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Analytical study of the thermodynamic behavior of an antiferromagnetic Heisenberg model
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By introducing a trial action So, the thermodynamic properties of the two-dimensional (2D) and 3D quan-

tum and classical antiferromagnetic Heisenberg model are studied and compared analytically with the varia-

tional cumulant expansion method. The free energy of the two models are expanded up to the fourth order and

the critical temperature Tz is given for each order and for different lattice structures. On the simple cubic

lattice and square lattice, the sublattice magnetization M,, and the staggered susceptibility y, are calculated.

I. INTRODUCTION

In 1986, Bednorz and Muller' discovered the first high-
temperature superconductor La2 Ba,Cu04 (x=0.15),
which has a quasi-two-dimensional Cu-0 plane structure.
The neutron scattering experiments have indeed revealed a
rich magnetic structure. It has been shown that the electron
spins of Cu inside a Cu-0 plane have a strong antiferromag-
netic interaction and the spins in the different planes have a
very weak antiferromagnetic coupling. The simplest theoreti-
cal model which describes this system is the spin--, antifer-
romagnetic Heisenberg model (AFHM). This model has been
investigated by many methods [e.g. , spin wave theory
(SW), renormalization-group approach, high-temperature
expansion (HTE), Green function method (Green), and
Monte Carlo study (MC)], not only because of its relevance
to high-T, superconductivity, but also because of its theoreti-
cal importance in statistical physics. As a quantum model,
the commutation relation between spin operators makes the
problem difficult to study and the results obtained from these
methods are all different.

In order to study the phase transition temperature Tz of
the model and its magnetic properties, we adopt the varia-
tional cumulant expansion (VCE) method to study the spin-
—,
' AFHM and compare it with the correspondent classical
one.

The VCE method which was first developed in lattice
gauge field theory is an improvement of the cumulant expan-
sion method by incorporating variational method into it. Re-
cently, this method has been applied to the quantum ferro-
magnetic Heisenberg model in which the free energy is
expanded to the third order and the results are rather good.
In this paper, we introduce a trial action So for the AFHM
and expand the free energy to the fourth order and obtain the
Neel temperature Tiv on the simple cubic (sc), body centered
cubic (bcc), and square (sq) lattice. The sublattice magneti-
zation for sc lattice and the staggered susceptibility for the sc
and sq lattice are calculated to the fourth order and compared
with the classical AFHM.

where J is the effective exchange coupling constant and
Boltzmann's constant kz has been set to be 1, so we have
p= 1/T. When 1)0, the action describes the ferromagnetic
model, when J(0, it corresponds to the antiferromagnetic
model. In this paper, we take J to be —1. The suffix i runs
over all the sites and (ij) over all the pairs of site i and j
which are the nearest neighbors. The spin operator S; satis-
fies the commutation relation

[ i~s~ sjp] = l 8 ~p y8ij s i y

For classical model, s equals infinity and the model can
be expressed as

S'= —P g S,„.S,, +Hg ( —1)' s,„,
(tij) /

+Hg ( —1)'~s, li, . (4)

The partition function of the system can be written as

Z=e =Tr[es ], (5)

where 8' is the free energy of the system. Because of the
difficulty of calculating the partition function directly, we
introduce an analytically integrable trial action So which is
simpler than S' and still has some basic characters of S':

S,= —Pg o.; o;,
(ij)

where o.;=S;/s is a three component unit vector.
In order to calculate the sublattice magnetization, we first

divide the whole lattice into two sublattice A and 8 and
introduce a staggered external field H in the direction of z
axis. Therefore, the action of the system is

II. ANTIFERROMAGNETIC HEISENBERG MODEL
AND VCE METHOD

The action of the Heisenberg model is

where j is the variational parameter which will be deter-
mined in the following calculation. Therefore, the partition
function of the system can be expressed as

S= —PP~'=PJ $ S; S, ~,
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TABLE I. The Neel temperature of quantum model for different lattices and from different methods.

1st 2nd 3rd 4th HTE SW Green

sc 1.5
bcc 20
sq 1.0

1.5 0.888889 0.863281 0.898 (Ref. 5) 1.105 (Ref. 3) 0.9065 (Ref. 6) 0.8857 (Ref. 7)
2.0 1.375 1.46402 1.432 (Ref. 5) 1.455 (Ref. 3) 1.435 (Ref. 6)
1.0 0.41667 0.0625 0.91 (Ref. 3)

When doing cumulant expansion, one should note that

ts', So]40, so ZWTr[e 'e ']. Through the cumulant
expansion, the free energy can be derived:1, n(n —1)

W= W(}
—g —, S'"+ns'(" '}(—S(})+

n(n —1) [n —(k —1)]XSi(n —2}( S )2+0 k!

where L&=dz00/Bj, L2=8L&IBj, and d is the dimension.
The third order and fourth order free energy can be derived
in the same way and we do not give it here because it is too
lengthy.

III. CALCULATION AND RESULTS

In the calculation of VCE method, we first determine the
variational parameter j as a function of T. According to the
minimal condition of the mth order free energy W, we
obtain the variational condition:

Xsi( nk}( S )k+'''+( S )n

C

In general, the free energy can only be expanded to a limited
order:

8'
—.W =0,
Bj

p2
.2W ~0,

(14)

(15)1, , n(n —1)w= w, —g —, s'"+ s'("-'}(—s, ) +
n=1 &. 2!

n(n —1) . tn —(k —1)]XSi(n —2}( S )2+0 k!

xs'(" '}(—s )"+ . . +(—s )" (9)

where Zo=e '= Tr[e ']=zoo, N is the totalnumberof the
lattice sites, and z00 is

I'

zoo=sinh ~ s+ —(j+H) '

1
sinh —(j+H), (10)

2

where s is the spin quantum number. For the classical model,

zooc = 2 sinh[( j+H)]l(j +H).

For the quantum model, the first order and second order
free energy of each site is

which is called the complete variational condition.
By solving Eq. (14), the variational parameter j is calcu-

lated as a function of T. When T» T~™,j takes a nonzero

value; when T~T~™,j can only be zero. Under this condi-
tion, the Ne, el temperature of every order is determined. The
results from the first order to the fourth order for sc, bcc, and

sq lattice are given in Table I. For comparison, the results
from other methods are also listed. From the second order,
every expansion order of T~ has a correction order by or-

der. Compared with the SW result, the T~ is in better agree-
ment with the result of Green function method and the MC
result which are generally believed to be comparatively ac-
curate in determining the critical temperature. Especially for
the 2D (two-dimensional) square lattice, the TH(} is 0.0625,
which is very near to the expected value 0.0. In the SW
method, the author obtained a phase transition point at
T=0.91 and simply supposed that the Neel temperature is
0.0.

The sublattice magnetization M, for the sc lattice and
staggered susceptibility y, for the sc and sq lattice are also
calculated under this condition according to the relation

L2
1~, = —lnzoo P z +jLizoo,

ZOO

(12)
l aF}

M, = —T
} T,H=Q

(16)

12d 2 2
1 2

}
— p' 2

—(~(~+ )zoo
—L—2)'+ 2+—

z00 2

~aM, ~

x, ="
(BH} (17)

+2dpj ~ L,L2-
ZOO z00

/'L

2
zoo)

d
+ —p 4

—d(2d 1)p s L}L2——
00 ZOO ZOO

The g, obtained from our calculations are given in Figs. 1

and 2. For comparison, the high-temperature expansion re-
sults and MC simulation results are also given. This physical
quantity has a diverge character when T—+Tz, but our re-
sults are steeper than the HTE and MC results in a very close
vicinity of T&. In the calculation of M, , the complete varia-
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we get

W~ W,fr= Wp —(S—Sp)p. (19)

FIG. 3. Spontaneous magnetization for s = 1/2 model on sc lat-
tice. Curves 1, 2, 3, 4 correspond to the 1st, 2nd, 3rd, and 4th order
approximation in the VCE.

FIG. 1. Staggered susceptibility for s = 1/2 model on sc lattice.
Curves 2, 3, 4 correspond to the 2nd, 3rd, and 4th order approxi-
mation in the VCE; the short dashed line is the high-temperature
expansion result (Ref. 5).

So we have

—.W,ff=0,
Bj

(20)

tional condition makes it diverge when T is very small. In
order to solve this problem, we adopt the main value condi-
tion to determine the variational parameter. For T~T~~'~,

considering the jensen inequality

Z) Z e( — o)o

100.00—

50.00 —,

p2
.p W,ff~O. (21)

TABLE II. The Neel temperature of classical model for different
lattices and from different methods.

The M, for the sc lattice from the first to the fourth order are
all shown in Fig. 3. Every expansion order of M, has an
intersect point with the horizontal axis, which can also be
regarded as the phase transition point according to the
definition of order parameter. These points are T,' =1.5,
T, = 1.0992, T, = 1.125, and T, =0.97, respectively. Al-

though these values are different from the T~ given in
Table I, the fourth order of T& and T, are very similar.

The phase transition temperature T~ for the classical
antiferromagnetic Heisenberg model are also given with
complete variational condition. The results are shown in
Table II. From these results, we can see that the quantum
effect make the transition temperature much lower than the
classical one.

The staggered susceptibility of the classical AFHM on the
sc lattice is calculated with the same condition and is given

1st 2nd 3rd 4th HTE

Q.QO 2.00 4.00 6.00

FIG. 2. Staggered susceptibility for s = 1/2 model on sq lattice.
Curves 2, 3, 4 correspond to the 2nd, 3rd, and 4th order approxi-
mation in the VCE; the black dots are the MC results (Ref. 7).

sc 2.0 1.6667 1.6268 1.5314

1.333 1.0 0.9333 0.8325

bcc 2.6667 2.3333 2.3048 2.2218

1.445
(Ref. 10)

2.055
(Ref. 10)

1.443
(Ref. 7)
2.055

(Ref. 7)
0.0

(Ref. 7)
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FIG. 4. Staggered susceptibility for classical model on sc lattice.
Curves 3, 4 correspond to the 3rd and 4th order approximation in
the VCE; the short dashed line is the high-temperature expansion
result (Ref. 5).

in Fig. 4. The change of y, with the temperature is much
softer than the quantum model.

IV. DISCUSSIONS

fourth order TN is in much better agreement with the result
of Green function method and the MC result than the SW
method.

From the calculation of M, , we obtained a series of
T, which can also be regarded as the transition point ac-
cording to the definition. The values of TN and T, are very
similar, but we think that this is not the intrinsic character of
our theory, but only a coincidence. In the classical models,
we have not found this phenomena. In other aspects, the
values of even-number order T~ ~ are more approaching the

MC result than the odd-number order T~ ~ .
In the calculation of y, , our results are steeper than the

HTE and MC result. Whereas, the exact critical behavior of
g, needs further investigation for the divergence of y, near
TN

At last, it should be emphasized that the trial action So
does not commute with the action of this model, that is
[So,S']4 0. This defect causes the divergence of the internal
energy and the specific heat. From the principle of effective
action, we need to find a trial action So which is more similar
to S' and is commutable with S'. With this So, the diver-
gence problem would be solved. How to find this kind of
So is a very interesting topic to study and we hope to do
some research in this direction.

The Neel temperature and the magnetic characters of the
2D and 3D quantum antiferromagnet over a wide range of
temperature are investigated via the VCE method. We pro-
pose a trial action So for this model and obtain the Neel
temperature which has a correction order by order and the

ACKNOWLEDGMENTS

This work has been supported by the Doctoral Foundation
of the Chinese Education Commission and the National
Natural Science Foundation of China.

' J. G. Bendorz and J. A. Muller, Z. Phys. B 64, 189 (1986).
G. Shirane et al. , Phys. Rev. Lett. 59, 1613 (1987); Y. Endoh

et al. , Phys. Rev. B 37, 7443 (1988).
S. H. Liu, Phys. Rev. 142, 267 (1966); M. Takahashi, Phys. Rev.

B 40, 2494 (1989).
S. Chakravarty, B. I. Halperin, and D. Nelson, Phys. Rev. Lett.

60, 1057 (1988); Phys. Rev. B 39, 2344 (1988).
G. S. Rushbrook and P. J. Wood, Mol. Phys. 11, 409 (1967).
G. Z. Wei and A. Du, Phys. Status Solidi 175, 237 (1993); Fuke

Pu and Q. Q. Zheng, Acta Phys. Sin. 20, 624 (1964).

O. Nagai, Y. Yamada, and Y. Miyataka, in Quantum Monte Carlo
Methods, edited by M. Suzuki (Springer-Verlag, Berlin, 1987);
He-Ping Ying et al. , Phys. Lett. A 183, 441 (1993); M. S.
Makivic and H. Q. Ding, Phys. Rev. B 43, 3562 (1991);J. Adler,
C. Holm, and W. Janke, Physica A 201, 581 (1993).

sR. J. Liu and T. L. Chen, Phys. Lett. A 194, 137 (1944); Phys.
Rev. B 50, 9169 (1994).

R. J. Liu and T. L. Chen, Commun. Theor. Phys. 23, 37 (1995).
C. Domb, in Phase Transition and Critical Phenomena, edited by

C. Domb and M. S. Green (Academic Press Inc. , London, 1974),
Vol. 3.


