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Effect of an oblique magnetic field on the superparamagnetic relaxation time
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The effect of a constant magnetic field, applied at an angle P to the easy axis of magnetization, on the Neel
relaxation time r of a single domain ferromagnetic particle (with uniaxial anisotropy) is studied by calculating
the lowest nonvanishing eigenvalue k, (the escape rate) of the appropriate Fokker-Planck equation using
matrix methods. The effect is investigated by plotting kl versus the anisotropy parameter n for various values

of P, and the ratio h =g/2a t where g is the external field parameter and k& versus P for various h values (for
rotation of the magnetization vector M both in a plane and in three dimensions). If M rotates in a plane the

curve of k& versus 1/I is symmetric about t/t=vrl4 in the range 0(t/1(m/2 and significant decrease in r with

increasing 1/I is predicted for large ( and n The m. aximum decrease in r occurs at t/mI/4 whereupon r
increases again to the /=0 value at P=rr/2. For rotation of M in three dimensions, the curve of X, versus P
(0(~7r) is symmetric about ~ 7r/2. Thus the maximum decrease in r again occurs at P= 7r/4 with maximum

increase to a value exceeding that at /=0 (i.e., with the field applied along the polar axis with that axis taken
as the easy axis), at t/r=rr/2 (field applied along the equator), the /=0 value being again attained at $=7r The.
results are shown to be consistent with the behavior predicted by the Kramers theory of the rate of escape of
particles over potential barriers. This theory when applied to the potential barriers for the equatorial orientation
of the field for rotation in three dimensions yields a simple approximate formula for the escape rate which is
in reasonable agreement with the exact k& calculated from the Fokker-Planck equation. Pfeiffer's approximate
formula for the barrier height as a function of tr [H. Pfeiffer, Phys. Status Solidi 122, 377 (1990)] is shown to
be in reasonable agreement with our results.

I. INTRODUCTION

The effect of an external constant magnetic field 8 on the
longitudinal relaxation time ~ of fine single-domain ferro-
magnetic particles having simple uniaxial anisotropy may be
studied' by calculating the smallest nonvanishing eigen-
value k, (the escape rate) of the Fokker-Planck equation.
This equation governs the time evolution of the density of
magnetic moment orientations W(@,g, t) on a sphere of ra-
dius M, (the mean magnetization of a nonrelaxing particle),
the orientation of the magnetic moment M being specified by
the spherical polar coordinates (6,P). For simple uniaxial
anisotropy the ratio of the potential energy v V to the thermal
energy kT is

vV

kT
= —a(e n) —g(e h).

In Eq. (I), u is the volume of the single-domain particle;
n=KvlkT is the anisotropy barrier height parameter; K is
the anisotropy constant; P=uM, H/kT is the external field
parameter; e, n, and h are unit vectors in the direction of the
magnetization vector M, the internal anisotropy (or easy)
axis, and 8, respectively.

The Neel relaxation time, which is the time required for
the magnetization to surmount the potential barrier given by
Eq. (I), is related' to k, by the equation

(2)
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where rN is the diffusional relaxation time given by

Pr/M, (1+a )
2a'

and

a= yyM,

y is the gyromagnetic ratio, y is a phenomenological damp-
ing constant, ' with units such that

of the first order. The lowest nonvanishing root of the char-
acteristic equation of such a set, when truncated at the num-
ber of equations necessary to achieve convergence, then
yields X&.

We also report the behavior of k& for rotation of M in a
plane because this restriction which confines the recurrence
relations to a single variable considerably reduces the nu-
merical difficulties in computing k, for large ( and ot (the
range of parameter values, which is of most interest) without
sacrificing most of the important qualitative features associ-
ated with the fact that H is no longer parallel to n.

In the notation of Ref. 1

1
27N

The original calculations of X& by Brown' and Aharoni for
rotation of M in three dimensions were carried out under the
assumption that H is parallel to the easy axis n. This restric-
tion allowed them to retain the axial synimetry associated
with the zero external field solution' thus simplifying the
solution of the Fokker-Planck equation as only the zonal har-
monics are involved. In particular, Aharoni showed by a
numerical solution of the Fokker-Planck equation that
Brown's' asymptotic formula for k& namely,

II. DIFFERENTIAL-RECURRENCK RELATIONS
FOR ROTATION IN THREE DIMENSIONS

In order to discuss rotation of M in 3D we may suppose
without significant loss of generality that the spherical polar
coordinates of e, n, and h are (4;P), (0,0), and ($,0) that is
the field is in the (x-z) plane or applied along a line of
longitude. Thus the potential of Eq. (1) is of the form (it is
most useful for the purpose of calculations involving the
spherical harmonics to take the anisotropy axis as the polar
axis)

PV(6, P) = n sin 6—g cost/t cos6

—( sing sin8 cosP,

gt=-vr ' a (1 —h ){(1+h)exp[—n(1+h) ]

+(1—h)exp[ —ct(1 —h) ]}, (4)

with

V( P ~ 2m 7r ) = V( @),

m=0, 1,2, 3, .. . ,~.
derived using the Kramers escape rate theory, provides a
good approximation to X& for h~0.4 and a~2. If h tends to
zero Eq. (4) becomes 1.5-

1.25-

yielding the well-known formula'

—3/2 ne,
+N 2

so that the Neel relaxation time is

v(e, o)
0.75-

0.5-

0.25-

0 "-"t

M, (1+a ) +~ 0

A
50 100 150

In this paper we report the behavior of X, when the assump-
tion that Hlln is abandoned, as in practice the easy axis is in
a random position. The calculation proceeds by reducing the
problem of solving the Fokker-Planck equations pertaining
to the rotation of M both in three dimensions (3D) and in a
plane to the solution of sets of differential-recurrence rela-
tions. These arise by expanding the solution for rotation of
M in 3D as a series of normalized spherical harmonics and
for rotation of M in a plane as a series of circular functions.
The recurrence relations for rotation in a plane depend on the
single integer variable p. On the other hand, for rotation in
3D, apart from the special case of axial symmetry where the
field is parallel to the easy axis, two integers l and m will be
involved. Such recurrence relations may in turn be arranged
as an infinite set of simultaneous linear differential equations

FIG. 1. Variation with polar angle 6 of the potential function

U(8, 0) = a 'PV(8, 0) in the x-z plane for various values of /the
angle between the external field and the easy axis: dots are h=0,
solid line /=0, small dashed line P= vr/4, large dashed line P= m/2

(the last three curves are drawn for h =0.25). The bistable character
of the potential is preserved in all cases. B& and B2 are the potential
barriers shown for /=0. 8z and 8s are the angular positions of the
minima, 6 is the angular position of the maximum corresponding
to a saddle point of V(8,P) and occurs near the equator. 6„corre-
sponds to a deep potential minimum in the /=0, longitude near the
north pole, 8s to a shallow minimum in the /=0 longitude near the
south pole. If the potential is extended to the unit circle 0~6~2m,
there is a stationary point 6c which corresponds to a simple maxi-
mum of V(8,P) over the whole unit sphere and so is of no interest
in the present problem.
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8W p 8 l BV 1 BV

p 01 1 BV 1 BV
+ W+ — W .

sin@ 8@ sin@ 8@ a 86 (7)

For the purpose of the discussion of P, we are interested in
the behavior of this potential in the x-z plane, @=0 where
V(6, @)= V(6,0) and in the range 0~6~ m. since )=0 con-
tains a saddle point of V(6, P). The variation of V(6,0) is
shown as a function of 6 in Fig. 1 for h =0.25. It is apparent
if h is less than a certain critical value h, which varies (see
Sec. IV) from 0.5 for $=7r/4 to 1 for /=0, m/2, that V(6,0)
has two minima separated by a maximum [which corre-
sponds to a saddle point of V(6,$)] and two potential bam-
ers B i and Bz. If h )h, the two minima structure of the
potential disappears and V(6,0) has a simple maximum. For
h=h, the second minimum becomes a point of inAexion.
The two minima have in general different energies so that the
energy barriers are not equal and only part of the magnetic
moment relaxes. On account of the inequality of the barriers
the chief contribution to X, for large n and h &h, will be that
due to the magnetic moment surmounting the lower barrier
Bp.

The Fokker-Planck equation derived by Brown' for the
density of orientations of M is [with V= V(6, P), and 0 the
rotational operator eXV]

is the angular part of the Laplacian, that is

1 a t al I a2
0 = sin@ ! +

sin@ 86
~ 86) sin 4. 8$

The terms in a ' in Eq. (7) are precessional or gyromagnetic
terms which give rise to ferromagnetic resonance at high
frequencies. If the potential is axially symmetric so that
V= V(6) as holds if Hlln then these terms do not contribute
to the longitudinal relaxation time. On the other hand, if H is
not parallel to n as in the present problem these terms may
strictly only be neglected if the phenomenological damping
coefficient y is such that

rgyM, && 1,

while in practice rgyM, is of order 0.2—1. However, the
main contribution of these terms is to the high-frequency
response, thus we shall suppose that they may be ignored so
reducing the numerical problems associated with the calcu-
lation of P i from the set of differential-recurrence relations
arising from Eq. (7).

In order to calculate X, we seek the aftereffect solution of
the Fokker-Planck equation following a small change AH in
H. Thus at times t~0 the system was at equilibrium and the
probability density W was given by the Boltzmann distribu-
tion

exp[ —n sin 6+(g+ (,)(cos8 cosP+ sin@ cos@ sing)]
W(6, $,0) = W(+( (6,P) =

fo fo exp[ —u sin 6+(g+ g&)(cos8 cos!I't+ sin@ cos@ sing)]sin6d8dP

—= W&(6, P)(1+ g& cosP[cos6 —(cos6)o]+ (, sing[sin@ cosP —(sin@ cosd @)o]).

The statistical average YI (6,P)=N& P, (cos6)e' —l~m~l,

fo"fo( ) W~(6, $)sin@d@d@

f o
"f

o W&(6, P) sin8d6d@

is to be evaluated in the absence of the perturbation

UM, AH

This condition is denoted by the subscript zero on the angu-
lar brackets. As t~~, W(6, @,t) tends to the equilibrium
distribution W&(6, P). The aftereffect solution is sought in
the form of the Laplace series

YI =(—1) Y,* (10)

(2l+ 1)(l—m)!
N/ = —1) 4 m(l+ m)!

The P P(x) are defined by (x=cos 6)

x2)m/2 dL+m

P, (x) = . . .+ (x —1)'
dx

where the asterisk denotes the complex conjugate. The P,
are the associated Legendre functions and the normalization
constants are

W(&, 4', t) = X X ai, (t) Yi, (+,4)
1=0 m= —1

and a& =(—1)at* since W is real. The form of the solu-
tion chosen ensures that W and its derivatives are finite at the
poles 6=0, vr of the sphere and are periodic in P.

The Y, (8,@) are the normalized spherical harmonics
defined by

which allows us to define P P(x) for negative m as

(l —m)!
P, (x)=(—1) P, (x)

and P,(x) is the Legendre polynomial of order l. This sym-
metry relation is very important as it avoids the necessity of
solving differential-recurrence relations for negative m. The
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potential of Eq. (6) may be expressed in terms of the normal-
ized spherical harmonics as follows:

(2
PV= u

16
Y2 o

—$ cosp
4~

~i,o

2'
+ ( stnt

3 (Yl, l Yl, —1).

BW P
2v~ =A W+ —(WA V —VA W+0 VW) (12)

Bf 2

We also note that (neglecting the gyromagnetic terms) the
Fokker-Planck equation may be written in the form which
most readily allows us to exploit the properties of the F,
namely

and

&'Yi, (~ 0)= l(—l+1)YI, (»4).
Equation (12) follows from the identity

V (WVV) =-,'[WV V+V (WV) —VV W]

with A replacing V.
On substituting Eq. (9) into Eq. (12) and using the or-

thogonality properties of the YI, namely

f2~ l m

Y„~YP sin6d@dg= 8~ ~8~
& @=o& a=o "' '

together with the recurrence relations for Y, , Y, ,„,
p ~~ m ~ ~~, —] ~~ m we obtain the following set of

differential-recurrence relations for the expansion coeffi-
cients a, of the Laplace series of Eq. (9):

( (l+1)
2&~xiI +l(l+1)a, =2a (l —m —1)(l+m)(l —m)(l+m) l(l+1) —3m~

(2l —3)(2l+ 1) ' ' (2l —1)(2l+ 3)

l

2l+3
(l —m+2)(i+m+2)(l —m+ 1)(l+m+ 1)

(2l+ 1)(2l+5) &I+2 m

(l —m) (l+ m)

(2l 1)(2l+ 1) —,m

(l —m+ 1)(l+m+ 1)
(2l+ 1)(2l+ 3)

t'

+ —( sin P (l+ 1)2

(l —m —1)(l—m) (l+ m+ 2)(l+ m+ 1)
(2l —1)(2l+1) ' + (2l+1)(2l+3)

(l+m —1)(l+m) (l —m+2)(l —m+1)
(2l —1)(2l+ 1) ' ' ' (2l+ 1)(2l+ 3)

These in turn may be written as a set of differential-recurrence relations for the decay (aftereffect) functions c, (t) which are
the averages of the real solid harmonics. We have

c, (t) = (PP(cos@)cosm P) —(PP(cos@)

cosmic)o,

where the symbol ( )p indicates that the averages are to be calculated in the absence of the perturbation AH and

a, m+( —1) a,
(PI (cos@)cosm @)= 2ap pN/, m

«(~/ j
ap pNI

where the c, (t) satisfy

(l+ 1)(l+m —l)(l+m)
(2l —1)(2l+ 1)

l(l+ 1)—3m l(l —m+2)(l —m+ 1)
(2l —1)(2l+ 3) ' (2l+ 1)(2l+ 3)

( cosP
+ t (1+ 1 )(l+ m) c& & m

—l(l —m+ 1)c~+ t m]

g sing
+ [(1+1)(l+m —1)(1+m)c& & t+ l(l —m+2)(l —m+ 1)c~+ &2 2l+1
—(l+ 1)cI t m+ t

—
lcm'+ i m+ i],
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1.5

1.25
F(8,t) = g a„(t)e (18)

0.75-
0.5;

0.25-!
0 0%

—0.25 I

since F is real and

a p=a„*(t)

which ensures that F(8, t) and its derivatives are periodic in
0, with

50 100 150 200 250 300 350 a „(t)IPO

ao
(19)

FIG. 2. Variation with plane polar angle 8 of the potential fonc-
tion U(8) for rotation in a plane: dots are h=0, solid line i/r=0,
small dashed line ~m/4, large dashed line i/I=sr/2 (the last three
curves are drawn for h=0.25). The metastable character of one
cycle of the potential is preserved in all cases.

which leads to the differential-recurrence relation for the af-
tereffect functions c„(t)

p kp—cp+ —cp= [e '~cp i
—e'~cp+, ]

1V VN

which is a nine-term differential-recurrence relation for the
c& . The terms prefixed by n are those which arise from
simple uniaxial anisotropy. The (cos P and (sin P terms
arise from the longitudinal and transverse components of H.
In particular the decay function of the magnetization is

where

cIp
[Cp —2 Cp+2]~

+N

„(t)=( '"') —( '"')o=f„(t)+ 'g„(t)

b(t) =nM, [c sonic oi(t)+ sin/et i(t)], (15)

where n is the number of particles per unit volume. If the
gyromagnetic effects had been included, terms in
(P t (cos t))sin mP) and their l, m differences would appear
in our Eq. (14) so increasing the numerical complexity of the
calculations required to determine X& because of the increase
in the number of terms in the differential-recurrence relation.

Equation (20) may be conveniently arranged as a set of si-
multaneous linear differential-recurrence relations for the
sine and cosine averages f„(t) and gp(t) namely

df„p'f„~p 6+ =
2 (f„2 f„+2)+—

2 [cosp(fp, f„+,)—
T~ 7N 7~

—»n0(g„—1+g +1)]

III. DIFFERENTIAL-RECURRENCE RELATIONS
FOR ROTATION IN A PLANE

Equation (7) pertains to rotation of the magnetization vec-
tor M in 3D. If M is constrained to rotate in the X-F plane,
the corresponding Fokker-Planck equation is of the form

dgp p Ap A+ g 2 (g —2 g +2)+ 2 [»nlrb(f„—1
+N +N +N

+fp+, )+cosA(gp, —g„+,)], (21)

f p=fp-so avoiding the need to solve Eq. (20) for negative p because

aF a I' aV~ a'F
8 F + (16) g —p= gp.

where F(8, t) is now the probability density of orientations
of M on a circle of radius M, with 0 the plane polar angle
specifying the orientation of M and the potential energy
function is (Fig. 2)

P V( 8) = n sin 8—$ cos( 8—P),

0~ 0~2m (17)

with V defined elsewhere by periodicity. Equation (17) dif-
fers as shown in Fig. 2 from V(8,0) because the range of 8 is
[0,2vr] so that V(0) for h~h, has two maxima and two
minima in one cycle. We note that r~ in Eq. (16) et seq. is
twice the value given by Eq. (3) as is appropriate for rotation
in a plane. The aftereffect solution may be found as a Fourier
series

The decay function of the magnetization is

b(t) =nM, [c spoof (tp)+ sinPgp(t)]. (22)

X
&
=4m 'ue, n-2,

yielding rlv~ —=(m/4)(e /n).

We emphasize that Eq. (20) is a five-term differential-
recurrence relation in the single variable p rather than the
nine-term one of the c, in the pair of variables, (l,m),
where the range of m is 2l+ 1 so posing a much easier com-
putational task while reproducing many qualitative features
of the three-dimensional problem. In order to discuss the
calculation of )t, from Eq. (14) or (21), we must now
describe' the behavior of the potential energy Eq. (6) or (17)
as a function of the applied field H. In particular, we note
for h =0 the analogous result to Eq. (5)
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IV. BEHAVIOR OF THE POTENTIAL ENERGY tan@= —(tang)" (32)

We consider the detailed calculation of the behavior of the
potential energy as a function of the applied field H for Eq.
(6) (rotation in 3D) as the calculation for rotation in a plane
is essentially similar. We first rewrite Eq. (6) in the form
(0~6~~, 0~)~2~)

Pl/(~ 4)
U(6, P) = =sin 6 —2h(cost// cos8

where

+ sing sin4. cos@),

h= 2' (24)

The stationary points occur for /=0 and P=m. The station-
ary point for P=m corresponds to a maximum of Eq. (23)
and so is of no interest. The stationary points for /=0 cor-
respond to a saddle point of Eq. (23) at 8 and minima at 6A
and 6~ for h(h, . The saddle point is generally in the equa-
torial region, while 6~ and 6~ lie in the north and south
polar regions, respectively.

The two equilibrium directions of the magnetization and
their associated polar angles 8z,6~ lie" in the x-z plane
(/=0) and are determined by the conditions for a minimum
of U(6,0) namely' '

BU BU
g2 ,&0. (25)

The position of the saddle point follows from the conditions
for a maximum of U(6,0), namely,

BU BU
g2 &0 (26)

BU BU
g2 (27)

Equation (27) now yields

1—sin28= —/t, sin(6 —ti/), (28)

that is

cos2 6= —h, cos( 8—P) (29)

and the critical value of the ratio of field to barrier height
parameter h, at which the potential loses its bistable charac-
ter follows from the condition for a double root (point of
inflexion) of U(t),0), namely,

so that with Eq. (28)

sin@ cos6
h, =—

sinter cosP —cos6 sini//

1

(
'

pl /3 3/2

cosi// 1+'
(cos /

(33)

h = 1
c

(COS2/3 p+ Sin2/3 p) 3 '

Equation (33) may also be written in terms of tan i// as

(34)

(1+tan tP)"
c [ 1 + ( tan y,)2/3] 3/2 (35)

The Stoner-Wohlfahrt calculation" ' we have just outlined,
leads to the equation that determines the value of h at which
the potential barrier vanishes as a function of i//, namely,

(1—h, ) —'4'h, sin 2/=0. (36)

The corresponding value of tan P satisfies the biquadratic
equation

27h,
tan i//+tan i// 2 —

2 3 + 1=0.
(1 —h, )

(37)

It should be noted that in the calculations of Stoner and
Wohlfahrt'3 and that of Pfeiffer"' the external field axis is
taken as the polar axis. Thus in their calculations the quan-
tities (6—

i//) and 4. in Eq. (30) are interchanged. In their
coordinate system, Eq. (30) would read

tan2(8 —
t//) =2 tan@. (38)

Our choice of angles has the merit that it is much easier to
derive the set of differential-recurrence relations for the cI,„
using such a coordinate system. Equation (33) also holds for
planar rotation, where we recall that in this case the polar
angle 6 is replaced by the plane polar angle 8 with
0~ 0~2m.

It is evident' (referring to rotation in 3D) from Eq. (36)
(from the requirement for real solutions) that ~h, ~

lies in the
range I/2~~h, ~-l, the value ~h, ~=l occurring for /=0 or
m/2 and (h, ~

=1/2 for i//=m/4, hence one would expect that
the greatest increase in the value of )i., (lowering of the Neel
time) would occur at i//=m/4, 3'/4 The corresp. onding criti-
cal values of tl are, from Eqs. (31) and (37), 3m/4 and m/4.

In general for $40 it is not particularly simple to evaluate
the various derivatives and hence the barrier heights B, and

B2 as a function of h and i/i from the Stoner-Wohlfahrt analy-
sis given above. However, for particular values of i//; e.g. ,
/=0, we easily find that

or with

tan26= 2tan(8 —
i//) (30) Bi = a(1+h)2,

B2= n(1 —h),

(39)

(40)

tan@= t

t = —tang

the only real root of which is [the range of 8 is (O, m)]

(31)

Bi =82= u(1 —h) (41)

and the potential has the asymmetric bistable form shown in
Fig. 1. For i//= vr/2, on the other hand, the barriers B, and 82
coincide so that
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and the potential assumes a symmetric bistable form reminis-
cent of that for h=O (see Fig. 1). For other values of P,
Pfeiffer"' who studied the present problem in the discrete
orientation approximation, has shown by a numerical analy-
sis of the Stoner-Wohlfahrt theory, that the lower barrier
height B2 which determines almost entirely the nature of the
relaxation process is given by the approximate expression

0.86+1.14h (rP)

h. (0)

where

where

P1= P12+ I'21 ~

Vv( y )
1/2

p, p
N

sine e PI-'-me

(i=1, j=2 or i=2, j=1), (45)

where h, is to be calculated from Eq. (34). In general for
rotation of M in space the potential retains its asymmetric
bistable form for 0(h(h, and $42r/2 Fur. thermore, for
1/t= vrl4, the potential barrier B2 is a minimum with h, =0.5.

Analogous remarks apply to the potential of Eq. (17) per-
taining to rotation of M in a plane, making due allowance for
the fact that the potential is now periodic in 8 with period
2 2r (Fig. 2) so that four potential barriers B, ,B2,B3,B4 will
exist in one cycle of the potential. Hence for /=0, and
O~h&1 one cycle of the potential has a symmetric meta-
stable form each of the low barriers coincide, and have
height u(1 —h) while the height of the high barriers is
n(1+h) . Thus the escape routes at 8=0 and 22r are severely
curtailed. For p= 2r/4, B2 is a minimum with h, =0.5 just as
in 30 rotation, and a cycle of the potential has an asymmet-
ric metastable form. For P=m/2, the asymmetrical meta-
stable form is retained, the escape route at 0=0 being se-
verely curtailed by the high left-hand barrier n(1+h) .
However, at 8=2m particles may easily enter from the right
by crossing the barrier n(1 —h) . Thus unlike rotation in 3D
the relaxation time for /=0 is the same as for $=2r/2 if M is
constrained to rotate in a plane. It should be noted taking
account of the periodic character of the potential that the
1/t= m/2 potential is just the negative of the 1)'1=0 one. We
remark that the metastable character of the relaxation process
for rotation in a plane is preserved in the limit h~O as the
potential executes two oscillations in 0(0&2m so that there
are now four equal potential barriers.

V. APPROXIMATE EXPRESSIONS FOR I1.1(1/I)

The foregoing discussion of the behavior of the potential
barriers as a function of P suggests that the Kramers ap-
proach used by Brown to derive a formula for k, (P) for Hlln,

namely [Eq. (4)],

11. 1
——2r ' n ' (1 —h )((I+h)exp[ —u(1+h) ]

+ ( 1 —h) exp[ —n( 1 —h) ]),
h~0.4, u~2 may be used with suitable modification to treat
the orientation p= 2r/2, i.e., HJ n. We note in passing that the
leading term in Eq. (43) is often ignored so that

Vi = V"(0), V2= V"(2r).

The lowest eigenvalue X, in our notation is then

11 1
= T„(v12+ v21).

Equation (43) then follows from Eq. (45), the quantities
V", , V"(6 ), B;=p[V(6 ) —V;] being evaluated from Eq.
(23) with /=0, /=0.

Now for a field applied perpendicular to the easy axis, i.e.,
along the equator the potential is a symmetric bistable one
where the barrier heights B1 and B2 are coincident and equal
so that

B,=B2=u(1 —h) . (46)

This suggests at a cursory glance that the barrier crossing
process could be described by Eq. (5) with n replaced by Eq.
(46). Thus

)1., !
——=2m. " u ' (1—h) exp[ —n(1 —h) ],

n(1 —h) ~2. (47)

PU(6, 0) = u(sin 6—2h sin@).

This function, unlike the case /=0 which has minima at
6=0 and 6=~ and a maximum at 6 =cos ' h, has minima
at 6=@A=sin h and 6~=~—sin h and a central maxi-' —1 ~ -1

mum at 6 =m/2. In order to apply Brown's approach cor-
rectly, we consider a potential which has minima at 6A and
(2r—6„)and a maximum at 6 . This allows one to calculate
an asymptotic formula for k, (2r/2) and may very easily be
extended to all P values as we demonstrate at the end of this
section. We first recall that Eq. (7) has the form of the con-
tinuity equation

Such an approach is however incorrect in this case since the
fundamental formula Eq. (45) on which Eq. (47) is based
must be modified as the form of the potential function
PV(8,0) for $=2r/2 is

I1. ,(0)—= 2r " u ' (1 —h )i(I —h)exp[ —n(1 —h) ]J.
(44)

BW
+div J=O,

Bt
(49)

This corresponds to ignoring the rate of escape of particles
over the high barrier 81 in Fig. 1.

Equation (43) is derived from Brown's general formula
for the reciprocal p1 of the longest time constant for an axi-
ally symmetric potential which has minima at 6=0, and
6=m and a maximum at 6=6, namely,

where J is a surface current density of representative points
on the unit sphere with components

—P ) BV 1 8V~ 1 BW
Jg= TV—

27.~ (88 a sin@ 8@) 27.~ 86 '
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P 1 BV 1 gVi 1 1 BW
1 + W—2~„a aa sino a@] 2r~ sine ay

(51)

t oo

sin P (~&) —P[(~—&) ] "(&)dy

8W
=0,

Bt
(52)

Hence by the continuity equation (49)

We shall now, following the Kramers transition state
theory' ' assume that most of the representative points on
the unit sphere are concentrated at the energy minima of
V(8,0) where they are in thermal equilibrium so that W has
the Maxwell-Boltzmann distribution. Thus' only a minute
fraction of the representative points is outside the energy
minima so allowing a smaIl diffusion current between them
which is a manifestation of the nonequilibrium conditions.
We also assume that the system is quasistationary in that
between the energy minima

sin@ e-~v~~A)
A

In like manner

2'
PV ( t~'w)

I —= sin@ e ~ ~ A)
2 A

p V"(m —6g)
(61)

In the region 6&(6&62 in which the maximum 6 lies we
saw that W is very small but still sufficient to maintain a
small net How of representative points from the overpopu-
lated towards the underpopulated minimum. If we assume
that the gyromagnetic terms in Eqs. (50) and (51) may be
neglected then the How may be approximated sufficiently' by
a zero divergence current density so that the total current in
the (x,z) plane is

div J=O. I=2m sin@J@. (62)

In accordance with the above remarks almost all the particles
in 0(6(6&(6„, have orientations between (6z —e) and

(6„+e) in a small range e about 6„and almost all the par-
ticles in 6 &62&6&7T have orientations in a small range
m —(8~+e), 7r (6z ——e) about (n tl~). Th—us in the region
(0,6,) we have

Hence Eq. (50) becomes

BW BV 2r~I I
+ W=—

86 atty 2vr sin@' (63)

Now following Brown we may multiply Eq. (63) by the in-

tegrating factor e and integrate from 6& to 62 to get
p[vI. al - v(a„l]

and in the region (6z, vr) we have

w(a) =w( —a ) -~t'&'~-'t--"~~

(54)

(55) where

—2 v~III
(64)

If following Brown' we normalize fWdA to be the total
number n of particles (where dA is an element of solid
angle) the number n& in 0(6(6, is

"~z e d@
I

sin@
' (65)

Vg+8
n, =27rW(6„)ep ~ "~ e ~ ~ ' sinada

Here we replace V by its Taylor series about the maximum
and truncate at the (6—6 ) term; replace sin 6 by

sin 6; and integrate from —~ to ~ to get, as in Ref. 1,

so that

n, =2~W(a„)ep'~"lI, , (56)

1/2 P Vrn

—PV"(6 ) sin@
(66)

where

I'6p+a
j~= e ~ ~ sln6d6

J 6„+a

and in 62(6&sr

(57)

Now following the argument of Ref. 1 the left-hand member
of Eq. (64) is from Eqs. (54) and (55),

W(~ —~~)e " '—W(~~)e " "'=
2 7r

~ I, I, )
(67)

where

nq=2vrW(w —6~)eP ~ ~~Iq, (58)

& m —(6g —a)
e ~ ~ ) sinada.I2=

J vr (6g+ el— (59)

Because of the rapid decrease of the exponential factors in
Eqs. (57) and (59) with distance from the minima of V at 6„
and (m —6„), we may in I& replace V(6,0) by its Taylor
series about 6=6„ truncated at the (6—6„) term (the
8—6A term vanishes); replace sin 6 by sin 6„and the upper
and lower limits by ~ and —~, hence

l. ~n, n~~
I=n&= —n2=-

2r~Im ( Ip I) ]
(68)

This is of the form

with

n] n2 n2 p2$ n v]2

Equation (63) relates Eq. (67) to the current I from the re-
gion (0,8,) to the region (8z, m). However, following the
reasoning of Ref. 1 practically all the representative points
are in these regions (they are concentrated at 6„and vr —6„).
Hence
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v/=, (1 ='1, j=2 or i=2, j= 1). (70)
27~ImI;

'
ci for negative m because they are calculated using the
symmetry relation deduced from the definition of P, (x)

Hence

~1 +N(P12+ +21)~

(I —m)!
Cl, —m ( 1) (/+ )1

Cl m. (75)

which on substituting for I, II„and I2 becomes
X,is then the smallest nonvanishing root of the characteristic
equation

1 sin@ det(XI —A) =0. (76)

X /~pVn(y )]1/2 —P[V(8m) —V(O&)]

+ [pVn( y )]I/2 —p[V(8m) —V(m —8g)])

(71)

The same considerations hold for the hierarchy of Eq. (21),
with the difference that it is convenient to work with the real
and imaginary parts f„(t) and g„(t) of c„(t) so that

1
]1.1(1//)= sin@ [—pV"(8 )]'

ay//(g i&/'2
P V 4 AJ —P(V(6 ) —V(8 )

sin@A

e
—pl v(~ ) —v(e/1)] (72)

sin@&

where the transition points 6A, 6~, and 6 are to be deter-
mined by solving

PV'(6, 0) =0.
The particular cases ]1.,(m/2), k, (7r/4) are compared with the
numerical solution in Sec. VII.

VI. PROCEDURE FOR THE NUMERICAL CALCULATION
OF Xi(i/I)

We shall first plot (following the procedure of Aharoni
for the axially symmetric potential) ]1., as a function of h for
given 1//. In order to accomplish this, we arrange the hierar-

chy of differential-recurrence relations in the matrix form

where

X=AX,

( Ci.o
C1, 1

(74)

and A is the system matrix the elements of which are deter-
mined by Eq. (14). The column vector X does not include

Equation (71) is an asymptotic formula for ]i., (2r/2) for a
symmetric bistable potential which has minima at 6A and

and a maximum at 6 = m/2 lying in
6„(6((7r—8„). It has a different form to Eq. (45) which
assumes that the minima are at 6=0 and 6=~. We saw that
for $40, or m/2 that the potential V(6,0) has an asymmetric
bistable form. All the arguments leading to Eq. (71) also

apply for an arbitrary P. We merely have to recall that in
general the minima will be at @A~0, 6~~~ separated by a
maximum at 6 and that the escape rates P,2 and P2, are no
longer equal. Equation (71) is then modified to

(77)

with

f /, =f/, -

g —p= gp. (7g)

The calculation of X& for rotation in a plane, i.e., X given by
Eq. (77) is quite straightforward using Mathematica s
built-in Eigenvalues function. Satisfactory convergence was
found for n=10 with an 80X80 matrix A in all cases. If a is
increased to 20 convergence is achieved by taking a 200
X200 matrix. This is not true, however, for rotation in space
where the system of differential-recurrence relations contains
the numbers l, m and their various differences. Initially we
again attempted to compute the smallest eigenvalue of the
matrix using Mathematica s built-in Eigenvalues function.
Although this produced results for values of u up to about 5,
beyond that the smallest eigenvalue that was produced failed
to converge even when matrix sizes of up to 1300X1300
were used. Estimates of the size of numbers involved in the
calculation suggested that loss of precision in floating point
calculations was to blame rather than lack of convergence in
the strictly mathematical problem. As partial confirmation
that this was indeed the problem, we continued the calcula-
tions for a relatively small value of u beyond the 150X150
matrices which gave apparent convergence of the eigenvalue
and found that by 400X400 the eigenvalue returned was not
even real. Similar difficulties appear to have been encoun-
tered by Eisenstein and Aharoni' ' in their numerical calcu-
lations of X& for cubic anisotropy potentials. This again ef-
fectively involves the calculation of inverses of the matrices
generated by the differential-recurrence relations for the real
solid harmonic averages c& . Thus the range of validity of
their calculation was severely curtailed. '

As an alternative to using Eigenvalues we exploited the
fact that the smallest eigenvalue is known to be real and used
repeated bisection to find the appropriate zero of the charac-
teristic equation of the matrix. We did not use the built-in
function FindRoot as the very large gradients involved often
seemed either to prevent convergence to the zero or to make
it very slow. It turned out that the computations involved in
doing this are numerically better behaved than those used in
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h=l h=0. 8

hW

0.1.-
0.1.-

0. 01.
0.01;

0.2 0. 5 10. 20.
0. 2 0, 5 10. 20.

FIG. 3. The lowest nonvanishing eigenvalue X& as a function of
reduced barrier height n for /=0 that is the external field and easy
axis are collinear (field parallel to the poles) (axially symmetric
potential) for rotation of M in three dimensions for various values
of reduced field h as computed from Eq. (14). The ordinate is
shown as 2P

&
for easy comparison with the graphs of Ref. 20.

FIG. 5. Family of curves of X& vs u for various values of h and

P, for rotation in a plane as computed from Eq. (21): solid line

/=0, small dashed line $=7r/8, large dashed line 1/I=a/4. Note the

pronounced effect of the relative orientation of field and easy axis
for h)0. 1 and a~5.

Eigenvalues and convergence was achieved with relative
small matrices. For the purposes of drawing the graphs pre-
sented in Sec. VII, matrix sizes of 100&100 were sufficient
for m~5, 200X200 sufficed for a~10, 400X400 for o.~15,
and 600X600 for a~20. Although this method of calculating
the smallest eigenvalue was considerably slower than using
Eigenvalues, it was faster than using Eigenvalues and work-
ing with 32 decimal places of precision (which also produces
sensible results) by a factor of about 200. We did however
use that method to provide an independent check of the ac-
curacy of some of our calculations.

VII. RESULTS OF NUMERICAL COMPUTATION OF X

We first discuss rotation when the external field and easy
axis are collinear. The results shown in Figs. 3 and 4 for X,
as a function of a for /=0, with h as a parameter show that
the qualitative behavior of X& versus n is the same for both
free and fixed axis rotation as has been shown analytically '

when h=0. Figure 5 shows the behavior of P
&

as a function
of n for /=0, 7r/8, and m/4, for various h values, demon-
strating that the angular effect is very pronounced for large h
and n. Figure 6 shows the behavior of k, as a function of P
for various h values, X& passes through a maximum at
$=7r/4, corresponding to the smallest batTier height and re-
turns to its /=0 value at P= ~/2. Figures 7—14 represent the
results of our investigation of rotation in space. In particular
Figs. 6 and 8 exemplify the fundamental difference between
fixed and free axis rotation, namely that X,(vr/2)(k, (0) so
that the Neel relaxation time for large h and n is a maximum
for the equatorial orientation of H while it is a minimum at
the ~/4 orientation. Such a result follows from the different
boundary conditions which W(6, P, t) and F( 0, t) must sat-
isfy on account of the differences in the potentials for rota-
tion in two and three dimensions. The effect is shown to an
even more pronounced degree in Figs. 10—12 where h =0.4,
0.5, and 0.6, respectively, and values of n up to 20 are taken.

1.75-

1.5-

1.25

0.1.-
0.75

0. 5

0.25

0.01 .
-

0. 2 0. 5 10. 20.

0

20
h=0.01

40 60 80

FIG. 4. As Fig. 3 supposing M rotates in a plane. Note the
similar qualitative behavior of X&. The computations are carried out
using Eq. (21).

FIG. 6. kt for rotation in a plane vs relative orientation P for
various h values, note the maximum at $=7r/4 corresponding to a
minimum of the relaxation time for this orientation of the field.
Curves computed from Eq. (21) for n=10.



52 EFFECT OF AN OBLIQUE MAGNETIC FIELD ON THE. . . 15 961

0. 4

0.3

0.1.- 0. 2

0.01.
0. 1

0.2 0. 5 10. 25 50 75 100 125 150 175

FIG. 7. Same as Fig. 5 but k& as a function of a for various
values of h and P for rotation in three dimensions computed from

Eq. (14): solid line /=0 (axially symmetric potential, i.e., field
parallel to the poles), small dashed line ~m/4, large dashed line
1/I= vr/2 field applied along the equator, family of curves 1,
h =0.325, family of curves 2, h =0.2, family of curves 3, h =0.1.

In particular, there is a very large difference in X, for the m/2

and m/4 orientations for A~0.5 refiecting the fact that the
two minima structure of the potential has vanished for
P= m/4 when h =0.5. Figure 13 presents a comparison of the
approximate formula for )i, (m/2) obtained by applying Eq.
(72) to the m/2 orientation with the numerical solution. The
approximate formula for k, (m/2) is obtained as follows.

Since the potential for 1/I= m/2 is a symmetric bistable one
we have in Eqs. (68)—(71)

FIG. 9. Same as Fig. 8 however, k, as a function of P for u=15,
h =0.4.

and so (h40)

n(1 —2h)
m e u(l —h)' (81)

u(1 —h)(l +h) t/~e-~&i-»'
kb= k1 ——

mh
(82)

)i, (0)—= m "~u3' (1 —h~)(1 —h)exp[ —u(1 —h) ]

It appears by inspection of Fig. 13 that Eq. (82) appears to
provide at least as good an approximation for +~3 and
h~0.25 (cf. Fig. 3 of Ref. 2) to the actual eigenvalue )i, (m/2)
as the formula

0.025-

0.02

I, 0.015

v12 v21 ~

u(1-h )'
2

1 2

(79)

(80)

(83)

does to the actual )i.,(0). The accuracy of Eq. (82) for small h
values could possibly be improved by taking more terms in
the method of steepest descents used to evaluate I1, Iz, and
I as in Ref. 3.

Explicit formulas for li, (P) for other values of t/I may be
given. Unfortunately, the various quantities in Eq. (72) usu-

ally become very cumbersome so it is best to evaluate that
equation numerically. We illustrate by considering in detail
the calculation for P=m/4 which proceeds as follows. We
have from the condition for a stationary point namely

0.01

0.005.

25 50 75

h=0.01
\

100 125 150 175

0. 5-

0.2-

0.1;

0. 05-

FIG. 8. k, as a function of relative orientation P for various
values of h for rotation of M in three dimensions: note the two
unequal minima at /=0, m/2 and one maximum at /=45'. u=10 in
each case. Thus the Neel relaxation time is an absolute maximum
when the field is applied along the equator 1/I= a/2 and a minimum
at the m/4 relative orientation. Note the differences in the maxima
for the equatorial and polar orientations of the field.

0.02

0.2
I

0.5 10. 20.

FIG. 10. k& vs u for h =0.4, curves differentiated as in Fig. 7.
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3.5
h=0. 1

2

1.5.

Q. 7

p 5

Q 3-

0. 2 '

0. 15 -.

p. l.

r

r~
2. 5 .

Q. S

10 15

h=0.2

h=0.3
h=0.4
h=0. 5

h=0. 6

h=0.7

20
p. 2 Q. 5 10. 20.

10 but h=0.5. Note that the P=m./4FIG. 11. Same as Fig.
eigenvalue as os ih l t its exponential character.

13. Com arison of solution for )
&

m y'm/2 ielded by the
e p l' d t equatorial orientatione o pmethod as app ie o

i.e., E . (82) with exact solution compute romof the field, i.e., q.
(14). All curves drawn for varying n wtt as par

sin26= —2h sin(8 —P)

with s=sin(6 —~/4), P=~/4,

2s2 —2hs —1 =0,

where we have utilized the fact that

(84)

(85)

( ~b (
= sinsin 6——= sin

(3~
2 ) 4

(88)

if t)~sr/4 is a stationary point thethen so is 3'/2 —t)).
The three stationary points in the interva

(
2sin2tl= 1 —2 sin

h gh'+2
15 =——sinA 4

0~ l9A»
t 1

The solution of Eq. (85) is

h gh+2
24] 2 (87)

~h qh +2~ g7 3/722i2--4
sin +, ~~g~ 7r.

=0 s =~v2/2; as h increases, —sWe note that when h=, s
onotonicall to a minimum vaue o

11 to a maximumh=1/2 while s+ increases monotonica y o a
value of 1 at h=1/2; thus

1/2~ —s ~v2/2~s, ~l.
We also note that

2 and 6 =m. As h increases 6A
onotonicall to a maximum value o ~/ a

11 to a maximum=1/2 =h ), t) increases tnonotonica y o ah
e of 3~/4 at h=1/2, an B ecrvalu

minimum value of 3m/4 at
= 6B=3~/4, we have a point of inAection. e avem B

V"
= U"=2 cos2t)+2h cos(6 —vr/4)

5-

2-

0. 5

rr//

/r/rr
rr

rrr
rrr

= ~ 2 $1 —4h s ~ 2h $1 —s, (90)

on the uadrant in whichwhere the choice of sign depends on q
the angle is located, hence

2U"(6~) =2/1 —4h s +2hgl —s

=2/1 —2h (h +1)+2h (h +2)"
+ hv2$1 —h'+ h(h'+ 2) '", ~0, (91)

0. 2 0. 5 10 20.
U"(6s) = —U"(t)' )

1
2=2/1 —4h s++2hgl —s„

= 2 /1 —2h (h + l. ) —2h3(h2+ 2) "2
11 but h =0.6. All computations in Figs.FIG. 12. Same as Fig.

7—12 are carried out using Eq. ,14. +hv2$1 —h —h(h +2)', )0. (92)
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We observe that all the above quantities are positive, con-
firming that U has local minima at 6z and 6~ and a local
maximum at 6 . To find sin 6„,

0( s, —gi-s' v2 s, gi-s',(—( (1
v2 2 v2

(96)

2 sin@& /v 2 = 2 sin[ sr/4 —sin '( —s )]/v2

=s +cos[sin '( —s )].
Subtracting s and squaring gives

The correct root is therefore

s +pl —s
sin

v2

4s sin@„
2 sin & — +s

=cos [sin '( —s )]
=1 —sin t sin '( —s )]=1—s

which is a quadratic in sin 6„,

4s
2 sin 6&— sin6z+2s —1=0.

Solving for sin 6„,we obtain

s gi —s'
sini9& =

Since sin 6&~0 and s &0 the correct root is given by

s +v'I —s'
sin@& =

This quantity is however of interest in that it appears only in
the pj 2 term of X& which gives the contribution due to the
relatively small current of particles moving from the deep
potential well at 6„ to the shallow potential well at

sin 6 is found in a similar way:

2 sin@ /V2 = 2 sint m/4+ sin '(s+)]/v2

=s++cos[sin '(s~)].

For sin 6z, we have

2 sin@&/v2=2 sint 5 sr/4 —sin '(s+)]/v2

=s~ —cos[sin '(s~)].

Subtracting s+ and squaring gives

4s+ sin@&
2 sin 8~ — + s+

=cos [sin '(s+)]
=1—sin [sin '(s+)]=I —s~

which is the quadratic in Eq. (93) and hence has roots given
by Eq. (94). Since 37r/4~ Bs~7r, 0~sin A~ ~v2/2 and hence

by Eq. (96)

s, —gi —s',
sin@& =

The ratio sin 0 /sin 6~ is calculated as follows:

sin@a = sin(3 m/2 —6 ) = —cos6

v2hs+= sin26 /2 sin@
s~+ 1 s~

hence

Subtracting s+ and squaring gives

2s+ sin6
2 ssn 6 — +s+

v2

= cos [sin '(s+)]
= 1 —sin t sin '(s+)] = 1 —s+

which is a quadratic in sin 6
(93)

sin@ (s+ vl —s~) I+2s~gl —s+
sin@& 2hs+ 2hs+

1 1 (1 —h —hv'h +2)"
h +h~h+2 v2

The second barrier height is

(97)

4s+
2 sin 6 — sin@ +2s —1=0.

Solving for sin 6, we obtain

s+ /I s+
sin6

(94)

(95)

B2= n( Um —U~) = n sin 6~ —2h n cos(6m —~/4)

—n sin 6„+2h n cos( 6~ —vr/4) .

Since 6 —~/4 is in the first quadrant

cos(6 —7r/4) = v'1 —sin (6 —7r/4) = gl —s+,

(98)

To determine the correct root, we use the bounds
m/2~6 ~3m/4, hence v2/2~sin 6 ~l; v2/2~s+~1 hence and since 6~ —m/4 is in the second quadrant
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cos(6s —m/4) = —gl —sin (6~—m/4)

= —gl —sin (0 —m/4)

= —$1 —s', .

Bz=2u(s+ —2h) gl —s+

( 1 —h —h v'h + 2 )"= n( —3h+ gh +2) . (99)
2

This is in agreement with Pfeiffer, " who has in addition
obtained' the following simple approximation:

Equation (98) becomes

Bi=n—(1 —2h) '
The higher energy barrier approximation is then

(100)

u(2 gl —4h~s++ 2h gl —s+)(1+2s+ gl —s+)
k]=—lNpp t—=uU"(19 )e ~ sin19 /477 sint)~—= exp [—u(1 —2h) ' ]8 mhs+

A /

(2/1 —2h (h +1)—2h (h +2)" +hv2$1 —h —h(h +2)" )4m
~
h'+hgh'+2

1 (1 h& hqh&+2)ti&1

h
(101)

The first barrier height B, is given by

B
&

= u( U —U„)= u sin t) —2h u cos( 8 —7r/4) —u sin tl„+2h u cos( 8z —m/4)

Bp+u(3h+ gh +2) (1—h +hgh +2)"
=Bz /2+ u(2h —s ) gl —s

2
= u(1 —2h) ' +4uh/V2. (102)

VIII. DISCUSSION OF RESULTS AND CONCLUSIONS

We have discussed the problem of Neel relaxation in the
presence of an applied field which is not coincident with the

0.8

0.6-

0.4

0.2

10 15 20

FIG. 14. Exact solution (curve 1) for h=0.4 and P=m/4 vs u
compared with asymptotic estimate (curve 2) rendered by Eq.
(101).

Equation (101) is compared with the exact solution for
h=0.4 and all values of u in Fig. l4. It is apparent that it
provides a reasonable estimate of the exact X& for o™2and
h=0.4. Once again the accuracy could be improved by tak-
ing more terms in the method of steepest descents and in-
cluding v, z.

easy axis of magnetization by calculating the smallest non-
vanishing eigenvalue X& of the appropriate Fokker-Planck
equation assuming that the field is applied along a line of
longitude. The results for high barrier heights are in substan-
tial agreement with those predicted by the Kramers transition
state theory and demonstrate that the approximate formula
for the barrier height as a function of relative orientation and
magnitude of the reduced field [Eq. (42)] given by
Pfeiffer"' yields an adequate description of the behavior of
the argument of the exponential factor in the exact solution.
This suggests' that a valuable addition to the theory which
would be of particular interest in the context of macroscopic
quantum tunnelling of the magnetization' would be an ana-
lytical formula for )t., (P) for large potential barriers, that is an

explicit evaluation of the various derivatives in Eq. (72).
This may be accomplished using methods due to
Geogheghan' for the solution of the equation for the station-

ary points.
We remark that throughout this analysis we have assumed

that the response is dominated by the mode characterized by
A complete analysis of the problem would require a

knowledge of the decay of the magnetization which in turn
requires one to calculate all the other eigenvalues and their
associated amplitudes that is the complete aftereffect solu-
tion of the Fokker-Planck equation. This procedure allows
one to ascertain the contribution of each decay mode to the
overall decay. Such a calculation is important, as in the
presence of a field X&

' differs markedly from the correlation
time (defined as the area under the curve of the decay of
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the magnetization) due to the nonvanishing contribution of
the other decay modes. The second assumption we have
made is that the gyromagnetic terms in the Fokker-Planck
equation may be ignored. The inclusion of these will always
affect the behavior of 31.

For large bamer heights however, ' ' they will affect
only the prefactor of Eq. (72). The inclusion of these terms
gives rise to extra terms in the differential-recurrence relation
of the form

$ costlt

2l+1
im(2l+ 1)

Cl, m

g sintit

2(2l+ 1)
i(2l+ 1)(l+m)(l —m+ 1)

Cl m —1

i(2l+ 1) im l+m
l,m+1 + 2n 2l+ 1

l —1,m

im (l —m+1)
a 2l+ 1

Cl+ 1,m

where the decay modes cl are now of the form

(Pt (cos@)e' ~) —(Pt (cos@)e' ~)o

since (P t (cos t))sin m P) must now arise in the solution. The
detailed derivation of the differential recurrence relation

from the Fokker-Planck equation which requires intricate
manipulation of the recurrence relations for the spherical har-
monics I', (6,@) is given by Coffey and Geoghegan in Ref.
21 and by Kalmykov in Ref. 22 who has shown how the
recurrence relations for the cl may be derived directly
from the Gilbert-Langevin equation' describing the rotation
of M.

We remark in conclusion that the numerical difficulties
associated with the oblique field problem arise because the
lack of axial symmetry increases the number of equations to
be solved in the matrix equation

X=AX

by a factor of (L+3)/2 where 1 ~ l~L thus introducing the
loss of precision in Aoating point calculations which has so
bedevilled nonaxially symmetric problems. ' ' An accurate
calculation in such cases will always require one to resort to
a very fast computer such as the CRAY.
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