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Model calculation of two-ion magnetostriction in the itinerant uniaxial ferromagnet Y2Fe1~
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Two-ion contribution to the magnetoelastic (MEL) coupling in the itinerant hexagonal iron-rich ferromagnet

Y2Fe&7 is investigated within a Stoner-like model with an orbitally degenerate rigid 3d band. The spontaneous
irreducible magnetostrictive strains e ' (volume distortion) and e (c-axis pure shape distortion) are calcu-

lated as well as their temperature dependences. The agreement with the experiment is reasonably good. The
model includes contributions to the strains from the electron hopping within the dumbbell of 4f site Fe atoms

and from isotropic exchange between the 4f Fe and 12j site nearest-neighbor Fe atoms, treated within the

mean-field approximation. The strain derivative of the exchange integral between 4f and 12j iron atoms is

obtained by the fitting of the experimental data. The one-electron hopping has been dealt with using a two-site
Hubbard Hamiltonian with orbital degeneration, and within the Hartree-Pock approximation for the repulsive

U term. We have also obtained the temperature dependence of the four macroscopic two-ion MEL parameters

D;, (in Callen and Callen notation), appropriate for uniaxial symmetry.

I. INTRODUCTION

Although much is known, both experimentally and theo-
retically, about magnetostriction and magnetoelastic (MEL)
coupling in insulators' and in 4f-shell rare earth metals and
their intermetallic compounds, ' the nature of magnetostric-
tion in 3d transition metals remains still unclear. It is gener-
ally accepted that band involved mechanisms are active
there. When the material is polycrystalline, the irreducible
spontaneous strains within the grains are not easily separated
out from the measured macroscopic strains. ' But even for
single crystals, the actual state of theory is far from enabling
us to obtain the microscopic magnetoelastic coupling con-
stants from ab initio calculations, and various interactions '

have been invoked to explain, at least qualitatively, experi-
mental results. Among them, the magnetostriction originated
from the single-ion crystal electric field (CEF) interaction is
believed to be of major importance. In this case, the
Brooks-Katayama-Fletcher' or BKF model remains as a
landmark in the field. This model, when supplemented by the
paramount simplifications of Kondorskii and Straube" and
Mori, Fukuda, and Ukai, ' has allowed the calculation of
MEL constants in simple 3d metals, such as in cubic nickel
and &ron.

Recently a slightly simplified model compared with the
BKF, although, in our opinion, quite efficient, was intro-
duced to evaluate some macroscopic or phenomenological
constants in those cubic metals and in 3d-amorphous alloys,
and in particular to calculate their temperature dependence. '

This model was successfully extended' to deal with 3d in-
termetallic compounds of uniaxial symmetry, in order to cal-
culate the anisotropic CEF contribution to the magnetostric-
tion o.-symmetry modes' and their temperature
dependence s. These modes are the volume striction,

+ 'Eyy + 6'zz and the c-axis shape distortion,
e"' =(v3/2)[e„—(1/3)e '], where e, are Cartesian strains. In
concrete such a calculation was done for the ferromagnetic
Y2Fe,7 hexagonal compound' (Ref. 15 will be termed as

paper I herein). However, other MEL interactions, in particu-
lar the two-ion ones (both isotropic and anisotropic), can
rarely be excluded, and for systems with lower symmetry
than the cubic one, both strains e ' and e ' are coupled by
symmetry. ' Then, both isotropic and anisotropic interactions
of all kinds are relevant for both kinds of observed strains. '
In paper I a successful method, as we shall also see in the
present one, was developed to decouple the single-ion CEF
MEL interaction from the other MEL interactions. Such is
the situation when e ' and e ' are obtained from the mag-
netostriction developed at the end of the macroscopic rota-
tional magnetization process, ' ' i.e., when the magnetiza-
tion lies along the hard magnetization direction (c axis for
Y2Fe,7),

' under the application of a magnetic field equal to
the magnetocrystalline anisotropy one, Hk, and along the c
axis. Such a field is usually small (at most 4 T for
Y2Fe,7)

' ' compared with the exchange one, and there-
fore two-ion origin magnetostriction should be negligible be-
low Hk. ' ' However, the above method must fail when the
strains are spontaneous, i.e., developed along the easy mag-
netization direction (a axis for Y2Fe,7). This spontaneous
magnetization is formed at the crossing of the Curie tempera-
ture T, , in zero applied field. In this case both magnetostric-
tive strains should come essentially from isotropic exchange
and other possible two-ion anisotropic MEL coupling mecha-
nisms, in anisotropic uniaxial systems. This is so because at
zero applied field there is not rotation of the magnetization
against single-ion CEF interaction torques. But much more
important in order to search for a new mechanism to explain
the spontaneous strains e"'(a) and e ' (a) is that they are
about 7X10 and 2X10 bigger than the CEF rotational ones
e '(c) and e ' (c), respectively, therefore claiming for a dif-
ferent origin.

Little is known about anisotropic interactions, in particu-
lar in metallic systems. Theoretically, these interactions are
usually obtained within perturbation calculations up to at
least third order in the expansion, where spin-orbit coupling
energy is considered to be small when compared with mag-
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netic or with CEF energies. This approach is well established
for narrow band systems, " ' such as 4f metals, where the
indirect exchange interaction is believed to be a driving force
for magnetic ordering. For 3d metallic systems, two-ion an-

isotropy can be due to anisotropic direct electron hopping
'

as well, if the interatomic distances are small enough. Nev-
ertheless both anisotropic interactions are difficult to separate
experimentally from those of single-ion CEF origin. There-
fore, much remains to be done to clarify the observed effects
(anisotropy and magnetostriction) as coming from a well de-
fined kind of microscopic interaction, the field remaining still
open.

As mentioned above, in paper I we were able to calculate
the thermal dependences of the measured E '(c) and e ' (c)
strains for Y2Fei7 at Hk, i.e., when the average magnetiza-
tion starts to be along the hard c direction. Besides from
the data fittings we obtained the macroscopic MEL cou-
pling parameters M i2 and M22, of CEF origin only. Obvi-
ously we are interested in the role of other possible mecha-
nisms for the reasons above mentioned. Therefore the aim of
this paper is an attempt to explain the spontaneous magneto-
strictive strains e"'(a) and e ' (a) for Y2Fet7 within the
model of two-ion anisotropic hopping interaction, and where
the isotropic exchange interaction is treated within the
simple mean field (MF) approximation.

The paper is organized in the following way: in Sec. II
we describe the proposed model, together with the assump-
tions which have been made; in Sec. III we present the mag-
netostriction calculations, the numerical results, and their
comparison with the experimental strictions; finally, in Sec.
IV we discuss our work and extract its main conclusions.

II. MODEL OF TWO-ION MAGNETOSTRICTION

A. The model Hamiltonian

As mentioned before, our aim is to explain the thermal
dependences of the e '(a) and e ' (a) spontaneous strictions
in Y2Fei7, i.e., when the average magnetization is developed
below T, , along the easy magnetization direction. Those
magnetic strains can be extracted from the thermal expansion
(TE) measured along the a and c directions in a single crys-
tal, once the lattice contribution to the TE is subtracted. They
are e '(a) =(Ac/cp+2ha/ap), e ' (a) =(&3/2)[hc/cp
—(1/3) e '(a)], where m means the magnetic TE and ap
and co, the lattice constant values at the paramagnetic regime
(T&)2T,). Several workers have measured such strains, e.g. ,
Givord, Andreev eI; al. , and Garcia-Landa. Measurable
magnetic strains are still observed up to about 2T, , due to
strong short range ferromagnetic order, although our model
is, in principle, only able to deal with them up to T, =324
K 25

The Y2Fe» crystalline structure is of ThzNi, 7 type, where
the Fe atoms occupy four kinds of sites: 12k, 12j, 6g, and
4f. ' " Only the 4f Fe atoms have high enough symmetry
(trigonal 3m) to give a contribution to the orbital magnetic
moment, supporting a representation with the following
3d real atomic orbitals lp) basis: (lxz&=l1&, lyz&—= l2&),
(IXY&=I3&.lx' —y'&=l4&k 12z' —(x'+y')&=15» re' two
doublets plus a singlet. ' At the remainder sites the states are
all singlets and the orbital moment is quenched by the CEF.
4f Fe atoms form a dumbbell, perpendicular to a hexagon of

4f
la

$2 j

FIG. 1. The unit formed by the dumbbell of 4f-site (trigonal 3m
point symmetry) and the hexagon of 12j-site Fe atoms, in the hex-
agonal ferromagnet Y2Fei7. The distances in the picture are a =2.46
A and p=1.195 A (from Ref. 33).

nearest neighbors (NN) Fe atoms in 12j sites (see Fig. 1).
We will make the assumption that this part of the crystal cell,
the dumbbell plus the hexagon, gives the major contribution
to the two-ion magnetostriction. The role of the hexagon is
assumed to contribute with a magnetic MF at the dumbbell
atoms positions. Within this approximation we will look for
the energy levels of the dumbbell atoms.

Current accuracy of band-structure calculations does not
allow us to obtain the values for the MEL coupling param-
eters, even within the one-electron theory. Therefore we will
work within a much simplified, although quite efficient
scheme, where the calculations are, in principle, limited to a
few high symmetry points of the Brillouin zone (BZ), which
for the dumbbell plus hexagon complex, or even for the hex-
agonal unit cell, can be approximated by a cylinder. Such a
simplification is justified by the mentioned result of Kondor-
skii and Straube" and Mori, Fukuda, and Ukai, ' and, in
our situation, is justified to consider just a single k point
within the cylinder axis and close to the Fermi wave vector,
kF. If, for instance, we perform our calculations within the
tight binding approximation, using Bloch functions of the
usual kind, only in the region close to k„ is the orbital angu-
lar momentum unquenched, being fully quenched elsewhere
(see paper I for more details). Besides, the itinerant ferro-
magnet Hamiltonian is translationally invariant, and then it
becomes k independent. This simplification reduces the
problem to the analysis of an one-electron atomic model
Hamiltonian of the form

H =H&Ez+ Hso+ Hz+ Hh .

The CEF Hamiltonian, HCE„, was extensively discussed
in paper I and it will have only a second order axial term,
due to the reasons there exposed, of the form

HcEF —B2o02o ~ (2)

where 02p:L& (1/3)L(L+1) is the second order or
quadrupolar Stevens-Buckmaster operator and I, the Fe or-
bital angular momentum. This term produces a CEF energy
level splitting of the form —5, +25, —2A, corresponding to
the singlet l5) and to the two doublets {l1), l2)) and (l3), l4)j,
respectively. Now, A=nlB2p(r &3d, where nl is the Stevens
reduced matrix element, (r &3d, the Fe 3d-shell second ra-
dial moment and B2o, the CEF strength parameter. 5 is the
only CEF parameter in the model.

Hsp is the spin-orbit (SO) interaction Hamiltonian, of the
form
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TABLE I. Values for the magnetostriction model parameters used for Y2Fe&7 intermetallic compound. The meaning of the parameters is
the following: R is the ratio between the filling capacities of the wide conduction and the five 3d-electron narrow bands; 6 is the axial
crystal field energy shift for the (~xz), ~yz)[ doublet; Wo is the half-bandwidth of the wide conduction electron band; W, , the half-bandwidth
for the 3d narrow bands; n is the total number of 3d electrons per Fe atom; 8' is the 0 K Stoner gap; u, the orbital quenching and
polarization parameter; A, the spin-orbit coupling parameter; C;, the n-symmetry stiffness elastic constants for hexagonal PrNi& (in
eV/atom).

6 (eV)

1.28

Wti (eV)

60

Wi (eV)

1.5 7.2

8 (eV)

1.2 0.05

A (eV)

0.0468

C 11

55.4

C,2

5.4

C22

166.3

Hsp=AL, o, ,

where A is the SO one-electron coupling constant. Notice
that in order to simplify the calculations we have neglected
all matrix elements of Hsp between the two doublets and
between them and the singlet, an approximation which is
justified because the CEF energy is much greater than the SO
one. In such a situation the L and L angular momentum
components are fully quenched by the CEF within the above

Ip) ba~'s, i.e., &PIL.I
p') =(plL, I

p') =0.
H, is the Zeeman Hamiltonian, of the form

H, = —(o+nL, ) H,«, (4)

where o. are the Pauli matrices and H,«an effective magnetic
field of the form

H.«= g/ BH.„1+6J(r)(s)+».t (5)

where g is the orbital Lande factor; H, „,, the external ap-
plied field (null in our situation); J(r), an isotropic exchange
integral of the 4f atom with its hexagon of NN's (Fig. 1);
H;„, represents an intra-atomic mean magnetic field, whose
origin will be discussed later on; and (s), the spin thermal
average of the NN atoms. Both (s) and H;„, are assumed,
within the MF approximation, to be proportional to the av-
erage magnetization. u is a constant introduced to take into
account the partial quenching of L, by the CEF, and the
effect of the orbital polarization. Notice that in paper I we
choose a=0.40, because there we were dealing with a part of
the Brillouin zone (BZ) where the quenching of the orbital
momentum was not complete, whereas here the contribution
to the orbital momentum should be even smaller, inasmuch
as the dumbbell units are only a small part of the unit cell.
This is the reason to choose here n=0.05 (see Table I).

We will now deal with the anisotropic one-electron hop-
ping mechanism within the dumbbell of Fe atoms (Fig. 1),
and represented in Eq. (1) by the Hubbard Hamiltonian,

to the OZ quantization axis (chosen such that i=m=0,
n =1), therefore providing for an anisotropic hopping. Now,
all matrix elements t,2(p,p')=0 for POP', i.e., there is not
interorbital hopping, the only non-null matrix elements be-
ing the intraorbital ones: t, 2(1, 1)= tt2(2, 2) =dd~,
t t2(3, 3) = r i2(4, 4) = dd 8, r i (5,5) = ddo, where the dds
symbols are the SK integrals. We should mention that hop-
ping is only active near the Fermi level, p„where there exist
unoccupied states, i.e. , only states within the (~xz), ~yz))
subband should be involved in the hopping. Our calculation
treats hopping in the same way for all the subbands states,
although this is not any drawback for our magnetostriction
results, because contributions to hopping from fully occupied
states vanish (see paper I). Finally, notice that only the in-
traorbital hopping does not quench the orbital momentum,
the interorbital one fully quenching it.

So far, any kind of many-body electron effects have not
been explicitly included within our Eq. (1) model Hamil-
tonian. Although such an effects should not be important
below the paraprocess regime (i.e., for H, ,&)H ),kas it is
our actual situation, nevertheless they have been implicitly
accounted for within our calculations as we shall see in Sec.
II 8 below.

B. The system magnetic energy

Our basis of system states is formed, considering the spin
projections cr= ~1/2, by ten one-electron 3d states ~po) for
each dumbbell Fe atom, i.e., 20 states overall. An exact fully
analytical diagonalization of Hamiltonian (1) gives the split-
ting of energy levels shown underneath. We should distin-

guish two situations: H,«llc axis (z axis), i.e., H,«H «,
and H,«perpendicular to c (in the basal plane), i.e. , H,«
=H,"ff. In both cases we obtain for the energy eigenvalues,
F.)„ the following:

Ei 8= ddt ——2ao.H', «
—o.H', «+ 5, (7a)

Hh X X r12(P P )o 'p o3 —ip' Uitlt
/=1, 2 p pr

(6)

where t,2(p, p') are the hopping matrix elements or Slater-
Koster (SK) integrals (site-independent), between the ~p)
and

~

p') orbitals, i counts the sites in the dumbbell,
tr(=~1/2) is the spin projection, and U;„, represents the in-
traatomic Coulomb repulsive potential, both intraband and
interbands. Its concrete expression is not needed here.
When treated within the MF or Hartree-Fock approximation,
that potential can be added as an effective magnetic field,
H;„, , in Eq. (5). The Slater-Koster integrals depend on the
direction cosines, (l, m, n), of the dumbbell axis with respect

A
E9 i6= ~dd6~2 ——2noH', «

—oHe«26, (7b)
/

E)7 2p= ddo —oH'«+25, (7c)

where for H,«within the basal plane, the orbital momentum
is quenched (n=O), and H', «should be substituted by H,"~« in

Eqs. (7). Energy levels k=1 to g result from the states
{~1;~1/2),~2;~ I/2)); similarly, levels )t.=9—16 come from
states (~3;~ 1/2), ~4;~ I/2)), and lt. =17—20 ones, from
~5;~1/2). For the calculation of the spontaneous magneto-
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TABLE II. Slater-Koster integrals derivatives dds'=—Bdds/Bin r (see Fig. 1) for bcc iron (s= 7r—,o;@ (in eV); J'(r)=BJ(r)/Bin r is the
obtained strain derivative of the exchange integral between an Fe dumbbell atom (4f ) and an Fe atom within the hexagon of NN (in eV)
(see Fig. 1); here C,, are the fitted elastic constants (in eV/atom) used to obtain the best theoretical fit for the e ' (i =1,2) irreducible strains
temperature dependences (see Fig. 3).

dd 7T'

—4.35

ddo

2.31

dd 6'

0.95 —0.83

C

15.4

C&2

5.4

CZ2

166.3

strictive strains, H, 1=0 and the spontaneous magnetization
is within the basal plane; therefore we are in the above sec-
ond situation. We assume that the dds (s=7r, B,o) integrals
and the effective field, H, &&, are magnetization and strain
dependent. In fact this magnetization dependence is how we
have effectively incorporated many-body electron effects in
the calculation of the spontaneous strictions e '(a) and
e ' (a). The magnetization we are referring to is the mea-
sured spontaneous one along the a-easy direction. ' Further,
within our MF approximation such a dependence has been
introduced through the Stoner gap, given by
6=(M~ —M )H,ff where M are the up and down
spin plus orbital magnetizations in the direction of H, ff
and M, = (M+ —M ) is the average spontaneous
magnetization. ' ' Finally, as we are interested only in two-
ion magnetostriction calculation, we neglect any dependence
of 5 on the strains.

Within our model, the Eqs. (7) energy levels constitute the
centers of 20 subbands, where we assume that the density of
states has Lorentzian shape, and it is normalized to unity, i.e.,

W1 1

gll7r (E El, ) + W—
l

pl (E)=

where go=20 is the orbital plus spin degeneracy and Wi, the
half-bandwidth, the same for all of them. To those 3d sub-
bands we have added two purely spin dependent subbands,
much wider, with different electron filling capacity, Co, and
representing no magnetostrictive electron states, i.e., conduc-
tion electrons states. Therefore the number of 3d electrons
filling each subband will be given by

pl, (E)dE
J —~

where p, is the chemical potential. p, is calculated from the
condition of a constant number of electrons n = X),n),
(Cl, —= W, /go vr is the electron filling capacity of the ~Acr) sub-
band, with o.= ~1/2). In order to evaluate the system mag-
netic energy, U, we have adopted a rigid band Stoner-like
approximation, ' ' ' where particular subbands can mutually
shift, when magnetization or strain are modified. Therefore
we will write

20

U = g EPl,(E)dE.
X=1

The temperature dependence of the calculated quantities
is, as discussed before, introduced via the dependence of
them on the spontaneous magnetization experimental ther-
mal dependence, M, (T).'

(H ff + ) X

We add to the MEL energy, the elastic one, U,1, given for
hexagonal symmetry by the expression, '

assuming only o.-symmetry strains and where C; are the
elastic stiffness constants. From the minimization of the
overall energy, we obtain for the spontaneous equilibrium
strains, when the spontaneous magnetization is in the basal
plane, the following:

gu 12 B a, 2 22 B o. , 1
- M]lb.p.

(13a)

1 BU, BU,
gu 12 B u1 11 B n2

- Miib. p.

with 6 —=C»Cgz —(C,z) . It is easy to show that

(13b)

BE) BE)

Be ' Blnpu 1

BE), 9 BE),

Be v/3 B lnP (14)

where 2p is the Fe-Fe dumbbell distance (see Fig. 1), and
therefore from Eqs. (7) and (14) we can immediately express
BU,IBe ' (i =1,2) in terms of the derivatives
dds' =B(dds)/Bin p (s=vr, 8o). Because the values of the
SK integrals and their logarithmic derivatives are not known
for the dumbbell atoms in Y2Fe17, we have adopted for the
latter those for bcc iron (see values in Table II). This ap-
proximation is reasonable because 2p (Ref. 33) is similar as
in bcc iron for NN. The other derivative which appears in
BU,/Be ' is, according to Eq. (5), BJ(r)/Be ', amounting
(BJIBe '), , z o=(1/2)(BJIB ln r) and (BJIBe ), , i

—(3/v3) [(r~ —2p~)Ir ](BJIB ln r), where r is the 4f
—12j Fe atoms distance (see Fig. 1).

Three parameters were used to fit the thermal variation of
the strains e"' and e ': BH~g'IBe '= 6(s)J'(r), i.e., the in

III. MAGNETOSTRICTION CALCULATION
AND RESULTS

A. Magnetostrictive strains

The detailed calculation of the magnetoelastic (MEL) en-

ergy for our itinerant system, within the rigid-band Stoner-
like approximation, was presented in paper I, and we will
recall here only the final result. Under the external solicita-
tions (effective field and/or strains) each subband X will shift
in an energy AE&(H, &t, e '), the MEL energy becoming
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FIG. 2. Temperature dependence of the spontaneous irreducible
magnetostrictive u strains for Y2Fe]7. observed volume distortion
e ' (~) and shape distortion e (6) (from Ref. 22). The continu-
ous lines (—) are the result of the model calculation for e '(a)
(upper line) and e ' (a) (lower line), using the parameters collected
in Tables I and II [for this calculation the elastic symmetry con-
stants (see Table I) for hexagonal PrNi5 (Ref. 36) intermetallic com-

pound were employed].

plane effective field strain derivatives, where
1'(r)—=BJ/Bin r; the half bandwidths of the densities of
states, W& for the 3d subbands, and Wo for the two wide
nonmagnetostrictive subbands, whose values are quoted in
Table I. We would like to point out that the large value of Wo
is artificial, meaning that the spin subband is very flat. Such
an artificial width comes from its Lorentzian shape, but has
no consequences at all within our calculation, because it is
only near the Fermi level that the density of states is impor-
tant. Most of the remainder parameters in the model were the
same as in paper I for calculating the single-ion CEF mag-
netostriction, and they are also quoted in Table I. In particu-
lar, the finite temperature 3d-band Stoner gap, which at 0 K
amounts to 8(0)=1.266 eV, has the form quoted in Sec.
II B, i.e., proportional to M, (T) Also, the CEF splitt. ing pa-
rameter was taken as in paper I, i.e., 5=1.28 eV, which is an
acceptable value for 3d metals. Nothing is known about the
elastic stiffness constants, C;, , of Y2Fe&7 and therefore we
have to take them from another intermetallic, e.g. , the hex-
agonal PrNis (Ref. 36) (see Table I), inasmuch as Th2Ni&7

structure is deduced from CaCu5 by ordered substitutions of
one rare-earth (RE) ion by the dumbell. Therefore we will
have for the symmetry elastic constants'

C„=(1/9)(2C, t+ 2Ct p+ 4Cts+ C33), (15a)

C, 2
—(2/3v3)( —Ct t

—Ct2+ Ct3+ Cs3), (15b)

C22=(1/3)(2Ct t+2C&2 —8Ct3+4C33). (15c)

FIG. 3, The same as Fig. 2, but choosing elastic constant C;
giving the "best" fit (see Table II), and keeping the same parameter
values as in Fig. 2.

experiment was due to the inadequacy of the elastic con-
stants chosen. Therefore we modified one of the elastic con-
stants, i.e., C», in an attempt to improve the fits, keeping all
the other parameters unchanged. As we can see in Fig. 3, the
agreement now obtained is much better, at least up to T=150
K. For higher temperatures the disagreement persists, but the
Stoner-like theory is known to fail at high temperatures. We
consider to modify the remainder elastic constants too artifi-
cial. The value of the fitted C» constant is quoted in Table II,
and if compared with the value for PrNis (see Table I), we
can see that the order of magnitude is preserved. In fact, this
second fit was done in order to show that with a slightly
different set of elastic constants, the agreement between ex-
periment and theory is much better, in agreement with our
guess. But, indeed, it was not done to state that the elastic
constants for Y2Fei7 can be determined in such a way. The
half-bandwidths (Wo and W, ) and J'(r) values obtained
from the first fit are quoted in Tables I and II, respectively.
This value of 1'(r) could be compared with the value esti-
mated from the slope of the Slater-Neel curve at the 4f
—12j sites distance of 2.7 A. Such an estimation does not
give a clear number; it seems only that the accepted value of
1'(r) (about —0.83 eV/atom) is of proper order of magni-
tude. However, even such an estimate does not take into
account that the value quoted in Table I actually represents
an effective one, which includes all kinds of Fe NN's in the

Y2Fe&7 unit cell. ' Let us add that the fitted value of the
half-bandwidth W], 1.5 eV, is of reasonable order of magni-
tude for 3d systems.

In Fig. 2 we present the experimental temperature varia-
tions for both modes, together with the "best" fits from
Eqs. (13), using all the above quoted parameters and the C;,
values for PrNis (see Table I). Since the accordance attained
between experiment and theory is only qualitative, we sus-
pected the lack of obtaining a good enough agreement with

B. Macroscopic two-ion magnetoelastic coupling parameters

Based only on symmetry arguments it is possible to show
that for uniaxial symmetry the two-ion magnetoelastic en-

ergy can be written in the following phenomenological
form'
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(16)

600

V
500-

v 400-

D

where (a, , n2, a3) are the direction cosines of the average

magnetization, M, with respect to the orthogonal crystal hex-
agonal cell axes and D;, , the so-called two-ion phenomeno-
logical or macroscopic MEL coupling parameters, tempera-

ture and applied field dependent, i.e., D;,(H,~~, ,T). From Eq.

(16) it is clearly recognized that D» and D2, have their
origin in isotropic two-ion interactions (i.e., the isotropic ex-
change), whereas D, ~ and D22 come from anisotropic inter-
actions (i.e. , anisotropic exchange and hopping). Following
the discussion included in Sec. I, in Eq. (16) we have not
included the single-ion CEF magnetoelastic energy [see Eq.
(23) of paper I], inasmuch as this energy is irrelevant in order
to calculate the spontaneous e '(a) and e ' (a) strictions, as
there is not magnetization rotation against magnetocrystal-
line anisotropy torques. As we did in paper I for the CEF
origin magnetostriction, our model allows us to determine
the above two-ion MEL parameters. In fact, taking the strain
derivatives of Eqs. (11) and (16) and equating them, both for
the spontaneous magnetization M, along the c axis and
within the basal plane (e.g. , along the hexagonal unit cell a
axis), it is possible to show that
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FIG. 4. (a) Model calculation of the temperature dependencies
of the macroscopic or phenomenological two-ion isotropic magne-
toelastic coupling parameters for Y&Fe&7 itinerant ferromagnet:
D» (continuous line, —) and D2i (dashed line, - - -) (see text for
details and their meaning). (b) The same as (a), for the anisotropic
magnetoelastic parameters: D, 2 (continuous line, —) and D22
(dashed line, — — -).
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The derivatives of U, in Eqs. (17) for M II a were obtained
from the Y2Fei7 experimental e ' strains using Eqs. (13).
However, the derivatives for Mlle were theoretically calcu-
lated from Eq. (11), because they are not experimentally ac-
cessible from the spontaneous thermal expansion strains. No-
tice that although the D;; parameters do not explicitly depend
on the elastic constants, the way of obtention of
BU,/Be 'lM~~,- make them elastic constants dependent. We
should point out again that for zero external applied mag-
netic field, H

pp1
the spontaneous two-ion magnetostriction

in Y2Fe17 should not include any substantial forced or para-
process contribution, ' ' ' where many-body electron ef-
fects can appear. EIowever, if such an effect were present, our
model is able to deal with the D;; parameters calculation, in
the way already discussed in Sec. II B. In Figs. 4(a) and 4(b)
we present the temperature dependence of the zero applied

magnetic field MEL parameters D„,D2, and D,2,D22, re-

spectively. In fact, this temperature variation is a conse-
quence of the spontaneous magnetization temperature depen-
dence. As we can see the values of the isotropic MEL
parameters D» and D21 are about two orders of magnitude
larger than those for the anisotropic parameters D12 and
D22. We stress that this rule was kept for a wide range of
variations of the other parameters involved in the model.

IV. DISCUSSION AND CONCLUSIONS

In this work we have performed calculations on the mag-
netoelastic coupling of the uniaxial itinerant ferromagnet
Y2Fe17 intermetallic compound, using a Stoner-like model
for a degenerate rigid 3d band. We have assumed that yt-
trium has no magnetic moment, the 3d-band magnetism
coming from the Fe sublattice. Full details of the derivation
of the magnetoelastic energy expression [Eq. (11)] can be
found elsewhere. ' We have made two strong, although rea-
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sonable, assumptions. Because the 4f-site Fe atoms, which
form a dumbbell, are the only ones where the orbital angular
momentum is not quenched by the crystal electric field, we
have assumed that the unit formed by the dumbbell plus the
hexagon of NN Fe atoms (see Fig. 1) gives the main contri-
bution to the magnetostriction. In particular, the dumbbell
has been treated using a two-site Hubbard Hamiltonian, and
within the Hartree-Fock approximation for the Coulomb
electron repulsion U term, which is strain independent. How-
ever, the exchange interaction of the dumbbell Fe atoms with
the hexagon atoms have been only treated within the mean
field approximation. Loosely speaking, the Y2Fe&7 unit cell
(Th2Ni, 7 structure) is formed by the stacking of atomic
planes (perpendicular to the c axis), where the above units
are inserted, surrounded by three Y + NN ions, and besides
containing another Fe atoms hexagon. This layer is sand-
wiched by two planes containing two Fe atoms hexagons
(sites 12k and 6g). Although for all the Fe atoms except
for the 4f ones n=0 in the Hamiltonian H, [Eq. (4)], within
the MF approximation they will contribute to H, via the spin,
and therefore their effect will be reflected in the energy ei-
genvalues of Eqs. (7). However, they will only modify the
Eqs. (14) derivatives with extra terms of the same nature as
BH,ff /Oie '. But we have found that such extra contributions
are irrelevant compared with that provided by the dumbbell
plus NN hexagon unit. More important is that for homoge-
neous strains, such contributions are not going to distort the
e ' and e ' modes of deformation, calculated considering
only the above units. In any case their little effect is also cast
within our results if we consider BH,P~ Itive

' (i =1,2) 'as ef-
fective values for the whole unit cell, and in turn the effect
becomes refiected in the effective value of J'(r) (by effec-
tive we understand a value which represents the whole iron
sublattice). To go beyond the present approximation would
make the problem practically intractable, because of the
complexity of the unit cell and of the large number of ex-
change interactions involved.

We should point out that the two-ion interaction MEL
coupling parameters D; for anisotropic itinerant systems are
evaluated here. In paper I we evaluated the single-ion CEF
anisotropic MEL parameters M &2 and M22. There we made
the assumption that two-ion interactions gave no significant

contribution to the e. ' (c) strains, i.e., measured at
H,~~, =Hk for Mlle. Therefore two-ion contribution to the

M;2 parameters was neglected. Now we see that such an
assumption was justified: the anisotropic MEL parameters
D i2 and D22, calculated on the basis of two-ion anisotropic
hopping and isotropic exchange are about one order of mag-
nitude smaller than the corresponding single-ion ones.

It is noticeable that the isotropic MEL parameters D;& are
about two orders of magnitude bigger than the anisotropic
D;2 parameters [see Figs. 4(a) and 4(b), respectively]. The
matter arises whether the calculation is reliable for param-
eters differing so much. We think that such an objection is
not justified, because we have checked that the variation of
the parameters of fitting does not influence the mutual rela-
tions between the values of the magnetoelastic parameters
D, .

Some final remarks are pertinent here. For ferromagnetic
insulators, it is quite usual to ascertain the origin of the ob-
served magnetic anisotropy and magnetostriction in terms of
the so-called Akulov laws, through the well known m pow-
ers of the reduced magnetization. However, the theoretical
interpretation of the magnetostriction results presented here
and in paper I (Ref. 15), seem to indicate that the MEL
phenomenological or macroscopic parameters in the uniaxial
itinerant Y2Fe&7 iron-rich intermetallic compound can be
classified into two classes of well differentiated microscopic
mechanisms: of single-ion crystal field origin (M; param-
eters), and of two-ion hopping and exchange origins (D;,
parameters). We believe that this kind of classification could
be very useful in order to improve our understanding of mag-
netostriction in 3d ferromagnetic metallic systems, and in
general represents a valuable step forward in our understand-
ing of the microscopic magnetoelastic coupling mechanisms.
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