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Band theory of linear and nonlinear susceptibilities of some binary ionic insulators
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The linear and nonlinear optical responses in a large number of cubic insulators are studied by means
of first-principles local-density calculations. Complete results on band structures, frequency-dependent
dielectric functions, and frequency-dependent third-order nonlinear susceptibilities y' '(co) (in the sim-
plest form as the third-harmonic generations) are presented for 27 alkali halides, alkali-earth Auorides,
oxides, and sulfides. They are LiF, LiCl, LiBr, LiI, NaF, NaC1, NaBr, NaI, KF, KC1, KBr, KI, RbF,
RbC1, RbBr, RbI, CaF2, SrF2, CdF2, BaF&, MgO, CaO, SrO, BaO, MgS, CaS, and SrS. The results are
compared with the existing experimental data and other calculations. The effectiveness of using a "scis-
sor operator" to correct the gap underestimation in the local-density-approximation theory is assessed.
It is shown that the full band-structure approach for the y' '(0) calculation in these crystals gives results
in very good agreement with experimental data, especially in the anisotropic coefficient of the nonvanish-
ing tensor elements.

I. INTRODUCTIVE

Recently, there have been increased activities in first-
principles-type calculations on nonlinear optical proper-
ties of semiconductors and insulators using the band-
theoretical approach. ' ' In particular, second-
harmonic generations (SHG's) and third-harmonic gen-
erations (THG's) of 18 semiconductors and their
frequency-dependent dispersion relations were studied by
Huang and Ching. ' The band structures were calculat-
ed using the self-consistent orthogonalized linear corn-
bination of atomic orbitals (OLCAO) method (Ref. 11) in
the local-density approximation (LDA). Nonlinear sus-
ceptibilities were evaluated with the application of a scis-
sor operator to address the problem of gap underestima-
tion that roots from the inadequacy of the LDA theory
for the excited states, and the e6'ect of the local field was
totally neglected. The results of these calculations were
in quite good agreement with the available experimental
data. It was concluded that the accuracy of high
conduction-band (CB) wave functions is extremely impor-
tant because of the large CB-CB optical matrix elements
involved in the nonlinear optical process. It was also
pointed out that the sum over the band states must be
carried out to include a sufficiently large number of CB
states for a well-converged result.

Like the cubic semiconductors, binary ionic insulators
also have interesting nonlinear optical properties. Be-
cause of the inversion symmetry in these crystals, there is
no SHG, and the THCs is the lowest order of optical non-
linearity. Many ionic insulators are important materials
in electro-optical applications and in laser technology. '

More recently, alkali-earth sulfides and halides doped
with rare-earth elements have been considered as promis-
ing candidates for a generation of optical memory storage
media. ' ' Adair, Chase, and Payne measured nonlinear
refractive indices (which relates to THG coefficients) on a
large number of insulating crystals. ' They compared the

measured data with that predicted by the empirical for-
rnula of Holing, Glass, and Owyong. ' The empirical for-
mula relates the nonlinear refractive index n2 to the
linear refractive index no for optical materials with low
no. It has been a fairly common practice among
researchers to estimate the nonlinear refractive indices of
insulators using linear refractive data alone. '

Early theoretical work on alkali-halide crystals was
based on the concept that the nonlinear polarizability of
an ionic crystal can be obtained as the sum of anionic and
cationic polarizabilities constructed by empirical
means. ' ' In a series of papers, ' Lines used bond-
orbital theory to study the linear and nonlinear optical
responses in ionic crystals, and also the inAuence of the d
orbitals in transition-metal oxides. The intention was to
develop a simple yet efII'ective theory for linear and non-
linear optical responses in ionic crystals that goes beyond
the rather crude independent ion model. Empirical for-
mulas were derived to calculate the linear dielectric con-
stants and nonlinear refractive indices of many ionic crys-
tals with remarkable success if only the relative data were
compared. ' More sophisticated calculations of the hy-
perpolarizabilities (equivalent to the THG coefficient) in
alkali halides had been attempted in a cluster-type calcu-
lation within the many-body perturbation scheme, and
also by using a time-dependent LDA theory. '2 These
work appear to be the only first-principles type of calcu-
lations for the nonlinear response in ionic crystals. In the
work of Johnson, Subbaswamy, and Senatore, the calcu-
lation of hyperpolarizability had to rely on the use of
pseudopotentials because of the numerical difhculty asso-
ciated with the kinetic-energy correction. It is therefore
logical and timely to apply the first-principles full band-
structure approach to study the THG of simple ionic in-
sulators with either rocksalt or fluorite structure in the
same fashion as has already been demonstrated for the
cubic semiconductors.

In this paper, we present results of calculations on the
linear and nonlinear optical properties of LIF, LiC1,
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LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KC1, KBr, KI,
Rt)F RbC1 RbBr Rb I CaF2~ SrF2 CdF2 BaF~& MgO ~

CaO, SrO, BaO, MgS, CaS, and SrS. Our major focus is
on the THG coeKcients and the frequency-dependent
dispersion relations for these 27 alkali halides, alkali-
earth Auorides, oxides, and sulfides. Our approach of
covering a large number of crystals for a comprehensive
study is aimed at finding systematic trends in the proper-
ties of a whole class of materials, and in ascertaining the
overall reliability of the band-theoretical method. The
ability to calculate the frequency-dependent nonlinear op-
tical spectrum is significant because most experimental
measurements are carried out at finite frequencies. Also,
nonlinear optical excitations near the band edge will be
very different from that in the long-wavelength limit.
The plan for this paper is as follows. In Sec. II, we brieAy
outline our method and procedures of calculation. Re-
sults for the band structures, and linear dielectric func-
tions, are presented in Sec. III. Section IV deals with re-
sults of third-order nonlinear susceptibilities. In Sec. IV
these results are further discussed in comparison with ex-
perimental data and other existing calculations.

II. METHOD OF CALCVLATION

Our method of calculation is strictly the same as for
the cubic semiconductors. ' The same band-theoretical
method has also been used to study the electronic struc-
ture and linear optical properties of ten semiconducting
wurtzite crystals. Specifically, for each crystal, the
self-consistent band structure using the experimental lat-
tice constant is calculated first by means of the first-
principles OLCAO method. " A full basis set consisting
of atomic orbitals of the valence shell electrons plus the
empty orbitals of the next shell is employed. Each orbital
function is a product of a radial function in the form of
linear combination of Gaussian-type orbitals (GTO s) and
appropriate spherical harmonics. A full basis set is
necessary for nonlinear optical calculation, since the ac-
curacy of the high CB states is crucial.

The density of states (DOS) and the partial DOS are
calculated based on the solutions of the LDA Kohn-
Sham equations at the 89 ab initio k points in the irre-
ducible portion of the Brillouin zone (BZ). The linear op-
tical properties are calculated based on the wave func-
tions at the same 89 k points as were discussed before. '

Past experience indicates that this level of k-point sam-
pling is very adequate for the crystals under study.

The OLCAO method is noted for its e%ciency and ac-
curacy, as documented in many published articles. " In
the present study, we made no specific attempt to optim-
ize the calculation for either the electronic structure or
the optical properties for each individual crystal. It is
possible to improve the results slightly by optimizing the
calculation by making a more judicious choice of basis or
the fitting functions for each crystal. Nevertheless, our
major goal in this paper is to investigate the third-order
nonlinear susceptibility y~ '(co) for a whole class of insu-
lators, and compare the results with experimental mea-
surements' and those obtained by the empirical
method. ' We do not attempt to single out any partic-

ular crystal for a fully optimized treatment.
Because the LDA theory underestimates the band gap

of insulators, it is imperative that we address this prob-
lem in optical studies. The density-functional theory,
and particularly its local approximation, is essentially a
theory for the ground state of interacting electrons in
solids and rnolecules. A single exchange-correlation po-
tential used in the Kohn-Sham equation is not adequate
for insulators because of the discontinuity of the
exchange-correlation potential across the gap re-
gion. The real single-particle excitation gap differs
from that of the LDA gap by a finite amount h. Many
papers have been written on these subjects, and different
methods for gap correction have been deviced and tested
with varying degrees of success. However, the
quasiparticle calculation in the GR'approximation seems
to indicate that the wave functions for the unoccupied
CB, after the self-energy correction, differ very little from
the LDA results. " This gives some justification to the
use of the simple scissor operator scheme in performing
complicated nonlinear optical calculations for insulators.
The scissor operator amounts to a rigid shift of the CB
states such that the experimentally reported gap is repro-
duced. In cubic semiconductors, ' as well as in a
quartz, ' it has been shown that this simple scissor opera-
tor is quite effective in giving good results for nonlinear
optical parameters. This is because the more elaborate
many-body correction apparently makes very little
change in the LDA wave functions as long as the momen-
tum matrix elements (MME's) involved are evaluated ac-
curately.

The nonlinear optical properties for the cubic ionic in-
sulators are calculated using the band approach based on
the analytic formulas presented by Moss, Ghahramani,
and van Driel. These authors have used the full band-
structure approach and a minimal basis semi-ab initio
method to calculate the THG of Si, Ge, and GaAs, and
also ZnSe, ZnTe, and CdTe." We followed their ap-
proach in the calculation of SHG and THG for 18 semi-
conductors, ' except that we employed self-consistent
band structures with a full basis set and a much more
rigorously calculated MME. In the calculation for the
THG, we increase the number k points (with appropriate
weighting factors) in the —,', of the BZ to 505 for summa-
tion over the BZ. This amount of k-point sampling gives
an accuracy of about 5% with respect to the k-space con-
vergence y' '. One may be able to improve the k-space
convergence by employing some kind of interpolation
scheme, but we decided to use only the k points where
the energy eigenvalues and the MME's are calculated ab
initio.

The imaginary part of the complex y'3'(co) function
consists of three contributions corresponding to the
virtual-electron (VE), virtual-hole (VH), and three-state
(3-S) processes. The specific formulas for crystals with
cubic symmetry suitable for computation were listed in
Ref. 3. In the VE and VH processes, four states are in-
volved. For the VE process, one state is in the valence
band (VB) and three in the CB, and the MME products
contain two CB-CB matrix elements. The VH process
consists of three types (VHl, VH2, and VH3), one with



1598 W. Y. CHING, FANQI GAN, AND MING-ZHU HUANG 52

three states in the VB'and one in the CB. The other two
types have two states each in the VB and one in the CB.
Only the last two types contain the CB-CB matrix in the
MME product. In the 3-S process, only three states are
involved, one in the VB and two in the CB, and the MME
product contains no CB-CB matrix element. This 3-S
contribution in X' '(co) is different from the SHG calcula-
tion, in which the MME product contains a CB-CB ma-
trix element in a three-state transition. Since the CB-CB
matrix elements are less accurate for highly excited
states, the VE process, which contains the products of
two CB-CB MME's will be less accurate compared with
the other two processes. As was discussed before, all
three types of processes can make significant contribu-
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In the above expressions, i, j, k, and I are band indexes, U

~
.

~j & is the MME connecting states i and '.

Thus the element ' '
&coy»»(co) corresponds to the case where

the bracket [ ] contains the product of four x corn onents
of P in expressions (2)—(5) above.
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values for s, (0) as listed in Ref. 21. We find that the gen-
eral agreement for c, ,(0) with the measured data is mar-
ginal. The scissor operator improves the agreement on
some crystals, but not for Rb compounds and most of the
alkali-earth compounds. It is not clear whether this has
to do with the LDA theory or the fact that the experi-
mental values may contain some lattice contributions to
Ei(0). In most theoretical work, e, (0) is usually treated
as an input parameter determined by experiment. It has
been pointed out by us in a number of publications that
although the LDA theory underestimates the band gap in
insulators, ' ' ' the optical transition calculation
without the gap correction can actually give better agree-
ment in the peak positions than those with gap correc-
tion. ' ' In this paper, we will not make any de-
tailed analysis of the linear optical spectra or compare
them with existing measurements or other calculations.
It is our hope that our detailed calculations for these
crystals can be a valuable source of information for future
references and comparisons.
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semiconductors, each calculation starts with the zero-
frequency limits gI, '&&(0) and yI2'&2(0), which also test the
CB cuto8' energy that is needed for sufBcient conver-
gence. The cuto6'energy for the THG calculation is usu-
ally less than that needed for the SHG calculation be-
cause the energy denominator in the THG goes as E,
whereas that of the SHG goes as E, where E is the ener-
gy denominator in the expressions for the nonlinear
coefficients. ' The unrestricted high-energy cutofF can
lead to erroneous results because the wave functions ob-
tained from a variational method may not be sufficiently
accurate for high CB states, resulting in a large error in
the CB-CB MME. All calculated y' '(0) values for the
insulators are positive, since it is dominated by the 3S
process which makes a positive contribution to y' '(0).
The CB cutofF' energies and the calculated values for
yI&'&&(0) and y', 2'&2(0) obtained with gap corrections are
listed in Table II. These values vary over two orders of
magnitudes, ranging from 0.011X10 ' esu in Rbp to
6.23 X 10 ' esu in SrS for yP&'»(0). Also listed for com-
parison are the calculated values by Lines using the

bond-orbital method, ' the time-dependent LDA result
of Johnson, Subbaswamy, and Senatore, and the empiri-
cal results using the formula of 8oling, Glass, and
Owyoung as presented by Adair, Chase, and Payne based
on their measured data. ' The measurements are actually
for the nonlinear refractive index n2, which is related to
y' '(0 ) by y' '(0 ) = n 0 n z /3m, where n 0 is the measured
linear refractive index. It should be noted that this con-
version expression difFers from Eq. (2) of Ref. 12 by a fac-
tor of 4, which has to do with the proper definition for
the y' '(0) coefficient. In this paper, we follow the same
definition for y' '(0) as in our study for the semiconduc-
tors, ' and convert all data to the same definition. The
measured values are most likely obtained at the wave-
length of 1 pm, or equivalently at the photon energy of
1.24 eV. The extrapolated values to zero frequency are
expected to be slightly smaller. However, at the present
level of accuracy in both the calculation and measure-
ment, we will ignore this small dN'erence. In principle,
we can obtain the ~y' '(co)

~
values at a specific frequency

from the calculated dispersion relations. Most likely, the

TABLE I. Calculated gap and static dielectric constant for cubic insulators.

Crystal a (A) E, (eV) 6 (eV)
c(0) (Calc. )

no b, corr. with b corr. s(0) (expt. )

LiF
LiC1
LiBr
L1I

4.017
5.129
5.507
6.000

7.65(d)
5.59(d )

4.94(d )

3.55(id)

4.6
3.9
2.7
2.5

4.09
3.50
5.64
3.61

3.60
2.17
3.03
2.30

1.92
2.68
3.00
3.40

NaF
NaC1
NaBr
NaI

4.620
5.630
5.937
6.473

5.77(d )

4.92(d)
4.24(d)
3.80(id )

4.5
3.5
3.2
2.3

2.66
3.48
3.05
2.76

1.74
1.88
1.91
2.49

1.74
2.33
2.60
2.98

KF
KC1
KBr
KI

5.347
6.290
6.600
7.066

6.26(d)
5.98(d )

5.76(d )

5.07(id)

4.3
2.3
1.7
0.8

2.15
2.87
2.62
2.81

1.39
2.43
2.17
2.18

1.84
2.17
2.35
2.63

RbF
RbC1
RbBr
RbI

5.640
6.581
6.854
7.342

8.40(d)
7.80(d)
5.88( id)
4.16(id)

1.6
0.2
1.0
2.2

1.14
1.43
2.00
1.50

1.10
1.38
1.77
1.37

1.93
2.17
2.34
2.59

CaF2
SrF2
CdF2
BaF2

5.460
5.800
5.388
6.200

6.53(d)
6.77(id)
2.01(id)
7.19(id)

4.2
3.5
3.3
1.8

2.02
1.23
8.00
1.12

1.49
1.12
6.90
1.07

2.04
2.06
3.14
2.15

MgO
Cao
SrO
Bao

4.210
4.810
5.160
5.520

5.13(d)
2.91(id)
3.44(id )

2.44(id)

3.2
3.4
2.5
3.0

4.28
3.22
3.04
4.01

3.10
1.66
1.90
2.90

2.95
3.27
3.35
3.68

MgS
Cas
SrS

5.203
5.690
6.020

4.59(id)
3.20(id)
3.70(id )

1.8
2.0
1.2

5.12
4.47
3.68

4.52
3.01
2.78

4.84
4.24
4.09
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photon frequency of interest is within the gap energy,
where the imaginary part of g' '(cu) makes no contribu-
tion. However, the real part of y' '(co) is obtained from
the imaginary part by Kramers-Kronig conversion. This
conversion process tends to reduce accuracy because the
imaginary part can only be calculated up to a finite pho-
ton frequency. The calculated and measured anisotropic
ratios of gI2I2(0) to yI, '»(0) are listed in Table III along
with the experimental values. ' Additional older data on
the anisotropy are also listed for some of the crystals.
These ratios are better indicators for comparison pur-
poses, since systematic errors in both gI, '»(0) and
yIz', z(0) are expected to cancel out. We will discuss these
results and their comparisons in Sec. V.

We have calculated the frequency-dependent THG
dispersion relations for all 27 cubic insulators. Due to
space limitations, we can only present the representative
result, one from each group. Figures 10—16 show the
real parts, imaginary parts, and absolute values of
y't", »(tu) and yI~'»(~) for LiF, NaC1, KI, RbI, CdF„

MgO, and CaS, respectively. The results for the other 20
crystals can be obtained from the Physics Auxiliary Pub-
lication Service. The main feature of interest is the struc-
tures in the dispersion relations. For most crystals, the
THCx dispersion relations have relatively simple features,
consisting of a few peaks. For a few crystals (RbC1,
CaFz, SrF2, CdF2, CaS, and SrS), resonance structures ex-
ist at regions of higher photon energies. The validity and
the significance of these higher-energy resonances cannot
be established at this time. It is also noted that for most
crystals, ~yI&'t, (cu)

~
is always larger than ~yIz', 2(co)

~
except

for KI, RbI, SrF2, CaF2, BaFz, and MgS, where they are
approximately equal. In general, low-frequency struc-
tures in ~yI&It(co)~ and ~yI2Iz(co)~ tend to be at the same
positions. There are exceptions, however. In NaF, RbF,
and BaO, the dominating peak in ~yIz'&2(co)~ shifts to
higher photon energy relative to the same peak in

~yP, '»(co)~. There are also cases (LiF, NaC1, NaBr, KI,
CaFz SrF2, and CdFz) where there exist prominent struc-
tures in the low-energy side of ~g, It(co) ~

that are totally

TABLE II. Calculated third-order susceptibilities A = ~gI", »(0) ~
and B = ~gI2', 2(0) ~

(in units of 10
esu). Experimental values (Ref. 12) are in parentheses. AL, A Jss and AQGQ are calculated values from
Refs. 22, 26, and 12, respectively, converted to ~yI, '»(0) ~. E, is the cutoff energy used in the calculation.

Crystal

Lif
LiCl
LiBr
LiI

E, (eV)

20
30
30
30

A (expt. )

0.052 (0.038)
0.53
1.69
2.84

0.173
1.08
1.93
3.74

A Jss

0.071
0.35
0.62
1.22

A BGQ

0.059

8 (expt. )

0.024 (0.017)
0.37
0.64
1.77

NaF
NaC1
NaBr
NaI

30
35
35
25

0.041 (0.048)
0.32 (0.26)
0.68 (0.56)
1.36

0.13
1.19
2.14
4.58

0.083
0.33
0.57
1.08

0.053
0.37
0.82

0.027 (0.021)
0.20 (0.097)
0.317 (0.237)
0.37

KF
KCl
KBr
KI

25
30
25
25

0.095 (0.108)
0.21 (0.32)
0.59 {0.48)
4.68

0.37
1.36
2.23
4.42

0.095
0.27
0.42
0.77

0.052
0.29
0.56

0.018 (0.032)
0.07 (0.097)
0.156 (0.216)
2.92

RbF
Rbcl
RbBr
RbI
CaFq
SrF2
CdF2
BaF2

Mgo
CaO
Sro
Bao

25
25
25
25
25
30
30
30

30
30
30
30

0.011
0.27
1.35
2.10
0.075 (0.065)
0.070 (0.076)
0.55 (0.65)
0.14 (0.104)

0.40 (0.294)
0.63 (1.00)
1.04 (0.99)
1.10

0.47
1.53
2.34
4.46
0.25
0.334

0.479

0.69
1.44
2.49
4.58

0.13
0.31
0.48
0.81

0.074
0.076
0.23
0.11

0.003
0.077
0.79
1.59
0.039 (0.036)
0.042 (0.045)
0.17 (0.21)
0.077 (0.068)

0.21 (0.142)
0.27 (0.262)
0.55
0.52

MgS
CaS
SrS

25
25
25

2.17
4.82
6.23

4.134
5.487
6.376

1.43
2.80
3.80
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M

I

C)

100

50-
real

imag.

170X10 ' esu in RbI. However, within each series, the
amplitude increases as the Z value of the anion increases.
This is clearly related to the size of the direct band gap at
1. One marked exception is CdF2, which has a rather
small LDA gap of 2.01 eV at I, but a relatively modest
value of 9.6X10 ' esu for the maximum amplitude in
7~2&2(~) l

~

~ 100
M
Q)

I

C)

50-

0

g —50-

~100
150.

100-:
I

C)

50-:
3

r0-I ~ I ~ I ~ ~ I I I I ~ I I I I I ~ I I I I I

real
imag

V. DISCUSSION

The results for the THG in a large number of insulat-
ing crystals presented in Sec. IV enable us to make a
better assessment of the current understanding of the
nonlinear optical properties of ionic insulators. Previous-
ly, self-consistent first-principles calculations were limited
only to alkali halides in the spherical shell approximation
for the charge density in the static limit. There are
several advantages in using the first-principles band-
structure approach to study the ionic solids. First, the

0 2 4 6 8 10
ENERGY(eV)

FIG. 12. Calculated TH& for KI. Notations are the same as
in Fig. 10.

TABLE III. Calculated anisotropic ratio ~&P2', 2(0)
~
/

~yI'&'»(0) ~. Experimental values are in parentheses.

absent in ~yP2'&2(co)~. These minor variations in the spec-
tral features of the THG reAect subtle differences in the
electronic structures of different crystals. There are also
large variations among different crystals in the ampli-
tudes of ~gP&'»(co)~ and ~yPz'&2(c0)~, ranging from a low
value of 0. 12X10 ' esu in KR to a high value of

LiF
LiC1
LiBr
LiI

NaF
NaC1
NaBr
NaI

o.46 (o.46,' o.4s')
0.79
0.38
0.62

0.66 (0.45')
0.38 (0.37,' 0.43")

0.47 (0.42')
0.27

M

I

C3

10-

RbI

real
imag

KF
KC1
KBr
KI

0.19 (0.29')
Q33 (Q3Q~ Q30b)
0.26 (0.45,' 0.37")

0.62

0 ~
I I I I I ~ I ~ I ) I I I I ~ ~ ~ I

/
I I I ~ I ~ I 0 I

/
I ~ I ~ I 1 I ~ I [ I I I I I I I I I—1

RbF
RbC1
RbBr
RbI

0.27
0.29
0.59
0.76

M
Q3

I

M
Q3

I

C3

10-

—10, "

15-:

10-:

II
I I
I 'I

I ~
I 1

real
imag

CaF,
SrFz
CdF&
BaF2

Mgo
Cao
SrO
BaO

o.s2 (o.s6,' o.so," 0.44')
0.60 (0.60,' 0.68')
0 31 (0 32 ' 0 32 )

0.55 (0.66,' 0.66')

0.53 (0.48,' 0.55 )

0.43 (0.26')
0.53
0.47

5-

0 I 1
/

I ~ I I ~
$

I \ I I
/

~ I I
/

~ I I I I I ~

4 6 8 10
ENERGY(eV)

FICx. 13. Calculated THCx for RbI. Notations are the same
as in Fig. 10.

MgS
CaS
SrS

'Reference 12.
"Reference 69.
'Reference 70.

0.66
0.58
0.61
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FIG. 14. Calculated THG for CaF2. Notations are the same
as in Fig. 10.

FIG. 16. Calculated THG for CaS. Notations are the same
as in Fig. 10.
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FIG. 15. Calculated THG for Mgo. Notations are the same
as in Fig. 10.

0-;-

crystal-fj. e!d and charge-transfer effects are fully reflected
in the self-consistent calculation. Second, the overlap of
the cation and anion wave functions is accurately ac-
counted for. Third, interactions up to all near neighbors
are included, not just the nearest neighbors. Last but not
least, the anisotropic effects, which are important for cer-

tain nonlinear optical responses such as in the intensity of
Raman scattering, are taken into account in a natural
way.

In reviewing the calculated data in Table II, we notice
that y '(0) within each group can vary over two orders
of magnitude as the size of the anion changes; whereas
for a fixed anion, the g' '(0) values for crystals of
different cations are of the same order of magnitude.
This is in agreement with the hyperpolarizability calcula-
tion of Johnson, Subbaswamy, and Senatore for alkali
halides, and is mainly because the anion has most of the
valence electronic charge in an ionic crystal. However,
for a fixed anion, the calculated y' '(0) values do not
scale with the size of the cation. This is because the
present full band-structure approach involves excited CB
states, which can vary considerably even for isoelectronic
crystals with different cations.

To assess the validity of the calculated results, in Fig.
17 we plot the calculated values of iy'„Ii(0)i and
ig'iz', 2(0)i against the measured ones for some of the crys-
tals. The data are taken from the measurement of Adair,
Chase, and Payne' using nearly degenerate three-wave
mixing techniques for the relative values of n2. Since
calibrations are needed, the data obtained in this way
may have some uncertainty compared to absolute mea-
surements. However, these data are much more reliable
than those for cubic semiconductors, where large varia-
tions in the measured data for the same crystal make
comparison with theory more dificult. ' As can be seen
from Fig. 17, the agreement between theory and experi-
ment for ~y'i, '»(0)~ and igzIz(0)~ for the 14 crystals over
a wide range of magnitude is quite satisfactory. For the
alkali-earth Auorides, the measured data show that CdF2
has y' '(0) an order of magnitude greater than the rest in
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1.00.
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FIG. 17. Calculated ~y", ,'»(01~(b, ) and ~y'&&'»(0) ~(0) vs the
measured data from Ref. 12 for the 13 crystals: LiF, NaF,
NaCl, NaBr, KF, KCl, KBr, CaF2, SrF2, CdF~, BaF&, MgO, and
CaO. (See Table II.)

the series. This unique feature is faithfully reproduced by
our calculation. In general, the calculated values appear
to be larger than the measured ones. The differences are
of the same order of magnitude as the differences between
different measurements. If the gaps were not corrected,
the y( '(0) values will be slightly larger, moving away
from the good agreement with data. Thus we believe that
the gap correction is very important for nonlinear optical
calculations using the full band-structure approach. One
may recall that the improvement of the linear optical
constant using the scissor operator is not a clear-cut case.
However, the y( '(0) values for the crystals studied here
vary over two orders of magnitude, while that of E(0)
values vary by only a factor of 2. Hence the requirement
for accuracy in the linear case is far more stringent than
in the nonlinear case.

In Fig. 18, we plot the calculated and experimental ra-

0.8

C4

Q)

C3

CQ

02

0.6-

0.4--.

0.2-

0.0 I I ~ I I I I ~ I I I I ~ I I I I I 1 1 ~ I I I I I 'I I I I I I I ~ I I I I

0.0 0.2 0.4 0.6 0.8

(0)/X (0)(cate. )

Flax. 18. Calculated ratio of ~yP2', 2(01~/~yP, '»(0)~ vs experi-
mental ones for the 13 crystals. Data converted from Ref. 12.
(See Table III.)

tios of g'(2'(2(0)
l
/lg')') &(0) l

for the same 13 crystals (data
for SrO was not presented). As mentioned above, this ra-
tio is a more reliable indicator to test the band model.
We also note that this ratio from different measurements
for the same crystal are quite close. Of the 13 crystals,
only KBr, KF, and BaF2 (CaO and NaF) have somewhat
underestimated (overestimated) experimental ratios. The
agreement for other crystals is very satisfactory. Only
KC1 and CdF2 have a ratio close to the isotropic value of
3 Johnson and Subbaswamy ' also calculated the aniso-
tropic ratios in hyperpolarizabilities in alkali halides, and
found them to be in the range of 0.3—0.37. Their calcu-
lated anisotropy is much smaller than the measured
values, and may be attributed to the use of the spherical
solid approximation in their calculation.

It is also of interest to compare the present result with
the other 6rst-principles calculation of Johnson, Sub-
baswamy, and Senatore. . For alkali Auorides and
chlorides, the results of the two calculations are reason-
ably close. However, for bromides and iodides, our cal-
culated results are consistently larger than those of Ref.
26. We may attribute this difference to the use of pseudo-
potentials in the work of Ref. 26, which appears to be
inadequate for crystals with heavy anions. The calculat-
ed value for ~yP, '»(0)

~
should also be compared with that

Qf Lines, ' using the empirical bond-orbital model.
(Limitation of the simple model precludes the calculation
of ~gzIz(0) ~.) As can be seen, for most crystals, the abso-
lute values from the bond-orbital results are much larger
than the band-structure results, although the relative
values appear to be much closer. Of the 11 halides for
which the measured data are available, Lines renormal-
ized both the experimental values and his calculated data
for a relative comparison. He then found the root-mean-
square deviation from the experimental data is only 9%%uo

for the 11 halides crystals as a group. In this regard,
the close agreement in the absolute values between our
calculation and the data of Ref. 12 clearly demonstrates
the predictive power of the present 6rst-principles ap-
proach.

There are several directions in which the present calcu-
lations can be further improved. The inclusion of the
local-field correction is probably not very important for
ionic solids. This was the main conclusion of the bond-
orbital calculation. ' The use of a scissor operator to
address the deficiency in the LDA theory appears to be
adequate at the present level of precision. Inclusion of
the self-energy correction and the self-interaction correc-
tion in the band-structure calculation seems to be a logi-
cal next step. However, such calculations for a large
number of crystals, or for crystals with complicated
structures, may be computationally too demanding.
Another important aspect of improvement is the accura-
cy of the high CB wave functions within the LDA
scheme. This can be partially accomplished by further
increasing the basis size or by using different types of or-
bitals for basis expansion. Again, this approach will also
increase computational demand tremendously. Given the
fact that reliable experimental data on these crystals are
still rather scarce, theoretical calculations at the present
level of accuracy can provide much impetus for progress
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in this area. The most promising nonlinear optical ma-
terials suitable for various optoelectronic applications are
either organic polymers or inorganic crystals with struc-
tures much more complicated than cubic insulators.
Covalent or partially covalent chemical bonding may be
involved. The present full band-structure approach based
on the LDA-OLCAO method is fully capable of studying
the nonlinear optical properties of such complex systems
with no conceivable difhculties other than the computa-
tional power. The ability to calculate the dispersion rela-

tions at finite frequencies for all nonvanishing elements of
the nonlinear susceptibility tensor is the strongest point
of the present method, which is clearly beyond simple
empirical models.
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