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Strong-coupling theory for the thermodynamics of spin-1 planar magnetic chains
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Earlier work on the T=O dynamics of spin-1 chains with a strong easy-plane anisotropy is extended to
include thermodynamics. Thus we carry out a systematic strong-coupling expansion to obtain analytical ap-

proximations for the spectrum of elementary excitations, the specific heat, and the magnetic susceptibility.
Comparison with numerical data for the specific heat available in some important special cases indicates that

our result is accurate for practically the entire temperature range. Similarly our calculation of the magnetic
susceptibility reproduces to leading order a result obtained earlier through a molecular-field approximation and

provides a definite improvement by including the two-loop correction. These theoretical predictions are di-

rectly relevant for a number of magnetic materials of current experimental interest.

I. INTRODUCTION

Antiferromagnetic spin-1 chains have attracted consider-
able attention in connection with the predicted Haldane gap
in their spin-wave spectrum which persists in the presence
of a weak easy-plane anisotropy but is expected to vanish at
some critical value of the anisotropy constant. Nevertheless
a gap of a different nature reappears above the critical value
and is present in both antiferromagnetic (AFM) and ferro-
magnetic (FM) chains. Since there exist several experimental
realizations of spin-1 chains with supercritical anisotropy '"

the subject is of obvious theoretical interest.
The standard semiclassical theory of magnetism fails in

the present problem, for it predicts no gap for either weak or
strong easy-plane anisotropy. Alternative semiclassical theo-
ries specifically designed to address the strong-coupling
phase ' capture the gross physical characteristics but also
fail to provide an accurate description of important finer de-
tails. This situation prompted us to develop a strong-coupling
expansion for the T=0 dynamics, in some respects superior
to the available semiclassical methods.

Thus Ref. 7 provided analytical approximations for the
dispersions of elementary excitations called excitons, which
were later verified by a numerical diagonalization on finite
chains. We further predicted the occurrence of certain bound
exciton states with the unusual property that they appear as
sharp modes in the two-point longitudinal dynamic correla-
tion function. Finally the exciton dispersions proved useful
for a calculation of the specific heat at very low tempera-
tures, within a dilute-exciton approximation, a result that was
employed for the analysis of the observed specific heat in

Ni(C2HsN2)2Ni(CN)4', to be referred to with the abbreviated
symbol NENC.

The experimental work of Ref. 4 makes it clear that our
earlier theoretical work needs to be extended in three ways.
First, to provide a calculation of the specific heat that is valid
beyond the low-temperature region. Second, to furnish a cor-
responding calculation of the magnetic susceptibility. Third,
to include the effect of a small in-plane anisotropy that may
be present in actual spin-1 chains. All three questions are
addressed and answered affirmatively in the present paper.

In Sec. II we recalculate the spectrum of low-lying exci-
tations for a general rhombic anisotropy. The strong-coupling

II. ELEMENTARY EXCITATIONS

In this section we describe briefly an extension of the
calculation of low-lying excitations to include the effect of a
small in-plane anisotropy. Hence we consider spin-1 chains
governed by the Hamiltonian

W= Wp+ Wi, (2.1)

where Wp accounts for the most general single-site anisot-
ropy,

N

Wo= g [A)(S„') +A2(S„) +A3(S„) ],
ll= 1

(2.2)

and W& stands for the usual isotropic exchange interaction

N

Wt= —Jg (S„S„+t). (2.3)

Actually the anisotropy constants present in Eq. (2.2) may be
restricted according to

A) =F, A2= —F., A3=A, (2.4)

without essential loss of generality thanks to the constraint
S„=s(s+ 1)=2 satisfied by the spin operators. A more con-
venient set of independent parameters is given by

A, a =F./A, u=A/J, (2 5)

where A sets the scale of energy, while a and n are dimen-
sionless.

The strong-coupling theory we are about to develop con-
cerns spin chains whose dominant feature is a strong easy-
plane anisotropy, i.e.,

(2.6)

expansion is extended to thermodynamics in Secs. III and IV
with an explicit computation of the specific heat and the
magnetic susceptibility. In the concluding Sec. V we discuss
potential applications of our theoretical results to systems of
current experimental interest, whereas some of the lengthier
calculational details are relegated to an Appendix.
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and becomes increasingly accurate as the inequalities (2.6)
become stronger. The exchange Hamiltonian Wi will then be
treated as a perturbation. One should note that the dimen-
sionless parameters e and u need not be positive. For ex-
ample, n is positive for a ferromagnet (j)0) and negative
for an antiferromagnet (J(0).

Since Wo consists of a sum of mutually commuting op-
erators, one for each site, its diagonalization is straightfor-
ward. For the moment we drop the site index and consider
the vector basis

excitons. Note that the energy degeneracy of excitons and
antiexcitons is lifted (atgez) in the presence of an in-plane
anisotropy (a 40).

Systematic corrections due to the exchange interaction
may be obtained by standard perturbation theory. The ab-
sence of degeneracy in the zeroth-order ground state (2.11)
and the exciton states (2.13) simplifies the calculation which
will not be described here in any detail except to mention the
useful identity

(S S„)l:la& rib& ~=l:lb& ala&„~ —a,„X I:lc& el~&„~,

(2.14)

I2& = —[I 1,»+ I
1,—»] l3& =11,0&,

2
(2 7)

which is a consequence of Eq. (2.8). For a 4 b, (S S,) acts
as an exchange operator.

An explicit third-order calculation yields the ground-state
energy

where ls, p) are the elements of the familiar canonical basis
with total spin s =1 and azimuthal spin p, = —1, 0 or 1. The
action of the spin operators is given by

~(i) ~(2) ~(3)
W =NW~(')+ + + +"

gr
CY CI

(2.15)

s lb)=i+ a.b, lc&, (2.8)
with

where e b, is the usual antisymmetric tensor. An elementary
calculation shows that the elements of the vector basis are
eigenstates of Wo,

o 1) ~tl1) Wol ) a212). Wol3) —~313&. (2 9)

~(' =0=~(') ~(') = — w(') =1 1

1 —e ' 2(1 —e)
(2.16)

Similarly the energy-momentum dispersions of the exciton
modes read

with eigenvalues

a, =A(1 —a), @2=A(1+a), @3=0. (2.10)

M(" M(" M(')
co (k)=A cot l+ + 2 + 3

+.
A A A'

(2.17)

The fact that the eigenstates of Wo given by Eq. (2.7) are
independent of e proved extremely helpful in all calculations
presented in this paper.

We now return to the complete (periodic) chain with N
sites and construct the low-lying eigenstates of 8'o. For
lal(1, the ground state is given by

with

c (')=1 a co(')= —2 cost

1 1 —cos(2k)
1~a 1~a

I
&o)= I3) & 13)2' ' '3 3&N. (2.1 1)

IX.)=
I
3) &

3&2" .
I 1)." 13)+,

ly. )=13&t13&~" 12). "13)~ (2.12)

There exist N independent states of type x„, with
n=1, 2, . . . ,N, all with energy a&=A(1 —a). Similarly there
exist N independent states of type y„with energy
@2=A(1+a).This N-fold degeneracy is completely removed
by considering states with definite crystal momentum k:

—k
1

lx~&= X e '"Ix.&, IYk&= X e '"ly.
& (213)

n n

These are suitable linear superpositions of the excitons and
antiexcitons of Ref. 7 and will be collectively referred to as

where I3), is the third element of the vector basis at site n.
The ground state is nondegenerate and carries vanishing azi-
muthal spin (p,=O) and vanishing energy (e&=0). Elemen-
tary excitations are obtained by exciting any single site in the
chain to write

cosk
c (')=

2(1 ~e)
1 —cos(2k) cosk —cos(3k)

+
1 8 (1 ~e)

(2.18)

At vanishing in-plane anisotropy (a=O) the two exciton
modes become degenerate (co+=to ) and the preceding re-
sults reduce to the corresponding ones in Ref. 7. The accu-
racy of the predictions at e=o was discussed in detail in our
earlier work and was later confirmed by a numerical diago-
nalization on finite chains. The above discussions provide a
guide for the domain of validity of our current results at
small a.

On the other hand, the perturbative spectrum is singular at
a=~1 where level crossing occurs and one of the exciton
modes becomes degenerate with the ground state. In fact, the
nature of the ground state changes radically at a=~1 be-
cause the spin chain develops an easy-axis anisotropy with
strength D=2A. The ground state is then strongly degener-
ate, in the limit ID/XI —+~, because spins may be assigned the
azimuthal values + 1 in any combination. As far as we can
see such a strong degeneracy causes difficulties in the devel-
opment of a successful strong-coupling theory and explains
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the restriction e (1 present in Eq. (2.5). Actually, the stron-

ger condition e &&1 is required in order to obtain accurate
predictions for reasonably large values of ~a~.

Returning to the easy-plane case we note that the process
may be continued to multiexciton states constructed by ex-
citing two or more sites in the chain. In particular, a new
possibility arises with the formation of bound exciton states.
A detailed discussion of such states was given in our earlier
work in the absence of an in-plane anisotropy. We shall not
attempt here to generalize the calculation of bound states to
nonvanishing a but turn to the main issue discussed in this
paper; namely, the development of a strong-coupling theory
for various thermodynamic quantities of practical interest.

III. SPECIFIC HEAT

The results of the preceding section provide some infor-
mation on the low-temperature thermodynamics and were
already used for the calculation of the specific heat in
NENC. Specifically, a dilute-exciton approximation of the
free energy is given by

fl
U(p) = Uo(p) p— dx Uo[(1 —x) p]W1UO(xp)

JO
fl f 1

+P x dx dy Uo[(1 x)P]
Jo o

X W, U, [x(1—y) P]W, U, (xy P)+ ". . (3.5)

This second-order approximation may be converted to a
third-order one by using the identity

tr U(p) = tr U, (p) p —dX. tr[W, e «~"'~~'],
JO

(3 6)

where we insert the expansion of e P o+ l calculated
from Eq. (3.S), with the substitution W, ~ X.W, , and perform
the k integration:

Z=tr U(p)=Z0+Z&+Z2+Z3+

Zp = tr Up(p), Z& = p tr[ Wt Uo(p)],

1
Z2= —P dx tr(Wt Uo[(1 —x)P]Wt Uo(xP)),2 JQ

dk
F,„,= W, +NT [ln(1 —e "+ ' )

7T

+ ln(1 —e "—~"~' )] (3 1)

1 (1 fl
Z3 = ——p x dx dy trt Wt Uo[(1 —x)p]

JO JO

X Wt Uo[x(1 —y)P] Wt Up(xyP)), (3.7)
where W, is the ground-state energy of Eq. (2.15) and
co (k) are the exciton dispersions of Eq. (2.18). The corre-
sponding specific heat (per site) reads

T 8 F,„, f'~ dk ( ro~(k)I2T
N BT g 27r

~ sinh[co+(k)/2T])

( ro (k)/2 T

( sinh[co (k)/2T]]
(3.2)

Z= tr U(P), U(P) = e P '+ ', P= 1IT, (3.3)

in a systematic strong-coupling expansion in which the ex-
change energy 8'l is treated as a perturbation. The zeroth-
order approximation is given by

It should be noted that effects from the mutual interaction of
excitons are neglected. In particular, there is no simple way
to include the contribution of bound exciton states without
overcounting. Hence the applicability of the dilute-exciton
approximation is restricted to very low temperatures.

The main purpose of this paper is to derive a direct
strong-coupling expansion of the free energy that includes
effects from exciton interactions and is thus expected to be
valid over a broad temperature range. The required formal
machinery is contained in a classic paper of Schwinger. We
are to calculate the partition function

and so on. These are the basic formal results that will be used
in the following for a third-order calculation of the free en-

ergy and hence of the specific heat.
The zeroth-order approximation is simply

N
ZO ~Q z =e ~'&+e ~'2+e ~'3,

Q (3.8)

(3 9)

as a consequence of Eq. (2.8). We may then immediately
conclude that the first-order correction vanishes:

Zl =0. (3.10)

The second-order correction is written more explicitly as

] f 1

Z2= —P 1 g dx tr((S S +,)Uo[(l —x)P]
mn 0

X(S„S„+,) Uo(xP)f (3.11)

Because of Eq. (3.9) the only nonvanishing terms in the
double sum are those with m=n and they are all equal (n
independent). Therefore,

where e, , e2, and e3 are the eigenvalues (2.10). The calcu-
lation of traces in the higher-order corrections is, of course,
easiest using the vector spin-1 basis (2.7) which diagonalizes
the operators 8"o and Uo= e p 0. An important simplifica-
tion results from the fact that the diagonal matrix elements of
the spin operators vanish in the vector basis,

Z, =tr U, (P), U, (P) =e-P (3.4) Z2= —N p 1 zo dx tr((S„S„+t) Up[(1 —x)p]
JO

and higher-order corrections may be derived from X(S, S„+,)Uo(xP)), (3.12)
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Z2 Np J
Zp 2zp

2

—2)8m~ —2Peb

z', -X
Q aWb 2P(e, —eb)

(3.13)

The calculation of the third-order correction is similar in that
a triple sum over the sites of the chain reduces to a simple
sum where all spin operators involved are again defined over
any two consecutive sites. We quote here the final result

where the factor z p originates in traces taken at sites other
than n and n+ 1. The remaining trace involves spin opera-
tors at any two consecutive sites and may be computed by a
repeated application of identity (2.14). One must also per-
form the x integration present in Eq. (3.12) to obtain after
some lengthy algebra

ccrc

V

O
~ 'H

C4
rP}

Z3=
ZQ

NPJ
—2Pea —2Pab

6zp aAbpc (&a eb)(&b e, )
(3.14)

Although calculation of higher-order terms appears fea-
sible, we are content with the third-order result given above
which will be analyzed in detail in the remainder of this
section. In order to obtain completely explicit expressions we
proceed as follows. First, we reorganize the expansion in
terms of the free energy

r= TIA, P= 1/r, (3.16)

noting that our current definition of the inverse temperature
(p=AI T) differs from the one used earlier (p= 1!T) Thus we.
write

(t) (2) (~)
F=NAf, f=f o + + 2 + s + . , (3.17)

Cl Cl A'

where the reduced free energy per site f is dimensionless and
its strong-coupling coefficients are given by

zo=—1+2e P cosh(eP),

1
f( )= ——ln z, f(')=0,

1 sinh(2e P)f( )= ——
2 Pe P+2Pe ~ cosh(eP)+e

Zp 28

1 —e ~[cosh(2eP)+e sinh(2eP)j+ 21 8

1
1 —e P cosh(2eP)

2 1 e z()

sinh(2e P)
2e

28 (3.18)

F= T ln Z= T[ln Zp+ (Z2/Zo) + (Zs IZp)+ ' '],
(3.15)

which agrees with Eq. (3.7) to third order because the first-
order term vanishes (Z, =0). Second, we insert in Eqs. (3.8),
(3.13), and (3.14) the eigenvalues (2.10) and further use the
dimensionless temperature

FIG. 1. Specific heat for a ferromagnetic spin-1 chain with
n=AIJ San=d vanishing in-plane anisotropy (a=0). Our third-

order result is depicted by a solid line while the zeroth-order ap-
proximation is also displayed for comparison (dotted line). The
circles stand for the numerical data of Blote with their size chosen
on purely aesthetic grounds. The inset concentrates on the low-

temperature region where an even better agreement with the nu-

merical data is obtained through the dilute-exciton approximation
(3.2) (dashed line).

1f = ——ln(l+2u), f ' =0,

(1+u)[1+(2P—1)u] 1 —(2P+1)u
(1+2u) ' 2(1+2u)

(3.19)

The calculation of the specific heat is now straightforward
using

TBF 8f
gy2 g 2~ (3.20)

where we may insert the strong-coupling series for the free
energy to obtain a corresponding series for the specific heat.
The second derivative present in Eq. (3.20) can be computed
analytically but leads to lengthy expressions. It is thus safer
to work with the three-point formula

a2 1

Br (8'r) 2 [f(r+ Br)+f(r—Br) —2 f(r)], (3.21)

with &-10,which proved to be more than adequate for
all practical purposes.

In Fig. 1 we illustrate our main result for a uniaxial (a=0)
FM chain with an intermediate easy-plane anisotropy u=A/
1=5 for which the specific heat was calculated numerically
by Blote. The observed overall agreement with the numeri-
cal data is satisfactory for practically the entire temperature

Simplifications occur in the limit of vanishing in-plane an-

isotropy where

a=o, u—=e ~=e "
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AFM, a=—10, eW

a5

O
~ W0
0/}

CS
V

~~ 0.5
~ ~
V
G4

Q5

0
0

0
0 0.5 1.5

FIG. 2. An iteration of Fig. 1 for the corresponding antiferro-
magnetic chain with a=A/J= —5. See the caption of Fig. 1 for
further explanations.

range. A more detailed examination of the data reveals that
the agreement improves rapidly at high temperatures. Never-
theless our third-order result performs well even at low tem-
peratures, as is illustrated in the inset of Fig. 1. Yet a better
agreement with the numerical data is obtained at very low
temperatures by an indirect use of the strong-coupling ex-
pansion through the dilute-exciton approximation (3.2). But
the direct strong-coupling expansion takes over decisively
for temperatures greater than T-0.15A where the dilute-
exciton approximation begins to deteriorate. In other words,
T-0.15A is roughly the point at which exciton interactions
become significant.

Before attempting a theoretical explanation of the preced-
ing findings we proceed with some further illustrations. Thus
in Fig. 2 we iterate Fig. 1 for the corresponding AFM chain.
The overall picture remains the same. Actually it is difficult
to discern at first sight any differences between the two fig-
ures because the calculated specific heat distinguishes a FM
from an AFM chain only in the third-order correction which
is small in this region of couplings (~n~-5). For even stron-
ger anisotropy the difference becomes negligible. However a
clear distinction between FM and AFM chains will emerge in
the calculation of the magnetic susceptibility presented in
Sec. IV.

It should be expected that the performance of our results
will improve with increasing easy-plane anisotropy. Indeed
the agreement with the numerical data obtained for an AFM
chain with n= —10 is excellent, as is shown in Fig. 3. Again,
even better results are achieved at very low temperatures
through the dilute-exciton approximation (3.2) but this point
will not be discussed further in the present example.

Figures 2 and 3 taken in combination make it almost cer-
tain that our analytical results will prove accurate for the
analysis of the measured specific heat of NENC throughout
the temperature range. It should be noted that Ref. 4 assigns
an anisotropy u= —7.5 for which numerical results are not
available. The calculated specific heat is plotted in Fig. 4 for
both vanishing (a=0) and a small (a=0.2) in-plane anisot-

FIG. 3. Specific heat for an antiferromagnetic spin-1 chain with
a strong easy-plane anisotropy n=A/J = —10. The circles stand for
the numerical data of Blote.

ropy. In fact, the anticipated value of e is smaller (e-0.1) but
we have chosen a larger value in our illustration in order to
make the effect completely apparent. The in-plane anisotropy
causes a depression of the specific heat around its maximum
and an enhancement at low temperatures. The latter is partly
explained by the softening of one of the exciton modes at
nonvanishing a. Therefore our analytical results may be used
for a thorough analysis of the experimental data from NENC.
In particular, one should be able to extract precise values for
the parameters and eventually ascertain whether or not cou-
plings other than those present in the model Hamiltonian are
important.

cd
V

O
QfH

0
G4

0
0

FIG. 4. Specific heat for an antiferromagnetic spin-1 chain with
an easy-plane anisotropy +=A/J= —7.5 appropriate for NENC.
The solid line depicts our third-order result with vanishing in-plane
anisotropy (e=O) and the dashed line is the same result with a=0.2.
The inset concentrates on the low-temperature region where both
curves are calculated from the dilute-exciton approximation (3.2)
with a =0 and a =0.2.
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with

C=co+ciP+czP +c3P +, P=AIT, (3.22)

2 4 2 2
co 0 i 2 + 2 ~ c3 3 (3 23)

3 A' 27 3(I

On the other hand, a direct high-temperature expansion
based on the complete Hamiltonian reproduces the above
results to third order whereas differences emerge starting
with the coefficients c4. In general, the strong-coupling se-
ries carried to order n predicts correctly the first n coeffi-
cients of the high-temperature series. Such an instance ex-
plains the success of our results at high temperatures. But it
should be stressed that the third-order result of the (direct)
high-temperature expansion would perform rather poorly for
most temperatures of practical interest.

In contrast, the strong-coupling series has been seen to
perform well throughout the temperature range, especially
when the dilute-exciton approximation is invoked to handle
the region of very low temperatures. It is thus worth exam-
ining in some detail the low-temperature region where the
calculated free energy (3.19) may be organized as an expan-
sion in the exponentially small variable u = e

2 2
2f = ——u+ —u+ . , f'=0,

For relatively low values of the easy-plane anisotropy, in
the region lnl(5, the predictions of the strong-coupling se-
ries begin to gradually deteriorate. To be sure, the series
diverges for lnl-1 where a phase transition takes place to a
Haldane-like phase. The numerical calculation of the above
reference sets a practical lower bound for the validity of our
exciton dispersions in the region lul-2. 5. Furthermore,
Blote gives numerical values for the specific heat also at

lnl =2.5 which we compared with our analytical predictions;
the deterioration of the strong-coupling series becomes ap-
parent with the formation of a kinklike anomaly on the low-
temperature (ascending) side of the specific heat. Therefore
the current results may be applied for lnl)2. 5 but with due
caution at the lower end of this inequality. One should also
recall the restriction on the in-plane anisotropy (lel(&1) dis-
cussed in the concluding paragraphs for Sec. II.

Finally we turn to some consistency checks that demon-
strate in part both the correctness of our calculation and the
reason for its success. In order to simplify matters the checks
will be camed out at vanishing in-plane anisotropy (a=O)
where the calculated free energy is given by Eq. (3.19).

First we address the high-temperature region where the
agreement with the numerical data discussed earlier is gen-
erally very good. Now a high-temperature expansion of the
specific heat calculated from Eqs. (3.19) and (3.20) reads

the ground-state energy W~, and the exciton dispersions
co (k) their strong-coupling approximations given by Eqs.
(2.16) and (2.18) with a=O. We further organize the resulting
expression as a double series in powers of 1/u and u= e
This step of the argument entails a large amount of algebra
which will be omitted here. The analog of Eq. (3.24) is then
given by

2 1
2y."„,'= ——u- —u'+ ", y&„",=0,

f~„l= —1 —2(p —2)u —4(p —1)u +

1
y&" =—2u —4u'+ "

exc (3.25)

IV. MAGNETIC SUSCEPTIBILITY

Our third and final task is to study the effect of an applied
magnetic field with an explicit calculation of the magnetic
susceptibility. The strategy is the same as that of Sec. III
except that the zeroth-order Hamiltonian is now extended
according to

Wp~ Wo+ g (h' S ), h—=gpsH, (4.1)

where g is the gyromagnetic ratio and p~ the Bohr magne-
ton. We prefer to work with the reduced field h reserving
restoration of proper units for the end of the calculation. The
direction of the applied field is also not specified for the
moment:

The important observation is that zeroth-order as well as
terms linear in u = e ~ are the same in Eq. (3.24) and (3.25)
but the coefficients of terms of order u =e ~ and higher
differ. The zeroth-order terms are just the strong-coupling
coefficients wt"~ of the ground-state energy (2.16), with
a=0, as expected. One could also have anticipated that linear
terms must be equal because they originate in single-exciton
contributions which are free of interactions. Higher-order
terms are sensitive to exciton interactions which are pertur-
batively included in the direct strong-coupling expansion but
are completely absent from the dilute-exciton approximation.
These observations touch upon the reason for the success of
the direct expansion over a wide temperature range as well as
for the observed relative superiority of the dilute-exciton ap-
proximation at very low temperatures; the latter being a se-
lective and apparently more accurate resummation of all con-
tributions that contain no interactions.

h= (hi, hz, hs). (4.2)

ft i= —1 —2(P —2)u+(6P —11)u +

1 1
ft i= ——2u ——(2P —11)u +

2 2
(3.24)

The elements of the vector basis (2.7) are no longer eigen-
states of the zeroth-order Hamiltonian. The true eigenstates
at each site may be written as linear superpositions of the
form

To appreciate the significance of the various terms in Eq.
(3.24) we also consider the dilute-exciton approximation of
the free energy given by Eq. (3.1), where we substitute for

l~)=X ~. lu), (4.3)
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e,c~+ig e,b, hb C~= k C,",
bc

(4 4)

where the Latin index a =1, 2 or 3 counts the elements of the
vector basis and the Greek index p, =1, 2 or 3 the eigenstates.
An elementary calculation shows that the (complex) ampli-
tudes C~ satisfy the linear system

nificant proliferation of terms occurs in the calculation of
higher-order corrections. Nevertheless we have been able to
also compute Z2 which is listed in the Appendix and will be
invoked here as the need arises.

We now proceed with an explicit calculation of the mag-
netic susceptibility. Consider first the case of a magnetic field
applied along the first principal axis:

applied for a=1, 2 and 3. The new eigenvalues X.„with
p, = 1, 2 or 3 reduce to those of Eq. (2.10) at vanishing field.

During the formal steps of the calculation we need not
solve the eigenvalue problem (4.4) explicitly but may use the
anticipated orthogonality relations

2+ ~3
Xi=a),

2
+ a, —e, ~'

h
2 i

1/2

h=(h, , 0,0).
Then the eigenvalues of system (4.4) are given by

(4.12)

g c~c:=a„„gc~c~=p.„, (4.5) 82+ 83

2
(4.13)

to express the free energy as a function of the eigenvalues X

and the amplitudes where a, , e2, and e3 are the zero-field eigenvalues (2.10).
The corresponding eigenstates are determined from

a„„=gc.c., E,„=g c„c„", (4 6) Ci=1 C2=0, C3=0,

(Pl~ IP)=iX & b cbc, ~

bc
(4.7)

in contrast to Eq. (3.9), and that the analog of identity (2.14)
now reads

(s. s.) [Ip). I ~).) = [I~). I p).l

where the bar denotes complex conjugation. It is important
to note that the diagonal matrix elements of the spin opera-
tors in the new basis do not vanish,

hg —i(a2 X,)—
2' 3 2 2'

v(a2 —X2) +h, v(a~ —P2) +h,

C =0,1

i(as —Xs) 3 hi

g(es —ks) +h, v(as —Xs) +h,
(4.14)

h 1 h 1
li. i = @i, F2=@2+, k3= as—,(4.15)

82 83 82 83

and the amplitudes 6 „may be computed by inserting Eq.
(4.14) in Eq. (4.6). For our current purposes we shall need
the above results only for a weak field where

(4.8) and

z + —pX ) + —pk2+ —pk3
Zp y p (4.9)

Otherwise the calculation proceeds as in Sec. III. Thus we
again apply the general formulas (3.7) to derive successive
approximations of the partition function. The zeroth-order
contribution reads (~ )=

1
2

2

1
21 1$

2

2hi

82 83

while the first-order correction is now nonvanishing. Explic-
itly we write

Zi=PJQ tr[(S„S„ i)U (P)j

=NPJzo tr[(S„.S„+i) Uo(P) j. (4.10)

g (8~„—A~„A~„)e Pt p+ .l. (4.11)
p Zp pv

In the second step of Eq. (4.10) the trace involves variables
defined over any two consecutive sites and may easily be
computed in the basis of eigenstates Ip) discussed earlier. A
straightforward application of identity (4.8) then yields

(4.16)

Equations (4.15) and (4.16) summarize all information from
the eigenvalue problem required for an explicit calculation of
the magnetic susceptibility.

Specifically, let F=F(h, ) be the free energy for a field
with strength h& applied along the first principal axis. Then
we consider the weak-field expansion

N 2 Ng PBF(hi)=F(0) — yih, =F(0)— y, H, (4.17)

and thus identify the corresponding susceptibility y&. The
various constants introduced in the right-hand side of Eq.
(4.17) are such that y, is dimensionless. More precisely, the
calculated magnetic susceptibility is measured in units of

At vanishing field the amplitude 5 reduces to the Kroe-
necker delta (5 „=8,) and Z, vanishes, as expected. A sig- Ng PB/A, (4.18)
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a convention that will be used in the following without ex-
ception.

Now the strong-coupling expansion of the free energy
reads

/3=A/T, u—:e

2(1 —u) 2(1 —u)
1+20 1+20

(
F= —T ln Z= —T ln Zp+ (Zi /Zp)+ (Z2/Zp)

1

3 [17—(6P +4P+30)u —(34P —63)u(1+2u)
1——(Z /Z)' +I p

)
(4.19)

—(16P+50)u ],
and the longitudinal susceptibility by

(4.24)

where we have inserted the series Z=Zp+Zi+Z2+ " and
consistently reexpanded to second order. Here Zp is given by
Eq. (4.9), Zi by Eq. (4.11) and Z2 by Eq. (Al) of the Appen-
dix. Finally one must work out the weak-field expansion of
the Z, 's, through a systematic use of Eqs. (4.15) and (4.16),
and eventually identify the susceptibility from Eq. (4.17).
This step of the calculation is the lengthiest and will cer-
tainly not be described here. The final result may be written
in the form

with

(p) 2Pu (i) 2Pu
l+2u'

(4.25)

()+ ()+ ()+.. .0 1 2 (4.20)

2P u
X~~

=
1 2 [(P 2)+(8P+2) ]. (4.26)

where

XX1
2A e P'2-e &'3

Qp

8A2 (e /i'z e /3's) 2—
xXi

zp ( 82 83

X1
= X2 XJ X3 Xi( (4.22)

for the transverse and the longitudinal susceptibility, respec-
tively. At this point we also switch to the dimensionless in-
verse temperature P=A/T The transverse sus.ceptibility is
given by

1 1
=X( )+ 4( )+ X( )+ (4.23)

with

Z
=—e P'l+e ~'2+e ~'3 (4.21)

while the expression for y(i ) is given in Eq. (A2) of the
Appendix due to its considerable length. Note that we have
restored in the above equations the zero-field definition of Qp

given earlier in Eq. (3.8). Hence the calculated susceptibility
is expressed entirely in terms of the zero-held eigenvalues
(2.10). We also note that the susceptibilities g2 and y3 along
the second and third principal axis may be obtained from the
preceding result by elementary cyclic permutations of the
eigenvalues e1, e2, and a3.

Therefore we have derived completely explicit expres-
sions that can be used for the calculation of the susceptibili-
ties for any value of the in-plane anisotropy e. But the re-
mainder of this section will be devoted to a detailed
discussion only of the limit of vanishing e where simpler
forms can be derived. As expected, X, and X2 are equal at
a=0. We may then use the more conventional notation

Some methodological remarks are in order. The transverse
susceptibility was calculated from our basic relations (4.21)
and (A2) applied with eigenvalues e, =A(1 —e), ez=A(1+e),
and F3=0. The longitudinal susceptibility was calculated
from the same relations but with eigenvalues given by a, =0,
F2=A (1—e), and e3 =A (1+e), a choice that is equivalent to a
two-step cyclic permutation. In both cases the limit a~0
produced a large number of singular terms which all cancel
against each other to yield the finite results (4.24) and (4.26).
We interpret this extensive cancellation of singular terms as
one of the numerous consistency checks to which we have
subjected our calculation. A further check is provided by the
observation that successive strong-coupling coefficients X("),
with n =0,1,2, . . ., behave at high temperatures as P"+' for
both susceptibilities, even though such a fact is not obvious
at first sight in, say, X~( . This behavior is consistent with
expectations based on a direct high-temperature expansion,
in analogy with our related discussion of the specific heat.

The main results are illustrated in Fig. 5 for an AFM
spin-1 chain with cv= —7.5 and a=0; i.e., for parameters that
roughly describe NENC. The most conspicuous feature of
this figure is that significant departures from the zeroth-order
approximation occur at low temperatures for both the trans-
verse and the longitudinal component. The latter is illustrated
in greater detail in the inset of Fig. 5.

In the absence of numerical results for the magnetic sus-
ceptibility analogous to those available for the specific heat,
at least in some important special cases, we must devise
intrinsic checks in order to estimate the accuracy of our
second-order predictions. As mentioned already, we expect
our results to be increasingly accurate with increasing tem-
perature. Thus we concentrate on the low-temperature region
and examine first the longitudinal susceptibility for which a
dilute-exciton approximation may easily be derived.

For a vanishing in-plane anisotropy and a field applied
along the symmetry (third) axis the total (azimuthal) magne-
tization is a good quantum number. The ground state carries
vanishing magnetization and suffers no energy shift due to
the applied field; this fact explains the vanishing of the lon-



52 STRONG-COUPLING THEORY FOR THE THERMODYNAMICS OF. . . 16 009

AIM, a=7.5, eW

Therefore we may apply Eq. (4.29) using our best (third-
order) result for the exciton dispersion,

~ W

G4

G6
&1
cA

CP
~ l&

bQ

2 1
co(k) =A 1 ——cosk+ —z(1+2 sin k)

A

1 1
+ ~ —(1+8 sin k)cos k —2 sin k +.

Cl 2

(4.30)

0
0

FIG. 5. Transverse (X~) and longitudinal (Xi) magnetic suscep-
tibility for an antiferromagnetic spin-1 chain with a=A/J= —7.5
and vanishing in-plane anisotropy (e=O). Solid lines correspond to
our second-order results of Eqs. (4.24) and (4.26), while the corre-
sponding zeroth-order approximations are also displayed for com-
parison (dotted lines). The inset demonstrates the longitudinal sus-

ceptibility at low temperatures, with the prediction of the dilute-
exciton approximation (4.29) added as a dashed line. All
susceptibilities are measured in units of Ng p, &/A.

gitudinal susceptibility at T=O. On the other hand, excitons
and antiexcitons carry a magnetization +1 and —1, respec-
tively, and thus undergo Zeeman splitting in their energy-
momentum dispersions,

8 17
xi(T=O) =2+ —+ 2+ ".

A' A'
(4.31)

written here in a form given earlier in Ref. 7. Since this
dispersion is expected to be very accurate for ~n~=7. 5, the
only uncertainty in applying Eq. (4.29) is the extent to which
the dilute-exciton approximation is reasonable at finite tem-
peratures. The result for n= —7.5 is depicted in the inset of
Fig. 5 together with the zeroth as well as the second-order
approximation from the direct strong-coupling expansion. In-
terestingly, the emerging picture is very similar to the one
encountered earlier in the discussion of the specific heat.
Since it is reasonable to assume that the dilute-exciton ap-
proximation is accurate at very low temperatures also for the
magnetic susceptibility, its close proximity to the second-
order result of the direct expansion suggests that the latter is
accurate also at low temperatures; of course, the direct ex-
pansion takes over decisively at higher temperatures.

The picture is slightly different for the transverse suscep-
tibility which develops a nonvanishing value at T=O where
Eq. (4.24) gives

t0 (k) = tu(k) ~ h, (4.27)

dk=gr +~T [ln(1 —e-"&"&' e-"' )exc gr

+ ln(1 —e "&" iTehlT) j (4.28)

where cu(k) is the common dispersion of excitons and anti-
excitons at zero field. Note that (4.27) is an exact relation
that makes no reference to a specific method of calculation of
the basic dispersion to(k). Now a dilute-exciton approxima-
tion of the free energy may be derived from Eq. (3.1) applied
with co given by Eq. (4.27):

A finite value at absolute zero is explained by the fact that
the ground-state energy is a nontrivial function of the mag-
netic field when the latter is applied in the easy plane. There-
fore the estimate (4.31) cannot be improved with any sort of
a dilute-exciton approximation, but only with a third-order
calculation within the direct strong-coupling expansion. Al-
though we have not attempted such a calculation for the free
energy, we have managed to obtain a third-order approxima-
tion of the ground-state energy Wg using standard perturba-
tion theory of the type discussed earlier in Sec. II. Once W,
is computed as a function of the applied field, the T=O sus-
ceptibility is calculated from a relation analogous to Eq.
(4.17) with the free energy F replaced by Ws, . Thus we
found that

A I'~ dk 1

2T J ~ 2m sinh [co(k)/2T]' (4.29)

in units specified by Eq. (4.18).

The only field dependence comes from the integral because
the ground-state energy Wg, is independent of h. Expanding
the integral in powers of h and using a relation analogous to
Eq. (4.17) for the identification of the (dimensionless) longi-
tudinal susceptibility we find that

8 17 29
x (T=O)=2+ —+ + +"

-L n u2 u3 (4.32)

which reproduces Eq. (4.31) to second order, providing yet
another check of consistency, but also leads to an improved
(third-order) estimate of the T=O transverse susceptibility.
Applied for a= —7.5 Eq. (4.31) yields X~(T=0)=1.24, while
Eq. (4.32) gives x~(T=O)=1.17. The observed relative re-
duction of 6' may be taken as a rough estimate of the error.
In other words, our second-order result is expected to over-
estimate the true transverse susceptibility by about 6' at



16 010 N. PAPANICOLAOU AND P. N. SPATHIS 52

AFM, u=—7.5, eW

~ M

G4

O
&1
O

~ M
V
bQ

0
0 1

T/A

FIG. 6. Comparison of our second-order results for the magnetic
susceptibilities (solid lines) with the predictions of the molecular-
field approximation (4.33) (broken lines) for n=A/J= —7.5 and

vanishing in-plane anisotropy (e=0). The inset demonstrates the

longitudinal susceptibility at low temperatures where the molecular-
field approximation (broken line) is virtually identical with the cor-
responding zeroth-order approximation (the dotted line of the inset
of Fig. 5). All susceptibilities are measured in units of Ng p, ri/A

T=O, but the error is also expected to diminish quickly at
finite temperatures.

As far as we know the only previous attempt to calculate
the magnetic susceptibility beyond the zeroth order is the
molecular-field approximation'

(4.33)

where y; is the susceptibility for a field applied along the ith
principal axis and y; is its zeroth-order approximation. Ex-
panding formula (4.33) in inverse powers of n leads to

x;=x,'"+ —I:x,"']'+—
2 I:x,"']'+ ", (4.34)

which agrees with the results of the systematic strong-
coupling expansion to within the linear approximation given
by Eq. (4.21) but disagrees with the quadratic approximation
given by Eq. (A2). One might say that the molecular-field
approximation is essentially a one-loop calculation cast in
the form (4.33) obtained by a summation of some sort of ring
diagrams, whereas our calculation includes up to two-loop
effects exactly but makes no attempt to sum diagrams.

It is evident from the foregoing discussion that the
molecular-field approximation cannot be used to provide an
independent test of the accuracy of our results. But it is
worth comparing the numerical predictions of Eq. (4.33)
against our second-order calculation, as is done in Fig. 6.
Although a rough overall agreement is obtained, significant
differences arise in the low-temperature region especially for
the longitudinal susceptibility for which the molecular-field
prediction is virtually indistinguishable from the zeroth-order
approximation (compare the inset of Fig. 6 with that of Fig.

5). The reason is simply that X~~" behaves as e at low
temperatures and the correction induced by the denominator
of Eq. (4.33) is of order e ~. Furthermore the molecular-
field approximation overestimates our second-order result for
the transverse susceptibility at T=O, which in itself is an
overestimate of the true transverse susceptibility. Therefore,
while Eq. (4.33) provided a valuable first attempt to calculate
the magnetic susceptibility, ' ' it is superceded by our present
second-order calculation which should be used for a reanaly-
sis of experimental data from, say, NENC.

We conclude this section with two comments. First, un-

like the situation in the specific heat, the presence of a non-

vanishing first-order correction in the magnetic susceptibility
allows a clear distinction between AFM and FM spin-1
chains. For example, Eq. (4.32) gives the value
X~(T=O)=1.17 for an AFM chain with u= —7.5, and the
value x~(T=O)=3.44 for the corresponding FM chain with
u=7.5. Second, the dependence of the magnetic susceptibil-
ity on the in-plane anisotropy e is also linear, in contrast to
the quadratic dependence of the specific heat, and should
help to ascertain more definitely whether or not such an an-

isotropy is actually present.

V. CONCLUDING REMARKS

The work presented in this paper extends in an essential
way our earlier calculation of the T=O dynamics. We have
thus developed a reasonably complete theoretical framework
for spin-1 chains with a strong easy-plane anisotropy that can
be directly applied to magnetic systems of current experi-
mental interest.

Hence it is now clear that our calculation of elementary
excitations (excitons and antiexcitons) is accurate for a wide
range of parameters and should provide a proper basis for
the analysis of inelastic neutron-scattering experiments on
CsFeBr3 and CsFeC13, these are examples of an AFM and a
FM spin-1 chain, respectively, with a supercritical easy-plane
anisotropy. We have further predicted the occurrence of
bound exciton states that should also be accessible to inelas-
tic neutron scattering, but such states have not yet been ob-
served.

The calculation of the thermodynamics given in the
present paper was prompted by the experimental work on
NENC (Ref. 4) and may in turn be used for a detailed re-
analysis of the data. The range of validity of our theoretical
results has been dealt with extensively in the main text and
certainly includes the parameter range appropriate for
NENC. In fact, this spin-1 system may well prove to be an
ideal testing ground for the strong-coupling theory, provided
that single crystals are grown which would allow a more
detailed experimental work.

Finally we comment on possible future extensions of the
strong-coupling theory. As is the case with all perturbative
methods calculation of more terms in the strong-coupling
series would certainly be welcome. Such a calculation may
actually prove feasible thanks to the algebraic nature of the
strong-coupling expansion. For the same reason, a generali-
zation to higher-dimensional lattices, i.e., lattices with an ar-
bitrary coordination number, should be straightforward.
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The purpose of this Appendix is merely to list some of the
results pertinent to the calculation of the magnetic suscepti-
bility that are too lengthy to include in the main text. Fol-
lowing closely the notation of Sec. IV we write for the
second-order partition function

Z, N —3 (Zi~'
+

Zo 2N I Zoj

NP J
Zo PP

NP 1 p(x +k —x —p )

1 —2A„A,+A„b, „gA A, , e
2ZO PP OP P ~ Pr

p(z, —x )

(Al)

which should be supplemented with the stipulation that the function (ep' —I)/px be replaced by unity when x=O. The
calculation of the second-order contribution to the magnetic susceptibility also follows the instructions of Sec. IV to yield the
final result

~( )
Xi
A 82 83

( e P'2 —e P'3i s 2P
3 3

Zo ~o

2P8@ 2P8 P 1 2P82 2P83
2P'g + g + —2P2

2P(e~ e ) zo 82 83

—2pe2+ —2pe3 g e
—p(e2+ +3)

(e~ —e3)' 2P
—2Pa2+

(et-e2)(e2-e3) (

—2pe~ —2pe2)

1 (
2P 2PRg+

(et —e3)(ez —e3) (

—2pai —2ps3i

(e2 —e3)'
~

—2psi —2psp —2pei —2pa3i
+

—2pe2 —2pa3 —2 pe ~
—p(e2+ a3)

—6 3
—16

(e2 —es)' (e2 —e3)'(2e i
—e2 —es)

Here P= IIT and we have restored the zero-field definition of zo, namely

Z = e p+1+ e p+2+ e p+3
0

(A2)

(A3)

In spite of its considerable length relation (A2) is completely explicit and can be used together with Eqs. (4.21) for a
calculation of the susceptibility y, simply by inserting the eigenvalues et =A(1 —e), ez=A(1+a), and e&=0 of Eq. (2.10). The
susceptibility y2 can be computed from the same basic relations applied for e, =A(1+e), e2=0, and e3=A(1 —e), and y3 for

e, =O, e2=A(l —e), and e&=A(1+e).

F. D. M. Haldane, Phys. Lett. A 93, 464 (1983);J.Appl. Phys. 57,
3359 (1985).

O. Golinelli, Th. Jolicoeur, and R. Lacage, Phys. Rev. B 46,
10 854 (1992).

B. Schmid, B. Dorner, D. Visser, and M. Steiner, Z. Phys. B S6,
257 (1992).

M. Orendac et al. , J. Magn. Magn. Mater. 140-144, 1643 (1995);
Phys. Rev. B 52, 3435 (1995).

P. A. Lindgard, Physica B 120, 190 (1983).

N. Papanicolaou, Nucl. Phys. B 240, 281 (1984); 305, 386
(1988).

N. Papanicolaou and P. Spathis, J. Phys. Condens. Matter 1, 5555

(1989); 2, 6575 (1990).
J. Schwinger, Phys. Rev. 82, 664 (1951).
H. W. J. Blote, Physica B 79, 427 (1975).
R. L. Carlin, C. T. O' Connor, and S. N. Bhatia, J. Am. Chem.

Soc. 98, 3523 (1976).


