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The one-dimensional quantum Heisenberg model with random ~J bonds is studied for S= 2 and S= 1. The
specific heat and the zero-field susceptibility are calculated by using high-temperature series expansions and

the quantum transfer matrix method. The susceptibility shows a Curie-like temperature dependence at low
temperatures as well as at high temperatures. The numerical results for the specific heat suggest that there are
anomalously many low-lying excitations. The qualitative nature of these excitations is discussed based on the
exact diagonalization of finite-size systems.

I. INTRODUCTION

One-dimensional (1D) quantum spin systems have at-
tracted much interest for many years. They provide a very
useful test ground for our understanding of quantum systems
with many degrees of freedom and have led to the develop-
ment of various powerful methods of theoretical physics.
Quantum spin systems are also of interest in their own right
for the large variety of their ground states and properties of
excitations. Over the years the search for real spin chains has
led to the synthesis of various quasi-1D systems. In general
we encounter defects and disorder in real systems, which
may destroy much of the properties expected for uniform
spin chains. Although at first sight unwanted, these defects
have initiated a great deal of studies on disordered chains of
classical as well as quantum spins.

To our knowledge the first system investigated in this re-
spect originates from the quasi-1D organic charge-transfer
compounds of tetracyanoquinodimethanide (TCNQ) which
was described by the nearest-neighbor Heisenberg model,

L —1

aw=g Js, s,„,
i=o

where the interaction is antiferromagnetic but random in
strength with a continuous broad probability distribution,
P(J,).' This type of model was investigated by Hirsch and
Jose by means of renormalization group (RG) methods
based on a Kadanoff block spin decimentation scheme. Ma
and co-workers used a different real-space RG method
where the strongest bonds were successively integrated out
in order to reach an effective Hamiltonian with a fixed point
of the distribution P(J;) Fisher recently revisite. d this RG
method and extended it also to the XXZ Heisenberg model.
The result of this analysis is that the ground state is a random
singlet phase where each spin is paired into a singlet with
another spin which may be located far away in the chain.

Another approach for the disordered spin chains is the
mapping of the spins into fermions via a Jordan-Wigner
transformation, which in turn are treated by a bosonization
scheme. This approach was used by Nagaosa to study the
effect of a random magnetic field. He derived scaling rela-

tions for spin-spin correlation functions analytically and con-
firmed them by numerical calculations. Assuming weak dis-
order, Doty and Fisher analyzed the phase diagram and
thermodynamic properties of XXZ spin chains with various

types of disorder by applying a perturbative RG method to
the bosonized Hamiltonian. These results have been con-
firmed to some extent by extensive numerical calculations
for finite systems by Haas et al. and by Runge and
Zimanyi.

A new class of random spin chains has been found in the
compound Sr3CuPt 06 where the Cu site alternates with the
Pt site along chains. ' The Cu has a spin-1/2 degree of free-
dom while Pt has none. The interaction between the Cu spins
is antiferromagnetic. Measurments of the uniform suscepti-
bility show that this system is well described by a 1D anti-
ferromagnetic (AF) Heisenberg model. The Pt atoms can be
replaced by Ir, which carries a spin 1/2 like Cu. In the chains
the spin on an Ir atom couples ferromagnetically to its neigh-
boring Cu spins. As a result the number of spins has doubled
and the interaction is ferromagnetic. This spin chain is de-
scribed well by the 1D ferromagnetic (FM) Heisenberg
model. It is also possible to produce an alloy by replacing a
fraction 1 —x of Pt by Ir: Sr~CuPt Ir& 06, where x can be
chosen at will. "This yields a system with random FM and
AF interaction of fixed strength.

Motivated by these experiments we consider the Heisen-
berg model, Eq. (1.1), where the probability distribution of
J; has the following form,

P(J;)=p 6'(J;+ J)+(1—p) 8(J,—J).

The coupling J s have the same strength, but are random in
sign, with a probability of p (0(p(1) to be ferromagnetic
and 1 —p to be antiferromagnetic. We note that this model
does not exactly realize the conditions found in the alloys
described above. In the real system the strengths of the FM
and the AF bonds are in general different. Additionally, there
is the correlation (neglected in our model) that FM bonds
appear always in even numbers. Nevertheless, we believe
that the characteristics of our model are very similar to the
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ones of the real alloy and that the key property which deter-
mines the physics is the discrete randomness with FM and
AF bonds.

Obviously the analytical treatments mentioned above are
not immediately useful for our model. The scheme by Ma
and co-workers cannot be simply applied here, because there
are no strongest bonds which would allow the decimation
procedure. Furthermore, the disorder is not weak in our case,
and thus perturbative treatments would not lead to sensible
results. Instead we apply various types of numerical meth-
ods, such as high-temperature expansion (HTE), transfer-
matrix method (TMM), and exact diagonalization (ED) of
small systems. The first two provide accurate results over a
wide range of temperature (k~T) 0.1J) and the last one can
be used to reach a qualitative understanding of certain as-
pects of the low-temperature regime.

Before going into technical details we will briefly outline
the picture which emerges from our analysis. The main result
is that this quantum spin system exhibits three distinct re-
gimes, high-, intermediate- and low-temperature regimes. It
will become clear that this property originates from the fact
that the spin chain consists of alternating FM and AF seg-
ments of variable length. At very high temperatures
(ksT&) J) the interaction among the spins does not play any
role and the spins behave independently. Hence, the random-
ness of the exchange is irrelevant to the physical properties.
In particular, the uniform susceptibility follows the ordinary
Curie law, y~UT. When the temperature is lowered, the
spins gradually start to correlate. In the AF segments the
spins form collectively the smallest possible total spin (either
a singlet, S=O, or a doublet, S= 1/2), while the FM seg-
ments build up a large spin degree of freedom by aligning
spins parallel to each other. Due to the quantum nature of the
spins the interaction among these new effective degrees of
freedom is rather weak. Therefore, in an interrnediate-
temperature range (k~T~ J), they behave like independent
spins and lead to a new Curie behavior of the susceptibility,
however with a different (effective) Curie constant. The ex-
citations relevant in this temperature regime are dominated
by the discrete spectrum of "spin wave" modes of each seg-
ment. These intrasegment modes are localized because of the
mismatch of momentum and energy between the modes in
different segments. Thus these modes cannot be transfered
easily between different segments. The thermodynamics of
this regime is effectively described by an ensemble of decou-
pled FM and AF segments of finite length. Only at very low
temperatures (k~T(&J) the interactions between spins be-
longing to different segments become important. Within our
treatments this low-temperature regime is least understood at
present. However, our results suggest that a considerable
fraction of density of states is located at low energies
(cu(& J). It is characterized by an effective model of spins
with various sizes which are coupled by either ferromagnetic
or antiferromagnetic interaction of widely distributed
strengths.

The crossover between the regimes manifests itself in
peaklike structures of the specific heat. These structures are
located where spins begin to correlate. While the uniform
FM and AF systems have only one such (broad) peak (cor-
responding to the correlation of the S= I/2 spins), we expect
that two structures appear in the random system, a peak at

S,ff ]

T((T)
(1.3)

It is obvious that there are no further correlation effects be-
yond this, so that this second Curie regime represents indeed
the low-temperature regime reaching down to T=0 K.

This paper is organized as follows. In Sec. II we consider
technical aspects of the HTE and the TMM, in particular, the
problem of extrapolation from the high-temperature limit to
low temperatures. Readers who are not interested in techni-
cal details can skip this section. In Sec. III we present the
numerical results of the HTE and the TMM. Section IV is
devoted to the results of the ED of small clusters. We dem-
onstrate the weakness of the coupling between the effective
spins formed in the segments. Finally, we discuss our results
in Sec. V.

II. METHODS OF NUMERICAL ANALYSIS

In this section we describe some technical details of the
HTE and the TMM. The former allows for an exact ensemble
average over the random exchange for arbitrary p. We use
the latter method only for p = 0.5 to check the validity of the
extrapolation scheme used in the HTE. It turns out that both
methods give good quantitative results over a wide tempera-
ture range k&T~0.1J.

temperature where the original 5 = 1/2 spins start to correlate
(k~T-J) within each segment, and, possibly, a shoulder
where the effective spin degrees of freedom in each segment
start to correlate. The location and size of the second struc-
ture will depend on p.

The existence of three regimes is in contrast to the situa-
tion in the analogous classical case, where only two regimes
exist. The reason for this difference lies in the following
properties of the classical spin system. In the case of classi-
cal spins the bond disorder of the type of Eq. (1.2) is irrel-
evant for the thermodynamic properties. A simple transfor-
mation of the spin variables (changing the sign of some of
the spins) yields a uniform FM spin chain without affecting
the energy spectrum. Consequently, the specific heat would
not depend on the disorder and occurrence of FM and AF
segments does not have any direct implications here. How-
ever, bond disorder affects the spin-spin correlation and the
susceptibility. The susceptibility y shows a clear signature of
a crossover from a high-temperature regime to a new regime
at lower temperature similar to that seen for the quantum
spin system. Despite this qualitative similarity the nature of
the crossover is quite different. The classical spins do not
separate into segments, but they correlate within a length

the correlation length of the uniform system, which is
independent of disorder. As this length grows with decreas-
ing temperature, the spins in a cluster of length g act together
as one large effective spin whose size scales as S,«~ g" for

( much larger than the lattice constant. (This follows from
the fact that the directions of the spins are random depending
on the signs of the bonds so that a random-walk picture
applies). These effective spins behave independently and the
susceptibility per lattice site shows the Curie behavior in the
low-temperature limit:
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n 1

Wr„=g J,S, . S, , (2.1)

and assume that m of (n —1) exchange couplings, J;, are
ferromagnetic and the others are antiferromagnetic. There are

„C=n!Im!(n —m)! different configurations of this type.
For each configuration of couplings (J;}we calculate ther-

mal average of a physical quantity in powers of the inverse
temperature P:

Tr(e„./""-).(P (J;})=
(

-p-
)

Tr[R„X,( —PM, ) '/l! ]
Tr[X i( —P.W~„)'/l! ]

=g o, „((J,})K', (2.2)

where K= (1/2) PJS. The thermodynamic quantities we con-
sider are the internal energy u and the uniform susceptibility

for which the operator D„ is D„=Wc~„and C9'„

=Pp, (X", iS', ) (p, is the Bohr magneton). The coefficients
o, „((J,}) have to be evaluated for all configurations

(J;}.However, some operations (such as reflection in the
center of the cluster and change of the sign of J;) allow us to
reduce the number of configurations we need to calculate.

We then average over all the configurations for given p:
n

o.(K'p)=X K'X p (I-p)"
I m=O

A. High-temperature series

The high-temperature expansion of spin systems can be
implemented as a cluster expansion algorithm in a straight-
forward way. ' In 1D this algorithm is greatly simplified.

Consider a cluster of length n which is described by the
Hamiltonian,

give lists of the expansion coefficients u(l, m) and g(l, m).
For the spin-1/2 AF chain (p =0) our result agrees with the
earlier calculation by Baker et al. '

B.Analysis of the series

The high-temperature series of finite length by itself does
not give a reliable result for k&T~ J. There are, however,
various extrapolation schemes which can provide a very
good approximation down to rather low temperatures. '

Since no finite-temperature transition is possible for our 1D
spin systems, one should, in principle, be able to extrapolate
the high-temperature series down to zero temperature.

For our analysis we use the Pade approximation method. '

Although at first sight it seems straightforward to apply it to
the series of the internal energy u(K;p), we encounter the
following severe problem, which comes from the very fact
that the series could be extrapolated down to zero tempera-
ture or K~~. From the relation u(K;p) = —u( —K;1 —p),
where —K=(1/2)( —P)JS, we see that the series u(K;x)
for the spin chain with p=x also describes the spin chain
with p = 1 —x on the negative real axis. In particular,
u( —~;p) is a modulus of the ground-state energy of the
latter system while u(~;p) is the ground-state energy of the
former. That is, the series must have different limits for
E~+.~. It is impossible to deal with this feature in the
standard Pade approximation scheme.

To circumvent this difficulty, we use the following
method. We first note that u(K;p) is a monotonic function of
K along the real axis. Thus we can invert the series u(K;p)
to K(u;p), a series in powers of u/J. ' The function K(u;p)
vanishes at u=0 and diverges both at u=u(~;p) and at
u= —u(~;I —p). Thus the temperature range —~(K(~
is mapped to the region u(~, p) ~u~ —u( —~;1—p).

The inverted series K(u;p) can now be analyzed by
means of Pade approximants' because the two limits
K~ ~~ correspond to two finite points. If we assume that
near zero temperature the internal energy behaves as
u(K;p) — (u~; )p~ T'+, or equivalently

1
X g o, „((J,}).

ncm (Jf
™~ (2.3) 1

K~[u —u(~, p)] i+a, (2.6)

Note that this subtraction is only possible after the average
has been taken. Summing up the series o„'(K;p)yields the
final series

N

o(K;p) = g o„'(K;p)
n=2

=g g o(l, m)K'p (2.5)

For 1D systems it turns out that the high-temperature series
given by (2.5) is correct up to the order K for u, but only
up to E for y. ' The largest system size we considered is
N= 11 (N= 8) for the spin-1/2 (1) case. In Tables I—IV we

In the next step we recursively subtract the contributions of
all subclusters from o„(K;p):

n —1

o„'(K;p)=o„(K;p)—g (n —@+1)oI',(K;p). (2.4)
k=1

then the ground-state energy u(~;p) should show up in dK/
du/E as a pole on the real axis. Thus we can estimate the
ground-state energy and the exponent n from Pade approxi-
mants of dK/du/K. The ground-state energy we estimated
from these Dlog Pade approximants is given in Table V. We
expect that the estimated numbers have errors of the order of
1% except p = 1, for which the Pade approximants have dis-
turbing poles close to the physical one corresponding to the
ground-state energy.

It turns out, however, that we cannot obtain reliable esti-
mates for the exponent u in this way; the estimated values
seem to be too large. For example, for p=0 Pade approxi-
mants give n=1.85, which differs significantly from the ex-
act value n = 1. This failure in estimating n is possibly re-
lated to the fact that the singularities at u=u(~;p) and
—u(~; 1 —p) in the Dlog Pade approximants are not simple
poles. In fact, the approximants have many poles on the real
axis, suggesting that there are two cuts along the real axis:
u (u(~;p) and u) —u(~; 1 —p). We suspect that the expo-
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TABLE I. Coefficients u(l, m) for the spin-1/2 chain; u(K;p) =(J/4)X, X u(l, m)(pJ/4)'p

(l, m)

(1,0)
(2,0)
(2,1)
(3,0)
(4,o)
(4,1)
(5,0)
(5,1)
(5,2)
(6,0)
(6,1)
(7,0)
(7,1)
(7,2)
(8,0)
(8,1)
(8,2)
(8,3)
(9,0)
(9,1)
(9,2)

(10,0)
(10,1)
(10,2)
(10,3)
(11,0)
(11,1)
(11,2)
(11,3)
(11,4)
(12,0)
(12,1)
(12,2)

u(l, m)

—3.0
—3.0

6.0
5.0

15.0
—30,0
—4.2

—20.8
20.8

—61.13333333
122.26666667

—40.48571429
201.75238095

—201.75238095
204.90476190

—381.46666667
—85.02857143

56.68571428
353.8973545

—1276.5291005
1276.5291005

—500.5733333
571.1106878

1290.1079365
—860.0719576

—1918.0408850
6375.6162771

—6238.2222222
—274.7881097

137.3940551
259.304916

3338.140375
—11570.250620

(l, m)

(12,3)
(13,0)
(13,1)
(13,2)
(13,3)
(13,4)
(14,0)
(14,1)
(14,2)
(14,3)
(14,4)
(14,5)
(15,0)
(15,1)
(15,2)
(15,3)
(15,4)
(16,0)
(16,1)
(16,2)
(16,3)
(16,4)
(16,5)
(17,0)
(17,1)
(17,2)
(17,3)
(17,4)
(17,5)
(17,6)
(18,0)
(18,1)
(18,2)

u(l, m)

7713.500413
8196.990854

—25934.104588
23117.786328
5632.636519

—2816.318258
6660.909634

—39516.948771
78429.276975

—51765.812859
—780.557689

312.223089
—28013.413242

80562.547491
—47628.744538
—65867.605907

32933,802930
—54542.64412
255075.95809

—433951.49101
275899.26561
20102.59259

—8041.03709
66386.55357

—123625.66748
—161124.99951

568820.19930
—282707.26277

—2043.40448
681.13439

293845.3269
—1270211.3634

1989832.2634

(l, m)

(18,3)
(18,4)
(18,5)
(19,0)
(19,1)
(19,2)
(19,3)
(19,4)
(19,5)
(19.6)
(20,0)
(20, 1)
(20,2)
(20,3)
(20,4)
(20,5)
(20,6)
(20,7)
(21,0)
(21,1)
(21,2)
(21,3)
(21,4)
(21,5)
(21,6)
(22,0)
(22, 1)
(22,2)
(22,3)
(22,4)
(22,5)
(22,6)
(22,7)

u(l, m)

—1134121.9573
—288649.3274

115459.7310
—2079.9826

—646413.7595
2645440. 1027

—3976953.5968
1935729.0738

63297.2706
—21099.0874

—1251808.4999
5117166.1965

—7236338.9668
2810586.2334
3017931.4549

—1202116.2591
—5056.3158

1444.6371
—1184631.917

7782735.876
—19645416.929

23366818.910
—10787051.462
—1075629.595

358543.182
4217217.366

—15639609.441
16514166.308
5968948.429

—25376121.949
9967514.773

182933.980
—52266.733

nent is more sensitive to the disturbing cuts than the location
of poles (ground-state energy) is.

Now we are ready to explain how the specific heat and the
susceptibility are calculated from the high-temperature se-
ries. By integrating the Pade approximants for dK/du/E, we
first obtain K(u;p). The specific heat is then given by

de
C(u(T)) = —[K(u) ] (2.7)

Due to the too large a, the specific heat calculated from Eq.
(2.7) is too small at very low temperatures. As we will see in
the next section, however, it still gives reasonable results for
k~ T» 0.1J.

The susceptibility is calculated from the high-temperature
series g(K;p) in the following way. We first transform the
series of Ty, which is a power series of K, to a new series
in powers of u by substituting the inverted series K(u)
into Tg(K) . We then make a Pade approximant for
[(d/du)Tg(u)]/Ty(u) and integrate it back to get an ap-
proximant for Ty(u), which we denote P(u). The suscepti-

bility is finally calculated from y(T) =PP(u(T)). The re-
sults obtained in this way are shown in the next section.

C. Quantum transfer-matrix method

In addition to the high-temperature series expansion, we
use the quantum transfer-matrix method, which is also a nu-
merical method valid at high temperatures, to check the va-
lidity of the extrapolation scheme used in analyzing the high-
temperature series. The basic idea of the method is to
calculate the partition function by using the Trotter breakup,

exP( —P~ = [exP( —PM~, /Nr) exP( —P Xr~', /Nr) ] &,

(2.8)

where M~=~, +WE~, with a checkerboard decomposition.
Then the system can be viewed as a two-dimensional classi-
cal system, and the partition function is calculated by multi-

plying a transfer matrix. The details of the method can be
found in the literature. ' This method has the following ad-
vantages: (1) The CPU time grows only linearly with the
system size L so that we can study large systems. The largest
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TABLE II. Coefficients g(l, m) for the spin-1/2 chain; y(IC;p)=Pp, XiX y(l, m)(PJ/4)'p

(l, m)

(0,0)
(1,0)
(1,1)
(2, 1)

(2,2)
(3,o)
(3,1)
(3,2)
(3,3)
(4,o)
(4, 1)
(4,2)
(4,3)
(4,4)
(5,0)
(5,1)
(5,2)
(5,3)
(5 4)
(5,5)
(6,0)
(6,1)
(6,2)
(6,3)
(6,4)
(6 5)

y(l, m)

0.25
—0.5

1.0
—2.0

2.0
0.666666667
0.666666667

—6.0
4.0
0.833333333
2.0
6.0

—16.0
8.0

—1.4
—1.866666667

6.0
22.666666667

—40.0
16.0

—4.433333333
—0.888888889

—20.444444444
10.666666667
74.666666667

—96.0

(l, m)

(6,6)
(7.0)
(7,1)
(7,2)
(7,3)
(7,5)
(7,6)
(7,7)
(8,0)
(8,1)
(8,2)
(8,3)
(8,4)
(8,5)
(8,6)
(8,7)
(8,8)
(9,0)
(9,1)
(9,2)
(9,3)
(9,4)
(9,5)
(9,6)
(9,7)
(9,8)

g(l, m)

32.0
1.015873016
8.679365080

—0.133333333
—74.577777778
224.0

—224.0
64.0
18.12857143

—7.32063492
57.50476191
38.29841270

—237.81587302
—96.0
629.33333333

—512.0
128.0

13.1816578
—52.9643739
—23.9428571
180.4486772
259.9365079

—656.5079365
—522.6666667
1685.3333333

—1152.0

(l,m)

(9,9)
(10,0)
(10,1)
(10,2)
(10,3)
(10,4)
(10,5)
(10,6)
(10,7)
(10,8)
(10,9)

(10,10)
(11,0)
(11,1)
(11,2)
(11,3)
(11,4)
(11,5)
(11,6)
(11,7)
(11,8)
(11,9)

(11,10)
(11,11)

g(l, m)

256.0
—59.9102293

24.7207055
—134.8949559
—241.7721340

508.1876543
1173.6380953

—1585.8793651
—2048.0

4352.0
—2560.0

512.0
—109.9150746

300.2769921
70.4828219

—338.9203527
—1239.6134039

983.6675837
4324.9777778

—3283.7079367
—6912.0
10922.6666667

—5632.0
1024.0

TABLE III. Coefficients u(l, m) for the spin-1 chain; u(Jt;p) = JX&X u(l, m)(PJ/2)'p

(l, m)

(1,0)
(2,0)
(2, 1)

(3,0)
(4,0)
(4, 1)
(5,0)
(5,1)
(5,2)

(6,0)
(6,1)

(7,0)
(7,1)
(7,2)

(8,0)
(8,1)
(8,2)
(8,3)
(9,0)
(9,1)
(9,2)

(10,0)
(10,1)

u(l, m)

—2.6666666667
—1.3333333333

2.6666666667
5.9259259259
6.6666666667

—13.333333333
—18.251851852
—1.896296296

1.896296296
—31.664197531

63.328395062
58.441544189
23.237154614

—23.237154614
147.08759553

—293.62210464
—1.65925926

1.10617283
—179.33842257
—190.19539704

190.19539704
—669.2886525
1328.9508980

(l, m)

(10,2)
(10,3)
(11,0)
(11,1)
(11,2)
(11,3)
(11,4)
(12,0)
(12,1)
(12,2)
(12,3)
(13,0)
(13,1)
(13,2)
(13,3)
(13,4)
(14,0)
(14,1)
(14,2)
(14,3)
(14,4)
(14,5)
(15,0)

u(l, m)

28.8792214
—19.2528142
481.3638086

1301.8758468
—1301.3134946

—1.1247047
0.5623535

2977.0623249
—5835.6140989
—355.5316528

237.0211016
—849.9549193

—8019.3116116
8006.2448768

26.1334724
—13.0667454

—12916.439014
24667.952605
3494.640784

—2329.308912
—0.677419

0.270973
—1530.190525

(l, m)

(15,1)
(15,2)
(15,3)
(15,4)
(16,0)
(16,1)
(16,2)
(16,3)
(16,4)
(16,5)
(17,0)
(17,1)
(17,2)
(17,3)
(17,4)
(17,5)
(17,6)
(18,0)
(18,1)
(18,2)
(18,3)
(18,4)
(18,5)

u(l, m)

45953.430459
—45757.817154

—391.226630
195.613379

54519.198734
—99299.036124
—29214.214665

19463.245209
19.346878

—7.738804
28441.68270

—249359.16806
246954.37836

4809,45489
—2404.41627

—0.37317
0.12400

1688755.7953
—5177380.6581

5503050.1273
—4013509.8333

517214.6225
—206885.8485
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TABLE IV. Coefficients y(l, m) for the spin-1 chain; y(K;p) = P p, X,X g(l, m)(PJ/2)'p

15 935

(l, m)

(0,0)
(1,0)
(1,1)
(2,0)
(2, 1)
(2,2)

(3,0)
(3,1)
(3,2)
(3,3)
(4,0)
(4, 1)
(4.2)

(4,3)
(4,4)
(5,0)
(5, 1)
(5,2)

g(l, m)

0.6666666667
—1.7777777778

3.5555555556
1.4814814815

—9.4814814815
9.4814814815
1.580246914
9.481481481

—37.925925926
—25.283950617
—2.13991770

6.32098765
61.10288066

—134.84773663
67.42386831

—5.37283951
—19.45459534

0.70233196

(/, m)

(5,3)
(5,4)
(5,5)
(6,0)
(6,1)
(6,2)
(6,3)
(6,4)
(6,5)
(6,6)
(7,0)
(7,1)
(7,2)
(7,3)
(7,4)
(7,5)
(7,6)
(7,7)

y(l, m)

299.19341564
—449.49245542

179.79698217
4.14229538

—8.95473251
—148.3676269
—164.8139003
1281.0534979

—1438.3758573
479.4586191
21.0825005
50.8237507
85.6220698

—633.0976376
—1373.4491693

5024.3267795
—4474.9471117

1278.5563176

(l,m)

(8,0)
(8,1)
(8,2)
(8,3)
(8,4)
(8,5)
(8,6)
(8,7)
(8,8)

(9,0)
(9,1)
(9,2)
(9,3)
(9,4)
(9,5)
(9,6)
(9,7)

y(l, m)

—5.234080
6.320244

425.727623
1053.738742

—1911.972048
—7884.430625
18539.066606

—13637.934055
3409.483514
—67.132623

—461 ~ 172347
2085.379854

—10591.213175
42515.683875

—74434.761484
57428.487934

—16408.139410

system we studied has 400 sites, for which we can expect
self-averaging. (2) Although the Trotter number N7 is limited
by the memory size of the computer [Nr = 10 (6) for
S= 1/2 (1) in our calculation], it is possible to extrapolate to
the Nz —+(x limit, from the free energy F~ calculated for a

T

finite Nz. , by'

a& a2
F~ —Foo+, + 4+ o ~ ~ ~

N,
(2 9)

For example, for the spin-1/2 case we use F&o, F9, and Fz
to determine F, a &, and a2. This method works well down
to k~T-0 IJ. (3) In con. trast to the quantum Monte Carlo
method, there is no statistical error in the transfer-matrix
method. Thus, one can calculate the specific heat and spin
susceptibility by numerical differentiation with respect to the
temperature and a magnetic field.

A. Specific heat

As described in Sec. II 8, the specific heat is calculated
from the high-temperature series by Eq. (2.7). We show the
results for p = 0, 0.25, 0.5, 0.75, and 1 in Figs. 1 and 2. Note

III. THERMODYNAMIC PROPERTIES

In this section we discuss the results for two measurable
quantities, the specific heat and the susceptibility, for the
spin-1/2 and spin-1 chains.

that the results for the spin-1/2 AF chain (p = 0) and for the
FM chain (p= 1) are due to two-point Pade approximants
which we impose to have poles at the known ground-state
energy with the correct exponent a (n = 1 for p = 0 and
+=0.5 for p = 1). The quality of our approximants is dem-
onstrated by the comparison with the data obtained from
finite-size calculations by Blote for p =0,1 and by the data
we obtained using the TMM for p=0.5. We see that our
Pade approximants are quite reliable at least above
k&T-0.1J for 5=1/2 and k&T—0.2J for 5=1.

However, we find that our approximants for 0(p (1 can-
not be valid in the whole temperature range; they do not
satisfy the sum rule,

I -C(T)
5 d T=k~ln(2S+ 1) .

J O T (3 1)

This can be clearly seen from Figs. 3 and 4, where we show
C(T)/T as a function of T. Some entropy is missing if we
naively extrapolate our high-temperature series down to zero
temperature. Rough estimates give the following values for
the missing entropy: in the spin-1/2 (spin-1) system
b, S/S = 12, 24, and 36 % (14, 28, and 32 %) for p=0.25,
0.5, and 0.75, respectively. Since our results are reliable
above k~T-(0.1J—0.2J), we expect that the missing en-

tropy is "hidden" at lower temperatures. ' A considerable
fraction of the density of states would be located at low
energies. We discuss in Sec. IV the nature of the low-lying
excitations which are responsible for the missing entropy.

TABLE V. The ground-state energy estimated from Dlog Pade approximants.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S= 1/2
S=1

—0.439
—1.395' —1.104 —1.06 —1.01—1.35 —1.308 —1.267 —1.222 —1.183 —1.143 —1.04

—0.428 —0.414 —0.398 —0.380 —0.360 —0.337 —0.316 —0.293 —0,273 —0.240

'This value is in reasonable agreement with the result obtained by Nightingale and Blote (Ref. 30): Eo= —1.4015J.
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0.3

0.2
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0.1

0.2

u 0.1

0.0
0.0

I

1.0
I

2.0
4kaT/J

I

3.0 4.0
0.0

0.0 2.0
4ka T/J

4.0

FIG. 1. Specific heat of the spin-1/2 chain for p =0 (solid), 0.25
(dotted), 0.5 (long dashed), 0.75 (short dashed), and 1 (dashed dot-

ted) obtained from Pade approximation. The filled circles denote the
results by Blote for the uniform chains and the empty circles the
data of our transfer-matrix calculation.

FIG. 3. Specific heat divided by temperature for the spin-1/2
chain. The notations are the same as in Fig. 1.

with

B. Susceptibility
I'

U (x) = (2p —1) coth(2x)—
2xg

(3.3)

We plot the susceptibility calculated from the HTE in
Figs. 5 and 6. For p = 0.5 we also plot the data obtained from
the TMM. The results obtained from the two different meth-
ods agree quite well so that we can trust our data down to
low temperature -0.1J. We note that the convergence of the
data of the susceptibility in the TMM is much better than that
of the specific heat.

From Figs. 5 and 6 we see that the susceptibility obeys the
Curie law at low temperatures as well as at high tempera-
tures. There is a crossover at k~T- J, and the Curie constant
at lower temperature depends on p. Interestingly enough,
this feature is qualitatively the same as that of the classical
Heisenberg spin chain:

(3.2)

0.6

(3.4)

and

p, S p
X.t( ) —

3k' for T~O. (3 5)

Obviously there is a crossover between the two regimes at
k~T-J where the Curie constant changes its high- to its
low-temperature value. Note that at p =0.5 the susceptibility
of the spin chain is the same as that of a free spin. It is also
worth noting that for the uniform system the low-
temperature susceptibility is not Curie-like, but goes to a

'|.0

Equation (3.2) is obtained ' ' by using Fisher's method.
For 0(p~1 the susceptibility shows a Curie-like behavior
for both T~~ and T~O:

0.4

U

0.2

0.8

0.6I—

O 04

0.0
0.0

I

1.0
ka T/J

2.0 0.2

0.0
0.0 1.0

I

2.0 3.0
FIG. 2. Specific heat of the spin-1 chain for p= 0 (solid), 0.25

(dotted), 0.5 (long dashed), 0.75 (short dashed), and 1 (dashed dot-
ted) obtained from Pade approximation. The filled circles denote the
results by Blote for the uniform chains and the empty circles the
data of our transfer-matrix calculation.

kaT/J

FIG. 4. Specific heat divided by temperature for the spin-1
chain. The notations are the same as in Fig. 2.
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10.0

which is certainly not the case for the specific heat. To de-
termine the T dependence of the susceptibility at T~O, we
need to develop a completely different approach which can
deal with low-energy excitations directly.

5.0

0.0
0.0 4.0

4ka T/J
8.0

FIG. 5. Inverse susceptibility of the spin-1/2 chain for p= 0,
0.25, 0.5, 0.75, and 1.

constant for p = 0 and diverges quadratically for p = 1, which
is qualitatively the same behavior as the spin-1/2 chains.

Besides the qualitative similarities, there are clear differ-
ences between the quantum and the classical spin chains. As
discussed in Sec. I, the qualitative nature of the crossover is
completely different. For the classical spin chains the exist-
ence of the length scale $ is essential, whereas the segmen-
tation is crucial for the quantum spin chains, as will be dem-
onstrated in the next subsection. A quantum effect is clearly
visible for p =0.5 where, in contrast to the classical case, we
find a crossover at k&T- J between the high-temperature Cu-
rie law,

p, S(S+1)
x

and a low-temperature Curie-like behavior. For larger spins,
however, the change becomes less pronounced as we can see
in Fig. 6.

Unfortunately, we cannot simply claim from our numeri-
cal result that the susceptibility diverges as 1/T for T~O like
in the classical system. Although we are confident about the
accuracy of our data above k&T-0.1J from the comparison
between the HTE and the TMM, we cannot assume that our
extrapolation scheme is valid down to zero temperature,

6.0

2.0

0.0
0.0 0.5 1.0 1.5

FIG. 6. Inverse susceptibility of the spin-1/2 and spin-1 chains
at p=0.5.

C. Discussion of the results

In the introduction we mentioned that the key to the un-
derstanding of our random quantum spin system lies in the
property that the spin chain consists of a sequence of alter-
nating AF and FM segments of various lengths. On an inter-
mediate energy scale they behave like independent finite-size
systems. Thus, for low enough temperature the spins within
each segment correlate into the ground state as if the seg-
ments were decoupled. There are small thermal fluctuations
to the excited states which are separated by a finite energy
gap because of the finite length of each segment. The ground
state of the AF segments is a spin singlet or doublet (triplet)
for an odd or an even number of bonds in the spin-1/2
(spin-1) system. In the FM segment the ground state is char-
acterized by the formation of the largest possible total spin,
where the boundary spins should not be included, i.e., the
total spin of a segment with 8 bonds is S„,=S(Y—1). It is
important to realize that the boundary spins "shared" by
adjacent FM and AF segments do not contribute to 5„,of the
FM segment, but always have to be counted to the AF seg-
ment for the formation of its ground state. This fact is con-
firmed by analytic arguments and finite-size calculation,
which will be dicussed in the next section.

For short segments the intrasegment excitation energies
are of the order of J. For segments of larger length 8 the
lowest excitation energy can be estimated based on a spin
wave picture in a finite chain, which scales as

J
2 in FM segments,

J .—in AF segments.

(3.7)

The intrasegment spin-wave-like modes are localized within
each segment, because the excitation spectra in neighboring
segments are different, Therefore we expect that also the
coupling between the effective spin degrees of freedom
(formed in the ground state of each segment) is very weak.
On an intermediate energy scale (~b F.) they may be con-
sidered as independent spins. Only for much lower energies
correlation would develop among them as will be demon-
strated in the next section.

These properties allow us to interpret some of our results
of the HTE and the TMM. Let us first consider the specific
heat. As shown in Figs. 1 and 2, the specific heat of disor-
dered spin chains (0&p(1) drops more rapidly at low tem-
peratures than that of uniform chains (p=0, 1). As a conse-
quence the entropy we obtained numerically does not satisfy
the sum rule, S„=ka ln(2S+1) per site. From our discussion
it becomes clear that the effective spin degrees of freedom do
not correlate in the temperature range covered by the HTE.
Therefore their contribution to the entropy is not visible in
the extrapolated specific heat. Instead they would appear
at lower temperature which is beyond the reach of our
methods. A simple estimate of the missing entropy can be
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X;o.;Ao.= (3.8)

where the sum is over all the segments and o.; is the entropy
of segment i as discussed above. We note that N=X;n;.
Splitting the sums into sums over AF segments and FM seg-
ments and using the fact that the number of AF segments
equals the number of FM segments, we obtain

given by regarding all the segements to be independent. In
this picture a FM segment contributes the entropy
o.F=k~ in[25(8 —1)+1] and an AF segment o.„=0(8
odd) and k~ ln(25+1) (8 even). The total entropy contribu-
tion per site is

0.4

0.3

+
CO
CV

~ 0.2

&I
0.1

0.0
0.0 0.2 0.4 0.6 0.8 1.0

(~~)+ (~F)ha=
(n„)+(nF)' (3 9)

where (o.„F)is the average entropy of an AF or FM segment
and (nA F) is the average number of sites in a segment. For
reasons discussed in Sec. IV the appropriate way to count
boundary sites between FM and AF segments is to attribute
them to the AF side. Therefore nF=/ 1 and—n„=8+1.
The probability to find a FM or AF segment with 8 bonds is

FIG. 7. Missing entropy. The solid (S= 1/2) and dashed

(S= 1) curves are calculated from Eqs. (3.9) and (3.11).The circles
(diamonds) are the missing entropies estimated from the HTE for
S= 1/2 (S= 1).

(5 ) = y P (8)5(/ 1)[5(8——1)+ 1],

PF(Y) =(1 —p)p ' (FM segments),

P„(Y)=p(1 —p) ' (AF segments),
(3.10) which leads to

(5„)= 5(S+ 1) g P~(2m),
m=1

(3.13)

respectively, and we can calculate the desired averages as
pSI:5(2p' 4p'+ p 1—) +p —1]—

3(1—p)(p —2)
(3.14)

(o.F)= g PF(8)in[25(/ —1)+ 1],

(a&)= ln(25+ 1) g Pz(2m),
m=1

(nF)= g PF(Y)(8 1)=—
At p = 0.5 we obtain c = 1/8 for S= 1/2 and c = 7/18
(=0.3888) for 5= 1, both of which agree well with the val-
ues deduced from the HTE and the TMM, c = 0.13
(S= 1/2) and c = 0.4 (5= 1).

This discussion of our data is clearly consistent with the
picture of weakly coupled FM and AF segments. The
intermediate-temperature regime is aparently well described
by an ensemble of independent AF and FM finite-size spin
chains with a certain probability distribution.

(3.»)

1 (5,')+(5')
3 ( .)+(.) (3.12)

with

In Fig. 7 we plot Ao. as a function of p, which agrees quite
well with the estimates of the missing entropy from the HTE
data.

Let us now turn to the Curie behavior of the susceptibility
in the intermediate-temperature regime. The idea of nearly
independent effective spin degrees of freedom implies, of
course, a 1/T dependence of the susceptibility as long as they
are uncorrelated. Analogous to the entropy we can calculate
the effective Curie constant c by averaging the effective spin
sizes (y = /L c/k8 T):

IV. LOW-ENERGY EXCITATIONS

In the previous section we based the interpretation of our
data on the argument that effective spin degrees of freedom
are formed on FM and AF segments which couple only
weakly among each other. In this section we would like to
substantiate this picture by discussing some typical cases and
using data obtained from exact diagonalization. For simplic-
ity we will concentrate on the spin-1/2 system.

Let us first consider the case of small p where almost all
bonds are antiferromagnetic. This system consists of very
long AF segments separated by mostly single FM bonds. The
extreme case of one FM bond between two semi-infinite AF
segments corresponds to a FM impurity bond in an AF spin-
1/2 chain. By using the bosonization and the RG techniques,
a weak FM coupling can be shown to be an irrelevant per-
turbation with scaling dimension two. Although the FM
coupling of strength J in our model is not weak, it is very
likely that it will be renormalized to zero in the low-energy
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limit. Hence the FM bond surrounded by infinitely long AF
segments will completely decouple the AF segments. For
finite but small p the finite lengths of the AF segments stops
the renormalization of the FM bonds at some energy scale
determined by /- I/p. For p(«1 the renormalized FM cou-
plings are so small that we can neglect them in the first
approximation. A decoupled AF segment of even length
forms a singlet ground state while a segment of odd length
forms a doublet with spin 1/2. Thus, in this approximation
the degenerate ground state consists of decoupled AF seg-
ments of even and odd lengths carrying spin 0 and 1/2, re-
spectively. The residual weak FM couplings will introduce
small nearest-neighbor couplings between the doublets and
lift the degeneracy. Since the even-length segments form sin-
glets, they do not contribute to the low-energy degrees of
freedom, but they are important to determine the effective
couplings between the spin-1/2 segments; two spin-1/2 seg-
ments separated by an even number (including 0) of singlets
will couple ferromagnetically while an odd number of sepa-
rating singlets makes the effective coupling antiferromag-
netic. The actual value of the effective coupling depends on
the length of the two spin-1/2 segments as well as the num-
ber of and lengths of the separating singlets. Therefore the
resulting effective Hamiltonian is again that of a random
spin-1/2 Heisenberg chain but with random bond strength of
either sign.

We have confirmed these properties by exact diagonaliza-
tion of finite spin chains for some typical segment configu-
rations. Figure 8 shows the segmentation of a chain with two
AF segments of odd spins 5 and 7 separated by a single FM
bond. In the spectrum the two lowest energy states, a singlet
and a triplet, are very close in energy (bEs=0.13J), while
the gap between the ground state and the next excited state
which involves intrasegment excitations is considerably
higher, AFM = 0.56J. This demonstrates the separation of the
low-energy scale from the intermediate one. The size of the
splitting between the lowest singlet and triplet and the rela-
tive location of these two levels define the magnitude and
sign of the effective coupling: J' = —0.13J. In Fig. 9 we
show a chain with two segments of odd number of spins
separated by one singlet and the data of their energy levels.
In this case the corresponding energy gaps are
AF&=0.047J and AFM=0. 65J, and the separation of en-

ergy scales is even more pronounced. The relative position of
the low-energy singlet and triplet confirms that the effective
coupling in this case is antiferromagnetic. In Fig. 10 we link
the two configurations in Figs. 8 and 9 together. The spec-
trum of the effective Hamiltonian,

eff=FO+ J, Si S2+ J2 S2 S3
eff eff (4.1)

with J', =0.047J and J2 = —0.125J estimated from Figs. 8
and 9 (dashed lines), agrees very well with the lowest part of
the exact spectrum (solid lines), showing that the low-energy
degrees of freedom are well described by a nearest-neighbor
Heisenberg Hamiltonian. The energy shift F.o= —7.65J is
adjusted so that the ground-state energies agree. The fact that
the true spectrum is reproduced so well with effective cou-
pling calculated from two-segment chains confirms that pos-
sible non-nearest-neighbor interactions in the effective
Hamiltonian are small.

+ + + + + + + + + +

—3.0

-3.5

a -4.0D)Ic
-4.5

-5.0
0.0 1.0

I

2.0
SP I fl

3.0

FIG. 8. (a) The segmentation of a short chain containing one FM
bond. AF couplings are represented with + and FM couplings with
—.(b) The energy spectrum of the chain in (a).

Let us now turn to the case of p close to 1, the nearly FM
chain. Although different in structure, we can argue quite
similarly to p(&1 on the separation of the low-energy scale.
Consider two FM segments of finite length separated by a
single AF bond. This AF bond has a tendency to lock its two
adjacent spins into a singlet, which effectively decouples the
two FM segments. In a modified chain where all AF bonds
are much stronger than the FM ones, this tendency is even
more pronounced, and in the limit of infinite AF exchange
the FM segments are completely decoupled. In this limit
each FM segment forms a local ground state of maximum
spin, and the overall ground state is highly degenerate since
the large segment spins are noninteracting. A finite JAF lifts
this degeneracy, and the effective Hamiltonian for the
segment-spins is, to first order in JFM/JAP, an AF nearest-
neighbor Heisenberg Hamiltonian with coupling strengths
depending on the lengths of the FM segments. Our exact
diagonalization results suggest that this picture remains true
even when JFM/JAP= 1 and that this results in a separation
of energy scales. In Fig. 11 is a FM chain with a single AF
bond. From the segmentation we expect five almost degen-
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FIG. 10. (a) The segmentation of a chain of L= 19. The seg-
ments appearing in this particular chain are the ones in Figs. 8 and
9. Bonds are represented as in Fig. 8. (b) The energy spectrum of
the chain in (a) (soild lines) and the spectrum of the corresponding
effective Hamiltonian for the segment-spins (dashed lines).

FIG. 9. (a) The segmentation of a chain with two FM bonds
resulting in two odd-spin segments separated by one singlet. Bonds
are represented as in Fig. 8. (b) The energy spectrum of the chain in

(a).

crate multiplets of spin S= 1/2, 3/2, . . . ,9/2 corresponding to
different relative orientations between the effective spins
S&=2 and S2=5/2. These multiplets indeed appear in the
spectrum [Fig. 11(b)] and are reproduced by the effective
Hamiltonian

M=Fo+ g J„(Si.S2)" (4.2)

with Ep= 2.72J, Ji = 8.5& 10 J, J2= 3.2& 10 J,
J3=2.0X10 J, and J4= —7.8X10 J. In the spectrum in
Fig. 11(b) we can also clearly identify the four multiplets
S= 1/2, . . . ,7/2 corresponding to the right segment forming
a spin-3/2 state (magnon excitation) and the three multiplets
S= 3/2, 5/2, and 7/2 corresponding to the left segment form-
ing a spin-1 state. The excitation energies to these one-
magnon states are AEM =0.22J and AE~ =0.31J, respec-

1 2

tively. Finally we form a three-segment chain in Fig. 12. The

lower part of the true spectrum is once again in excellent
agreement with the spectrum of the effective Hamiltonian
which is taken to be

M~~ff —Ep+ Ji Si S2+ J2 S2 Seff eff (4.3)

In Eq. (4.3) J2 =0.0085J is estimated from Fig. 11 and

J]
= 0.01 1J is obtained from a similar calculation. The en-

ergy shift is adjusted to Ep= —4.28J for a best fit. These
results confirm that the low-energy physics for spin chains
with p close to one is also well described by a random
nearest-neighbor Heisenberg Hamiltonian. However, in con-
trast to small p the effective couplings for p close to one are
all antiferromagnetic, though the magnitude of the spins are
random.

For intermediate values of p the situation is more com-
plex because the typical configuration of FM and AF bonds
leads to a sequence of rather short segments. The extreme
case is a sequence of alternating FM and AF bonds which is
known to favor a singlet (dimer) configuration with an exci-
tation gap. Such a sequence, located between two segments
with finite effective spin degrees of freedom, yields ex-
tremely small couplings. On the other hand, we can also find
the situation that a FM segment borders on an AF segment
with an even number of bonds, which forms an effective spin
doublet. In this case the effective coupling between the two
segments is not necessarily small. Nevertheless, the coupling
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FIG. 11. (a) An AF bond in a FM chain locks its two adjacent
spins into a singlet. This effectively decouples the FM segments
which form local ground states of largest possible spins. Bonds are
represented as in Fig. 8. (b) The spectrum of the chain in (a).

is small enough to form the separate segment spins which in
turn govern the low-energy physics. This type of configura-
tions would, of course, be the first to undergo intersegment
correlation as the temperature is lowered. Hence, we expect
that in the effective low-energy Heisenberg model the distri-
bution of the coupling strengths as well as spin sizes is rather
broad for these systems.

V. CONCLUSIONS

We have studied the 1D quantum Heisenberg model with
random FM and AF bond disorder by means of several nu-
merical methods. A comparison of the quantum spin chains
with the corresponding classical system reveals interesting
similarities. At first sight the differences seem to be only of
quantitative nature. However, through a careful analysis of
our data, we found that the low-temperature (Iow-energy)
physics of the quantum and classical system has profound
differences. %'hile the quantum spin system exhibits a sepa-

FIG. 12. (a) The segmentation of a nearly FM chain resulting in
three weakly interacting large segment spins. Bonds are represented
as in Fig. 8. (b) The energy spectrum of the chain in (a) (solid lines)
and the spectrum of the corresponding effective Hamiltonian
(dashed lines).

ration of two energy scales between the low and intermediate
energies, only one scale is present in the classical case.

The idea of the creation of weakly interacting effective
spin degrees of freedom in FM and AF segments along the
chain plays a key role in understanding the physics of the
quantum system. While the high-energy (high-temperature)
behavior is determined by the individual spins of the chain,
they are replaced by new effective spin degrees of freedom
towards the low-energy limit. As we have demonstrated in
the last section, the low-energy physics is well captured by
an effective model which has the structure of a nearest-
neighbor Heisenberg chain with spins of variable size and
FM and AF interactions of random strength. As a conse-
quence three temperature regimes emerge in our quantum
spin system (in contrast to two in the classical case): the
high-, intermediate- and low-temperature regime. The latter
two are clearly determined by the effective low-energy
model. In this sense the intermediate-temperature regime
may be considered as the high-temperature regime of the
effective model. Therefore the effective spins yield a Curie-
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like susceptibility in this regime as confirmed in Sec. III C.
In a similar way the specific-heat may be separated into two
contributions. One is due to the individual spins, which gen-
erate a specific-heat peak when they start to correlate at a
temperature k&T- J. The other originates from the effective
spins, which give rise to another presumably much weaker
peaklike structure containing, however, a considerable frac-
tion of the entropy at lower temperature.

The methods we used in this study did not allow us to
investigate the low-energy physics extensively. Alternative
methods have to be applied here. The investigation of the
thermodynamics and magnetic properties of this regime is in
progress and will be presented elsewhere. '
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