix
we calculate the influence of fluctuations on uniform as well
as on domain phases. By performing lattice summations we
conclude that a domain phase with an array of straight do-
main walls is stable at T=0.

II. THEORY

We consider a (100) thin film with the film normal paral-
lel to the z axis (uniaxial symmetry). For simplicity we as-
sume a magnetic monolayer first, corresponding to a 2D
square lattice with coordination number g =4. S ; 1s a three
component classical vector spin on lattice site i, |S;|=1. The
components of S; are given by the polar and azimuthal

angles 6; and ¢;: §,~=(sin0,- cos¢;, sin6; sing;, cosé;). We
take the following Hamiltonian:

|~
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sin40i(cos4¢i+3)). (1)

Here, J is the isotropic Heisenberg exchange coupling, {i;)
denotes the sum over nearest-neighbor pairs. The last term is
the (local) lattice anisotropy, with K, and K, are the second-
and fourth-order uniaxial anisotropy constants. K, is the
quartic in-plane anisotropy of the (100) face. We consider
here K;>0 only, i.e., the x and y directions are the easy axes
in the film plane (¢;=nm/2). At T=0 the in-plane anisot-
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ropy K, produces only a shift of the magnetic phase bound-
aries in the phase diagram. However, for 7>0 this term is
very important, since it stablizes the in-plane magnetization
with 6= /2. The second term represents the magnetic di-
pole coupling, g is the Landé factor, and ujp is the Bohr

magneton. The vector ;i ; connects the lattice sites i and j.
Specific care should be taken with the dipole sums, espe-
cially with oscillating ones which appear in the case of peri-
odic (domain) phases. Since the energy of the different
phases has to be calculated with high accuracy, the slowly
converging lattice sums are replaced by rapidly converging
ones via the Ewald summation.?> Then the lattice sums are

given by the following quantities:

+ oo 2

u . .
Ap.g)= X —seriein
uv=-—00o
u#v
16 oo + o

=3 2_1 l_}_) (l+q/2)? cos(pm)

X I5(2m|wl+q/2|), ()

with r2=u?+v2. %,(x) is the modified Bessel function of
the order 2. For latter purpose we define the demagnetizing
energy for a square lattice Eo=3.70,0)(gup)*/(2ad)
=2Tc(gp 3)2/a8 , which is the difference of dipole energy
between uniform perpendicular and in-plane magnetization,
a the lattice constant, and ¢=1.078 309. A Zeeman term

—-H 2,»5' ; may also be included into the Hamiltonian, Eq. (1).

For the calculation of the magnetic phase diagram we take
into account different magnetic phases. The uniform phases
with different orientations are characterized by the angle
6;= 6, between film normal and magnetization: 6,=0 de-
notes the perpendicular, 6,=m/2 the in-plane, and
0< 0,<1r/2 the canted uniform magnetization. In the case of
an uniform phase the dipole contribution represents merely a
local field with strength £, and may be absorbed into the
second-order lattice anisotropy K,. In addition periodic
stripe domain phases with site-dependent polar angles 6; are
considered. For this purpose we adopt the domain profile as
used by Yafet and Gyorgy.!> According to this model the
direction of magnetization varies periodically along the y
direction with periodicity 2L, and is uniform along the x
direction. Inside the domains the magnetization is directed
along the * z direction (6,=0). This phase we call “‘perpen-
dicular domain phase.” In addition, the direction of the do-
main magnetization may be tilted away from the z axis by
the angle 6,, this phase will be denoted by ‘“‘canted domain
phase.” The ordered magnetic domains are separated by
180°-Bloch-type walls, i.e., the magnetization inside the
walls is confined to the xz plane and exhibits no component
along the wall normal, which is the y direction (¢;=0):
S ;= (sin6;,0,cos ;). For the domain-wall shape with width b
we assume for simplicity a cos function.'® Then the profile of
the periodic domain structure with cosé;=cosé(y) is given
by
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cosf,,

cosf(y)=

and symmetrically for —L<y=0. The restrictions resulting
from the assumption of this special shape will be discussed
later. The domain phases are characterized by the canting
angle 6, (0=<60,<m/2), the periodicity 2L, and the wall
width b. The energy of the domain phase is minimized ac-
cording to these three parameters. The minimization proce-
dure is simple, since the energy difference between domain
and uniform magnetic phases shows a smooth (parabolic)
dependence on all three parameters L,b,6,, exhibiting a
single (global) minimum. We consider only the case of
strong exchange coupling and comparable weak anisotropy
(Heisenberg spins), which is appropriate to 3d transition
metals. Then the periodicity L and the wall width b are much
larger than the lattice constant aq, and a continuum model is
suitable. Since the domain phase is periodic, we apply a
Fourier transformation for the calculation. Typical numbers
of Fourier coefficients [# sum in Eq. (4)] as well as of the
terms of the / and m sums for the quantities . p,q), Eq. (2),
are /=10-30 and m,n=100-300. These numbers are lim-
ited by the accuracy to which the Bessel function .%,(x) is
known to us, i.e., e~1077.%6 Special care has to be taken for
small values of p for which considerably larger numbers of
terms have to be considered. For special parameter values
L,b,6,; we have checked our results by performing also the
direct lattice sums.

As suggested by the calculations in the Appendix with the
help of discrete lattice summations, the stripe domain phase
with straight Bloch walls is stable against infinitesimal fluc-
tuations at =0, since the long-range dipole interaction and,
of course, the exchange coupling favors straight domain
walls. Note that this result was also obtained by Abanov
et al.,'® but is in contrast to the findings of Chui.'® Anyway,
in the following we will assume straight domain walls for
our calculations, since the main goal of this paper is to study
the effect of the long-range dipole coupling, the higher-order
lattice anisotropy terms, and the resulting domain formation
on the magnetic phase diagram of a thin film at 7=0. As was
already pointed out in Ref. 19, straight domain walls would
result also from impurity pinning.

III. RESULTS

We now determine the different magnetic phases of the
monolayer in the (KX,,K;) plane for constant K,>0 at
T=0. The energies are given in units of the demagnetizing
(dipole) energy E . In all our calculations the exchange cou-
pling is assumed to be J/E;=25, appropriate for 3d transi-
tion metals.'® In addition we set K ,/Ey=0.01. First, we re-
view briefly the uniform magnetic phases. The energy per
spin of these phases is given by

cos(6,+ m(2y+b—L)/2b),
cos(f,+ ),
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o<y<(L—-b)2
(L=b)2<y<(L+b)2
(L+b)R2<y<L

4

Euni( eu): - 2

J—K, cos’0,— K, cos*6,— K, sin*6,

1
+E0(coszau—§). (3)

It follows that the perpendicular (6,=0) and the in-plane
magnetization (6,= w/2) exist everywhere in the (K,,K,)
plane, the latter being more stable for K,<E,+K,— K,
[lower left part of the (K,,K;) plane, see Fig. 1]. At
K,=Ey+K;—K, a discontinuous (first-order) transition
from perpendicular to in-plane magnetization occurs. In ad-
dition a canted phase exists in a limited part of the
(K,,K4) plane determined by |E)+2K|<|K,|<|E,
—2K,|. For K,<—K, this phase is more stable than the
perpendicular and the in-plane magnetization. The canting
angle is given by cos20u=(E0+2KJ~K2)/(2KX+2K4). Con-
tinuous (second-order) transitions occur at K,=E,—2K,
from perpendicular to canted magnetization, and at
K,=E,+2K, from canted to in-plane magnetization. At fi-
nite temperatures these correspond to second-order phase
transitions, where critical fluctuations are expected to occur.

0.01 T T
cos— profile
of domain walls
0 I J/E,= 25 1
R K,/E,= 0.01
S —0.01 |
+ .
bl
-0.02 | 1
v I 11 )
-0.03 i ! =
0 0.02 0.04 0.06

(K;—2K,—E,)/E,

FIG. 1. Magnetic phase diagram of a thin film at 7=0 in the
(K,,K,) plane. J is the exchange coupling, Ej is the demagnetizing
energy. K, and K, denote the second- and fourth-order uniaxial,
K is the quartic in-plane anisotropy constants. Assuming a periodic
domain structure with a cos profile of the domain walls, four dif-
ferent magnetic phases are obtained to be stable (bold lines): do-
main phases with a perpendicular (I) and a canted (II) orientation of
the domain magnetization, and uniform phases with a canted (III)
and an in-plane (IV) magnetization. For comparison the transition
lines between magnetic phases are shown if only uniform phases
are considered (dotted). The energies are given in units of E,. We
have assumed J/E =25, appropriate for 3d transition metals (Ref.
15), and K, /E;=0.01.
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A metastable canted magnetization does not exist beyond the
phase boundaries. Note that the canted phase removes the
discontinuous transition from perpendicular to in-plane ori-
entation for K,<—K . At T=0 a canted phase exists only
for a nonvanishing fourth-order anisotropy K,+ K <<0. In
the case of uniform phases the dipole coupling causes solely

J ? b\ b
Edom(ﬁd)=—§ _EZ _K2 I_Z‘ CcOos 6d+i

3

Ey
* 6570.0) =§

<

where

4 (n’rrb
nw(l—ai) oS\ 2L

n—1

c,=(—1)772"

), (n odd) (5)

are the Fourier coefficients of the domain profile, and
a,=nb/L. As was already shown by Yafet and Gyorgy for
K,=K,=0, a stripe domain phase with a perpendicular ori-
entation of the domains is more favorable than the uniform
perpendicular magnetization for large values of K,>E,."
This is also true for finite values of K, and K. For
K 4> — K, a discontinuous transition occurs from the perpen-
dicular domain phase to the uniform in-plane magnetization
with decreasing K,. On the other hand for K,<—K| the
perpendicular domain phase changes to a canted domain
structure for decreasing K, . The canting angle 8, raises and
finally reaches the value 6, of the canted uniform magneti-
zation. The resulting magnetic phase diagram in the
(K,,K,4) plane is shown in Fig. 1. The transition lines in
presence of domain phases are shifted slightly to smaller
values of K, compared to the case of uniform phases only.

12 + canted domains cos— profile
of domain walls
---------- perp. domains J/E,= 25
10 + Ks/E,= 0.01 i

Ky/E,= —0.02

log;o(L/a,)

logo(L/a,), logye(b/a,)
@

4 1 L 1 l
0 0.005 0.01 0.015 0.02

(Kz—2K,—E,)/E,

0.025

FIG. 2. Resulting periodicity L and wall width b of a periodic
domain structure as a function of K, for K,/E,= —0.02. The dot-
ted lines denote L and b of a domain phase with a perpendicularly
oriented domain magnetization. Note that for (K,—2K;—E)/
E;<0.002 the (canted) domain phase vanishes. For the other nota-
tions we refer to Fig. 1.

Kil1 b 40+3b K1 b'49+
4 LCOSd 8L s LSlndg

(1+ aﬁ).%( %,o) +((1-3 sin?6,) + a*(1—3 cos? 0,1))%( 0,—7—?) ] 4)
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a shift of the phase boundary lines parallel to the K,-axis, see
Fig. 1.

Now we consider in addition to the uniform magnetic
phases also stripe domain structures as described in Sec. II.
The energy per spin of the domain phases with periodicity
2L and wall width b is given by

However, a new transition line is introduced which separates
the canted domain from the canted uniform phase. We have
shown in Fig. 1 a comparably small but interesting region of
the (K,,K,) plane near the magnetic reorientation. Here the
second-order lattice anisotropy and the dipole coupling
nearly cancel, since in this region a domain phase exhibiting
a vanishing global magnetization is most likely to occur. In
addition, the small shift of the phase boundaries due to do-
main structures is visible.

The behavior of the periodicity L and the wall width b as
a function of K, is different for the regions K,>—K and
K,<—K,. Within the perpendicular domain phase the peri-
odicity L raises almost exponentially with increasing K,
whereas the wall width b decreases slightly. For decreasing
K, the domain phase reaches the special case L=b, ie., a
pure cosine-like modulated phase. However, before this spe-
cial domain phase is reached, for K,> — K the uniform in-
plane magnetization becomes energetically more favorable,
and a discontinuous transition occurs. In contrast, the depen-
dence of L and b on K, for K,=—0.02Ey<— K is shown
in Fig. 2. When the canted domain phase is reached, L does
not decrease any longer with decreasing K, but stays almost

cos— profile

of domain walls
J/E,= 25

Ky/E,= 0.01
. Kg/E,= —0.02 o

|m,|

Im,|, my|

—— domain phases

.......... uniform phases
L

0 0.01 0.02
(Kz—RK—E,)/E,

FIG. 3. Absolute values of the perpendicular (|m,|) and in-plane
(Jm,]) components of the magnetization as a function of K, for
K,/E,=—0.02. For comparison the dotted lines show m, and m,
with consideration of uniform phases only. For the other notations
we refer to Fig. 1.



16 016

i perpendicular domains

—2 L 4
o
&=
. .
=3 cos— profile
< 4+ of domain walls -
A
=] J/Eq,= 25
K,/E,= 0.01
=6 Feanted K,/E,= —0.02 -
domains
-8 L . L
0 0.02 0.04 0.06

(KZ_ ZKS_EO)/EO

FIG. 4. Energy difference AE in units of 10™%E, between pe-
riodic domain phases and the uniform magnetization as a function
of K, for K,/E,=—0.02. The domain phase with perpendicularly
oriented domains, which is stable for (K,—2K,—E)/E;>0.02,
becomes metastable for (K,—2K,— E)/E;<<0.02 (dotted line). In
this region the canted domain phase is most stable, which finally
merges into the uniform in-plane magnetization, characterized by
AE=0. For the other notations we refer to Fig. 1.

constant. Then L raises strongly again and diverges at the
value of K, where the canted uniform magnetization
emerges. Thus the canted domain phase merges smoothly
into the canted uniform phase. In Fig. 3 we show the result-
ing absolute values of the perpendicular and in-plane mag-
netization components |m,| and |m,|, together with m, and
m, of the uniform phase. We emphasize that with consider-
ation of the domain phases an in-plane component |m,| is
always present, whereas the perpendicular component |m,|
appears only for K,>FE,+ 2K, . Thus, we expect a different
phase transition behavior at finite temperatures for the tran-
sitions from in-plane to canted magnetization compared with
canted to perpendicular. In Fig. 4 the energy difference AE
between the uniform magnetization and the domain phase is
shown for K,/E,= —0.02. This binding energy of the do-
main phase is quite small, so that already small applied mag-
netic fields will recover the uniform phases.!* Around the
transition of the perpendicular domain phase to the in-plane
uniform magnetization (K,>—K) or to the canted domain
phase (K,<—K,) the value of AE is maximal, consequently
in these regions domain phases are most likely to occur, as
observed experimentally.5

IV. DISCUSSION

We have investigated the magnetic phase diagram of a
monolayer, which is expected to reflect also the magnetic
properties of a thin film with several atomic layers. The ex-
change coupling, the magnetic dipole interaction, and the
second- and fourth-order uniaxial anisotropies are taken into
account. The perpendicular uniform magnetic phase vanishes
completely in favor of a domain structure with a perpendicu-
larly oriented domain magnetization. As was already shown
for K,=K,=0,' this is caused by the long-range property of
the dipole coupling leading to an instability of the perpen-
dicular uniform magnetization. A periodic stripe domain
phase emerges with varying periodicity and wall width.
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Since the authors of Ref. 15 used an approximate evaluation
of the dipole sums, we have recalculated their model and
found almost the same results. In the presence of a fourth-
order uniaxial anisotropy K4<<O also a domain phase with a
canted orientation of the domains is stable in a certain region
of the phase diagram. A domain phase with in-plane oriented
domains ( 8,= 7/2) is found to be unstable. The existence of
a canted domain phase can explain the experimental obser-
vation of a stripe domain structure in both the perpendicular
and in-plane components of the magnetization.5 The domain
phases are observed preferentially near the magnetic reorien-
tation, since here the domain binding energy AE is largest,
see Fig. 4. Weak magnetic fields may stabilize the uniform
phases outside the reorientation region, leading to an asym-
metric shape of the global magnetization near the magnetic
reorientation,'® as observed experimentally.’

The long-range dipole interaction stabilizes the magnetic
domain walls in a thin film. As can be seen in Fig. 2, the wall
width b of the periodic domain structure stays finite near the
magnetic reorientation. In contrast, the width b, of a single
Bloch wall will diverge at K,=FE,+2K,, since by is given
approximately by by \/J/(K2—2KS~E0).27 For K,~E,
+2K, the energy minimum of the domain phase E,,, is
characterized by L=~b. The case of a single wall requires
L—o, thus in turn also b=by— 0.

On the basis of lattice summations outlined in the Appen-
dix, we conclude that a periodic stripe domain structure with
straight domain walls is stable against a transversal disloca-
tion at 7=0. This is in accordance with Ref. 18, but dis-
agrees with the result obtained by Chui.!® We are presently
not able to solve this discrepancy. Possibly, this disagreement
may be caused by rewriting sums as integrals as was done in
Ref. 19. Also the leading term of the dipole energy difference
for small wave vectors | SE g,| % k?|Ink| as obtained in Ref. 19
seems to be a property of the continuum approximation. This
term was derived for the edge of a semi-infinite dipole
monolayer, corresponding to an infinitesimal domain-wall
width. We were not able to derive such a behavior of OE g,
from the discrete lattice summation. However, we expect that
the much stronger difference in exchange coupling
8E. >0, see the Appendix, will maintain straight domain
walls, which are observed experimentally.’ In the case of
deformed domain walls we expect a slight shift of the phase
boundaries of the magnetic phase diagram, see Fig. 1, and
larger changes of the periodicity L and the wall width . At
finite temperatures a magnetic domain phase with deformed
walls may be the most stable phase, since then fluctuating
domain walls may be induced on entropical grounds‘18 Our
result for 7=0 is also in agreement with the results of
McConnell,'® who concluded that an array of narrow rectan-
gular stripes of electric dipoles should be stable against spa-
tial fluctuations. It is quite interesting to remark that in an
electric dipole monolayer, in a 2D ferroelectric system, or in
a 2D ferro-fluid, the long-range dipole interaction should be
much more important for the ordering properties in these
systems, since here a strong exchange coupling is, in general,
not present. However, the line tension at the edges of these
systems act like an exchange coupling or an anisotropy.
Long-range dipole interactions may cause distorted uniform
phases as stated in Ref. 16, and as also indicated by us in the
Appendix.
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We have calculated the magnetic phases of a monolayer
only, since we expect that the general features emerge al-
ready for a single layer. For thin films with a finite number of
atomic layers the dipole energy as well as the anisotropic
contributions have to be summed over the layers. A strong
surface anisotropy K, is confined only to the surface or in-
terface layers, whereas the dipole energy is almost the same
for each layer. Therefore, the second-order lattice anisotropy
energy per unit area is 2K,~const, whereas the dipole en-
ergy per unit area is ~Eyd for increasing film thickness d,
resulting in a shift of the phase boundaries in the (K,,K4)
plane of the phase diagram parallel to the K, axis, see Fig. 1.
For thicker films the dipole coupling dominates, resulting in
an uniform in-plane magnetization. However, in the case of a
strained film a strong second-order strain anisotropy compa-
rable to the strength of the dipole coupling may exist also in
the inner layers. This may lead to a reversed magnetic reori-
entation behavior, namely from an in-plane to a perpendicu-
lar magnetic reorientation with increasing film thickness.
This unusual feature is observed in Ni/Cu(100) films.?®

In addition we have considered domain structures with
different wall profiles. For example, we have calculated a
profile described by a tanh function, which is the correct
profile for a single Bloch wall in bulk.?’ The energy calcu-
lated for such a structure is lower than for the cos-type do-
main wall, as expected physically, whereas the overall fea-
tures are the same. Thus, we expect that our results obtained
for the easily calculated cos profile resembles correctly the
magnetic phase diagram of a thin film. The general profile of
the periodic stripe domain structure may be obtained by
minimizing the energy, Eq. (4), with respect to the quantities
¢, and «a, . A square instead of a stripe domain pattern was
calculated to be stable only at unphysically large dipole cou-
plings and anisotropies.17 We have also considered magnetic
domain phases with walls exhibiting a magnetization com-
ponent along the wall normal (Néel walls, ¢;#0,7). The
energy of these domain structures are obtained to be always
higher than for Bloch-type domain walls. We emphasize that
we have considered only a limited number of magnetic
phases. The consideration of additional structures may lead
to further changes in the magnetic phase diagram.

The calculated magnetic phase diagram of Fig. 1 should
also be valid at finite temperatures, if the free energy is given
by Eq. (1) with temperature-dependent coupling coefficients.
Then a variation of the temperature refers to a certain path in
the parameter space of the phase diagram presented in Fig. 1,
determined by the actual temperature dependence of the cou-
pling coefficients Eo(T),K,(T), . .. . In particular, this will
lead to a temperature dependent periodicity L(7) and wall
width b(T) of the domain structures, and may also cause a
temperature-induced magnetic reorientation. The tempera-
ture dependence of the second-order lattice anisotropy and
the dipole interaction are expected to differ slightly, thus
their difference should be a slowly varying function of
temperature.“ Therefore, the range of vanishing magnetiza-
tion AT due to the appearance of domain phases may be
considerably large, especially much larger than in the case
where the loss of the global magnetization results from a
vanishing remanent magnetization due to mutual cancella-
tion of anisotropies, as calculated in our previous study.'?
The quantity AT will depend sensitively on the temperature
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dependence of the coupling coefficients. These functions
Eo(T),Ky(T), ... were calculated for bulk systems,?
whereas for thin films the temperature dependence has been
calculated only approximately.!! Thus, we have not at-
tempted to calculate AT around the reorientation tempera-
ture, since a precise theory for the temperature dependence
of the coupling coefficients is presently not known to us, and
since this is not the main goal of this paper.

Finally, we like to discuss possible implications of the
domain structures on the magnetic phase transitions in thin
films at finite temperatures. It is known that at a second-order
phase transition the dispersion relation s(E) vanishes at
k=0, k the 2D wave vector. Then critical fluctuations are
expected to occur, and the magnetization vanishes. Second-
order phase transitions exist between in-plane and canted ori-
entations and between canted and perpendicular magnetiza-
tion, if only uniform phases are considered. We expect that
the existence of additional phases may alter the nature of the
phase transitions. For instance, within the domain phases the
in-plane component of the magnetization m, does not vanish
suddenly with increasing K, , but maintains a small value for
K,>E,—2K,, see Fig. 3. Therefore, critical phenomena at
the phase transition line K,<E,—2K,, K4,<—K,, between
the canted and the perpendicular phases might vanish. On the
other hand, the perpendicular component m, vanishes at
K,=Ey+2K,, K4<—K,. Thus, the nature of this phase
transition between canted and in-plane magnetization is ex-
pected not to be affected by domain phases, and critical phe-
nomena occur as in the case of uniform magnetic phases.
The nature of the first-order phase transition line for
K,> — K, between perpendicular and in-plane magnetization
seems also to be preserved. In the case of such a discontinu-
ous phase transition critical phenomena are often masked by
hysteresis effects. In addition, at finite temperatures the ap-
pearance of the domain structure may change. For example,
straight domain walls may be dislocated, or additional do-
main walls may be created.'® Also a canted magnetization
may occur for a vanishing fourth-order anisotropy.zo

In summary, domain structures will influence the mag-
netic phase diagram of thin films at 7=0 markedly. In ac-
cordance with previous work our results suggest that the van-
ishing global magnetization observed in Refs. 4-7 are
caused by a magnetic domain formation. Such a domain
phase is most likely to occur near the magnetic reorientation
transition, since its binding energy AFE is largest in the reori-
entation region or for a canted magnetization, see Fig. 4. At
finite temperatures the determination of the reorientation
temperature and the temperature range of vanishing magne-
tization requires the precise knowledge of the temperature-
dependent coupling coefficients. The consideration of higher-
order lattice anisotropies may induce a continuous transition
from perpendicular to in-plane magnetization, mediated by a
canted domain phase. Such a canted domain phase can ex-
plain the simultaneous occurrence of stripe domain structures
of both the perpendicular and the in-plane magnetization, as
observed experimentally.5 Presently, we calculate the domain
structure of thin films at finite temperatures.
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APPENDIX

In this appendix we investigate the effect of fluctuations
on the long-range dipole interaction energy of a (100) mono-
layer at T=0 on the basis of lattice summations. First we
consider an uniform (ferromagnetic) in-plane magnetization
directed along the x axis. We distinguish between two differ-
ent kinds of fluctuations. A sinusoidal distortion of the azi-
muthal angle ¢(x;)= ¢, sin(kx;) in the xy plane at lattice
site i is considered as depicted:

T [

=
T S/
¢, is the amplitude, k the wave vector along the x direction.
After averaging over the distortion period 27/k the dipole
energy per spin is calculated to be

oo

1
(k)= — 0 =
Eap(k) 6.710,0) u,;,w r

u#Fv

2, .2 : ,Z
(u"+v°)Jo| 269 sin—

+3(u?2—v?)J (2¢ cosﬁ” (A1)
0 0 .

2

Jo(x) is the Bessel function of order 0, E, the demagnetizing
energy, and r2=u’+v?2. The quantities A p,q) are defined
in Eq. (2). For small amplitudes ¢, the difference of dipole
energy between the distorted phase and the uniform magne-
tization is given by

SEG) (k)= (£10,0) +.71k,0) — 2.7(0,k))

0 2
670.0) $0

+O(Py), (A2)

where we have used Jy(x)=1 —x?/4 for small x. Our calcu-
lations show that 5Efﬁlg(k) is negative, i.e., the dipole inter-
action favors a sinusoidal distortion of the azimuthal angle
for an in-plane magnetization.

3}
ul 3N

EO o0 o0
Ear(E)= T570000) 12 o\ 2w T
n odd u#Fv

u? )
v2—7 (1+a;,)J ol 26, sin
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A spatial transversal dislocation of the lattice sites perpen-
dicular to the x axis has to be studied separately:

7 T 7 T 7 T
=
7 T 7 T 7

Such a sinusoidal dislocation is introduced by

;,: [x;,y;tyo cos(kx;)]. After averaging over the distortion
period 2 7/k, the dipole energy difference per spin caused by
this fluctuation for small amplitudes y, is given by

E =~ 12 105u%v?
(2) = Y 2 T
PEan(K)= 5700) 0 u,g‘-w(rs r’ )
uFuv
X[1 —cos(ku)]+@(y3). (A3)

These slowly converging direct lattice sums may be con-
verted to rapidly converging ones similar as applied to Eq.
(2). Our calculations show that SE fﬁg (k) is positive, thus this
kind of distortion of the uniform magnetic phase is unfavor-
able. However, this increase of dipole energy may be bal-
anced by an appropriate variation of the azimuthal angle, see
Eq. (A2). Note that in a magnetic monolayer these fluctua-
tions cause an unfavorable energy increase of the in-plane
lattice anisotropy and/or the much stronger exchange cou-
pling. These energy contributions will overcome a gain of
dipole energy, thus maintaining the uniform magnetization.
In contrast, for an electric dipole monolayer or a 2D ferro-
electric system a distorted phase may be stable, as shown in
Ref. 16 for the edges of a Langmuir layer, since in such
systems a strong nearest-neighbor exchange coupling is not
present.

Secondly, we calculate the stability of the stripe domain
structure with an array of straight domain walls. We apply
the same domain-wall profile with periodicity 2L and wall
width b as described in Sec. II, assuming 6,=0. A sinusoidal
transversal dislocation is assumed, corresponding to a shift
y(x) of the domain-wall center with wave vector k along
the x direction: cos(my/b)—cos{m{y—y(x))/b}=cos[my/b
—6(x)], with 6(x)= 6, cos(kx)=1y, cos(kx)/b, assuming
Yo<<b<L. For such a fluctuation the values of L and b re-
main unchanged. After averaging over the distortion period
2m/k along the x axis, and using the identity
f%"dx cos[a cos(x)+b sin(x)]=2mJy(\a’+b?), the energy
per spin of the dipole interaction due to this periodic distor-
tion of the domain walls is given by

ku

+Eu2(l—a2).] 26, cosk—u elmmv/L (A4)
2) "2 Sant ) ’

with a,=nb/L. The Fourier coefficients c, are defined in Eq. (5). The dipole energy difference for small amplitudes 6, is

calculated to be

__ Eo 2 S 2 2
5Edip(k)"' 24y(0’0) 90 n=%‘1..‘ Cn[(l +an)

C/(ﬂ'n ) %ﬂ'n )
AT k| -A 0] |- 2-ad)

A wn) 4071%) 6
. T T +(6,).

(AS)
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Our calculations show that SE (k) >0 for k>0, thus a pe-
riodic array of straight Bloch domain walls with k=0 will be
stable in accordance with Refs. 16,18. Since we have per-
formed a discrete lattice summation, we are not able to de-
rive the dependence 5Edip(k)OCk2|1nk| for small wave vectors
k as obtained by a continuum approximation.'®!® Different
domain profiles may also be considered, resulting in different
quantities ¢, and «,, .

In the previous calculations we have considered only a
shift y(x) of the domain-wall center, whereas the spins are
still confined to the xz plane. In addition, we have also con-
sidered an additional variation of the azimuthal angle ¢; of
the spins, i.e., inside the domain walls the magnetization
exhibits a y component. In the case of an uniform magnetic
phase such a fluctuation was obtained to exhibit a favorable
change of dipole energy, see Eq. (A2). To accomplish an
alignment of the spins parallel to the domain-wall edges we
put ¢o=—k8,. Our calculations show that this additional
azimuthal distortion does not lower considerably the increase
in dipole energy as given by Eq. (AS5).

Finally, we calculate the difference of exchange energy
due to a sinusoidal dislocation of a periodic array of straight
domain walls. After averaging over the period 2L along the
y direction of the domain structure and over the distortion
period 27/k along the x direction, the exchange energy per
spin is given approximately by
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E.(k ! ™ _ b 6ok)? 6

ex(k)~ 319 ﬁ_z_i(‘)) , (A6)

with g=4 the coordination number. We have used

cos(0i+1—0,-)=1—(66/&x)2/2, etc. The difference of the ex-
change coupling caused by the sinusoidal domain-wall dis-
location for small amplitudes 6, and/or small wave vectors k
is calculated to be

77.2

2
bL (yok)=>0.

Jb J
SE (k)= 37 (60k)*=7 (A7)

OE (k) scales with b/L, since a distorted spin structure is
present only in the domain walls, whereas the domain inte-
rior remains uniformly ordered. The lattice anisotropy energy
is not affected by this kind of domain-wall distortion.

In summary, we have shown that the dipole interaction as
well as the exchange coupling prefer straight walls for a
periodic domain structure. Also an impurity pinning will sup-
port straight domain walls.' Quite interestingly, an uniform
in-plane phase should be unstable against azimuthal fluctua-
tions already at 7=0 for a vanishing exchange coupling, as
is the case of an electric dipole layer.
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