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This paper discusses a method for finding equilibria within the lattice-Green s-function formula-
tion. The method involves the creation of an energy functional expressed just in terms of a small
subset of the () 10 ) total number of degrees of freedom. It is much more efficient and robust
numerically than former methods of solution of the Green's-function equations, particularly when
the subset becomes O(10 ). The energy functional may be used in conjunction with state of the art
conjugate gradient, quasi-Newton or simulated annealing methods to 6nd minimum-energy config-
urations and compare their energies. In addition, if constraints are placed on the allowed relations
between a few of the degrees of freedom then the method may be used to find the energies of unstable
equilibria and hence activation energies.

I. INTRODUCTION

There has been much recent interest in using atomic
simulations to bridge the gap between the experimental
and theoretical descriptions of complex solid state phe-
nomena. An important example is the problem of under-
standing the factors which determine whether the failure
of materials (such as semiconductors or metals) is intrin-
sically brittle or ductile. It is a difBcult problem for sim-
ulations because the mode of failure under external stress
is the result of interactions at different length scales; the
elastic stresses due to cracks and dislocations are long
ranged {dying away as 1j~r and 1jr, respectively) but
short-ranged interatomic interactions are important at
crack tips and within dislocation cores where the elastic
solutions are unphysically singular. The lattice-Green's-
function method bridges the length scale gap between
these two regimes, at present in the static limit. It thus
allows for comparisons with the predictions of elasticity-
based theories but is also (for a given size of computer)
able to treat much larger systems than may be simu-
lated using molecular dynamics. In "nonlinear" regions
where atomic distortions from lattice positions are large
it uses empirical potentials, and in "linear" regions where
strains are small and atomic coordination is unchanged
from the unstressed state it uses linear forces determined
by force constants derived from the same empirical po-
tentials. The method is applicable to both bulk and sur-
face problems. Figure 1 shows how the regions may be
de6ned when investigating crack problems.

The original lattice-Green's-function work was done
using a nearest-neighbor model on a two-dimensional
hexagonal lattice and used an iterative equation solver
to And system configurations where the sum of the forces
on each atom was zero. As we tried to extend this work
to longer-ranged and three-body forces, acting on larger

LINEAR ZONE O(10 ) ATOMS

NON LINEAR ZONE

O(10 ) ATOMS

FIG. 1. Separation of the system into "nonlinear" and "lin-
ear" regions. The former may contain O(10 ) atoms while the
latter may contain O(10") atoms for calculations performed
on workstations.

numbers of atoms in more general lattices, we discovered
that the original solution method was sometimes imprac-
tically slow and frequently failed to converge at all if the
number of atoms in the nonlinear zone was too large. We
have thus developed a modification of the original iter-
ative method with much improved convergence and efB-
ciency properties. It uses the Green's function describing
the linear response of the substance to external forces
to generate an effective energy function which is mini-
mized to And a state of equilibrium of the system. The
minimization can be performed using, for example, con-
jugate gradient methods. In addition to improving the
convergence properties this energy method can be used to
calculate energies of activated transition states. The for-
mulation to be derived in this paper is a generalization of
calculations made of the activation energy for crack pro-
cesses made in earlier papers, when the nonlinear region
consisted only of one bond. The added feature here is
that the energy is used to find the equilibrium configura-
tion of the crack. The equilibrium corresponds precisely
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to the zero-force condition of the original method but is
found more efFiciently. Section II of this paper describes
the energy-based method in detail. Section III gives a
simple example, evaluated analytically, to show how it
works. Section IV compares the convergence properties
and ef6ciencies of the old and the new formulations and
Sec. V presents conclusions.

actions when the atoms are strained:

—Pe=au,

and combining the last two relations,

E = ——uF.
2

II. GREEN'S FUNCTIONS
AND THE ENERGY FUNCTIONAL

We now generate the energy functional; at the end of
the section we recover the link with the earlier version of
the method. We use two notational conventions. First,
the subscripts L and NL imply restrictions to the linear
and the nonlinear zone degrees of freedom, respectively,
while the lack of a subscript implies that there is no such
restriction. Second, superscripts describe the nature of
the interaction being considered (such as the linear or
the nonlinear part of the interatomic interactions, for in-
stance) with no assumption as to where it acts, since that
is described by the subscript. By default all interactions
are internal unless explicitly identified with the super-
script "ext," in which case they are due to forces applied
externally, or with the superscript "tot," in which case
they include both internal and external interactions.

The internal energy of a system of atoms may be ex-
pressed as E + E", where the first term is the "linear"
internal energy and the the second term is the "nonlin-
ear" internal energy (where linearity or nonlinearity will
be seen to refer to the dependence of the correspond-
ing internal forces on displacements). Defining u as the
vector of displacements &om equilibrium and 4 as the
spring constant matrix,

E = —u@u.e

2

DifFerentiating Eq. (1) we obtain the linear part of the
internal forces which come about from interatomic inter-

Components of F are defined as above in both the linear
and nonlinear regions.

Our method allows for "exact" representations of the
energy in the nonlinear zone. In the present implemen-
tation we use empirical potentials for this purpose, and
designate the result ENr "(uNL). (Here uNL is the set of
deviations from crystal sites of all atoms in the nonlinear
zone; the corresponding set of coordinates, for atoms not
in general in equilibrium, is RNr, .) The potentials are
typically of a general two-body form z g, . V2(R, —R~),
of a three-body form —P, & Vs(R, , R~, R&), or of the
embedded atom form g,. g[P f(R, —Rz)]. To obtain
the nonlinear energy an additional term ENL must be
subtracted to avoid double counting the "linear" compo-
nent of the empirical potential which has already been
included in Eq. (1). Finally, since the zero of the linear
energy corresponds to the unstrained u = 0 configura-
tion, for consistency we subtract a constant ENxr

' (0)
whose value is the total empirical potential energy asso-
ciated with nonlinear zone atoms only, calculated when
u = 0. Its inclusion is strictly necessary only if we wish to
compare the energies of diferent local minima obtained
using differently sized nonlinear zones, but it does ensure
that E&'& is strictly O(u ).

The calculation of EN&, the "linear" energy in the non-
linear zone, demands care so that no linear contributions
from bonds linking the linear and nonlinear zones are
included. Let us index atoms as a and 6, and index di-
rections (x, y, or z) as i and j, with the atoms at present
unrestricted as to location. We may write the total linear
energy, Eq. (1), as

) a@ah b ) a@ah b ) a a ) Cab

i,j,a, b i,j,a, b ij,a b

) baba a ) ~ b b ) @ba

i,j,a, b i,j,b a

= —) u, (u,
' —u, )c;,b ——) u,'(u,' —u, )cb; = ——) (u, —ub)c;,b(u, —u,'),

i,j,a, b i,j,a, b i,j,a, b

(4)

where the second and third equalities use the fact that
Pb O';. = 0, and the final equality depends on @,b

4b~ 3 and that

) (u; —u, )4;, (u. —u. ) . (5)
i,j,a, b

Equation (4) is independent of crystal structure and
holds, in particular, when there is more than one atom
per unit cell. Since the linear energy has now been de-
fined in terms of relative displacements of atoms a and b,
this allows us to calculate the required linear energy for
the nonlinear zone, by summing over both atoms a and
6 restricted to be inside the nonlinear zone.

The resulting nonlinear contribution to the interaction
energy is
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NL

&NL = @NL (uNL) +
4 ).(ui u')@'i(uj uj)

i,j,a, b

@ewact (0)

where the second term is a sum over atoms in the non-
linear zone only.

This description of the total internal energy is not in
principle limited by the use of empirical potentials to
calculate the more accurate representation of the energy.
One could use density functional theory to calculate the
spring constant matrix 4 and the energy of the atoms in
the configuration given by uNL. The only problem is the

I

specification of the boundary conditions for the nonlinear
zone electronic calculation. It would not be appropriate,
for example, to use free boundary conditions for the non-
linear zone cluster since the resulting energy is very dif-
ferent from the energy of the same cluster embedded in
the infinite medium. Such care in choosing the boundary
conditions is not necessary when using empirical poten-
tials because in that case it is possible to partition the
total energy among the separate atoms unambiguously
so that the calculated energy for nonlinear zone atoms is
independent of factors outside the zone boundary.

In general we are interested in the efI'ect of external
forces Fex acting on the system. Including these yields

E'" = +EN" "(uNL) + —) (u, —u, )4,, (u, —u, ) —E "L "(0)+ —u@u —F'"'u
i,j,a, b

for the total energy. Note that the sum over a and 6 in
the second term of this expression is over just nonlinear
zone atoms, while the fourth term involves sums over all
atoms in the whole system. The latter point means that
Eq. (7) is a function of a number of variables equal to
the total number of degrees of &eedom in the system.

To reduce the number of degrees of freedom we pro-
ceed as follows. We restrict ourselves to calculating the
energy for a restricted subspace of all the possible atomic
configurations for the whole system, which contains the
sought-after equilibrium. In this subspace the positions
of the atoms in the nonlinear zone are arbitrary, but,
given these positions, all atoms outside the nonlinear
zone must be in zero force positions. Thus

Fei+FL"t = 0,

where the subscript specifies that the relation is required
to be true only for degrees of &eedom in the linear zone.
For the restricted set of allowed configurations our new
expression will give exactly the same value as before; it
is still the energy of the whole system (not just of the
nonlinear zone) and includes all the internal energy terms
which come about in the linear region because of relax-
ations in response to external forces and. to forces exerted
on the linear region by the nonlinear region. However, as
we now show, the constraint of zero net force on atoms in
the linear zone means that their positions do not have to
be stored, or even calculated explicitly, in order to obtain

the total energy.
In terms of a Green's function G = 4, Eq. (2) may

be rewritten as u = —GF or in block matrix form as

~NL — G NL, NLFNz, G'NL, LFL,
e e

~L — +L,NLFNL GL,LFLe (10)

(GNL, NL) (uNL + GNL, LFL)

while substituting the result into Eq. (10) gives

~L —+GL,NL(GNL, NL) (uNL + GNL, I FL)
—GI.,I,FI, (12)

Using Eqs. (2), (8), (ll), and (12) the last two terms
in the total energy expression Eq. (7) become

with the subscripts L and NL referring to the linear and
nonlinear regions, respectively. Note that these relations
between the displacements, the Green's function and the
linear part of the internal forces, are always valid. They
are valid irrespective of whether the system is in equilib-
rium or not, or of whether there are nonlinear internal
forces or not, just by virtue of definitions of G and F,
which do not assume either linearity or equilibrium. This
point is crucial to the development which follows.

Rearranging Eq. (9) gives

+ E " = ——FL,uL, ——uN/F/L —FL ul, —FNI uNz,

ext+
2

FI, GL,NL(GNL, NL) (~NL GNL, LFL ) + FL GL,LFL + uNL(GNL, NL) (llNL CNL LFL ')

FL GL,NL(GNL, NL) (&NL —GNL LFL ') —FL GL,LFL FNLuNL

-1
+ 2 uNL

(GNL, NL) uNL FNLuNL
2

FI, GI,NL(GNL, NL) wNL &NL(GNL, NL) GNL LFL

ext+ FI, GI,NL(GNL, NL) GNL LFL ——FL GL,LFL (»)
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Note that the two uNL-dependent terms proportional to F& are equal because of the symmetry of the Green's-function
matrix. [The symmetry of 4 means that both G and (GNL NL) are symmetric. ]

The total energy, the sum of Eqs. (6) and (13), is therefore

NL
Etat + ~exact(

) + ) (
a b)C ab( a b) ~exact(O)

i,j,a, b

1+ uNL(GNL, NL) uNL + FNLuNL FL GL,NL(GNL, NL) uNL
2

+ FL GL,NL(GNL, NL) GNL, LFI FI GI,IFL (i4)

where the groups of terms in square brackets are the an-
harmonic, quadratic, linear, and constant terms in uNL„,
respectively.

Equation (14) has several noteworthy properties.
First, in the limit that the whole system is nonlinear
(when there is no FL"t) the expression is identical to
Eq. (7) as expected. (Recall that C i = 4.) Second,
the last two terms are independent of uNL and thus do
not have to be included in the functional if it is mini-
mized to find an equilibrium. The most important prop-
erty, however, is that the result depends entirely on the
positions of atoms in the nonlinear zone, with all depen-
dence on atoms outside the nonlinear zone included but
invisible. It has reduced the number of eR'ective degrees
of &eedom by orders of magnitude and thus made mini-
mization searches practical.

We end this section by recovering the link between the
energy minimization formulation of the equilibrium con-
dition and the formulation used in earlier work. The
equilibrium condition (that there be no force on any
atom) is that —7'Et t = 0. Note that since Eq. (14)
is a function only of degrees of freedom in the nonlinear
zone (recall that it assumes that linear zone atoms have
rearranged themselves to experience no net force), the
gradient involves only derivatives with respect to nonlin-
ear zone degrees of freedom.

DifFerentiating Eq. (14),

uNL —+GNL, NL[FNL + FNL(u)] + GNL, L I, (i6)

in equilibrium. Comparing this nonlinear zone equilib-
rium condition to Eq. (9) —a general expression for uNL
which did not assume equilibrium —we see that

FNL + FNL + FNL (17)

the expected force condition for equilibrium. Substitut-
ing this relation and Eq. (8), the equilibrium condition
on forces in the linear zone, into Eq. (10), the earlier
expression for uL„gives

+FNL(u) (GNL, NL) uNL + FNL

+FI GI,NL(GNL, NL) (i5)

where +FaNL(u) = —V'ENiL [see Eq. (6)]. Setting this
expression to zero, rearranging, and using the symmetry
of C,

uI +GI,NL[FNL + FNL(u)] + GL,LFL (18)

Equations (16) and (18) may be combined giving

u = G[F'"'+ F"'(u)]

which is the self-consistent equation for equilibrium
solved iteratively in previously published work. ' It must
be noted that one evaluation of Eq. (19) is somewhat less
costly than one evaluation of the total energy expression.
Nevertheless, our experience has shown much enhanced
ability to find an equilibrium and very large decreases in
computer time to And it when using the conjugate gradi-
ent method and Eq. (14) rather than iteratively solving
the self-consistent equation. These advantages are de-
scribed in detail in Sec. IV.

The above method relies on the atoms in the linear
zone being sufBciently accurately described by the lin-
ear approximation. Understanding the limits of the ac-
curacy of this approximation is necessary for both the
energy and self-consistent force formulations; we discuss
it here because it has not been analyzed in detail previ-
ously. Specifically, the approximation requires that the
factors u, —ub in the linear energy expression Eq. (4)
(the relative displacements in the ith direction of atoms
a and b) must be small enough, for all atoms a, 6 in the
linear zone and for all directions i, that in describing the
energy it is sufBcient to include them just to quadratic
order. Thus, both the strain (symmetric) and rotation
(antisymmetric) parts of the displacement gradient ten-
sor outside the nonlinear zone must be small. While the
condition that strains be small should be familiar the ro-
tation condition may not be so familiar, though it must
always be considered for rotated lattices even if atomic
separations remain close to unstrained lattice values. It
is most easily understood using the example of an iso-
lated dimer in two dimensions bound by a linear spring
with spring constant k.

Consider two atoms [see Fig. 2(a)] at equilibrium sepa-
ration ro, initially aligned along the x axis, with one atom

fixed at the origin. The energy is 2k[ (ro+u )2+ u2-
t.o]z = ik(u )2 + O(u u2), where u and u„are devia-
tions &om the initial positions in the x and y directions,
respectively. Now rotate the dimer about the origin so
that one atom remains at the origin and the second is
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(a) minimum has been found. If the resulting displacement
gradients and rotations in the linear zone are too large
then the calculation must be repeated with a larger non-
linear zone.

ro

(b)
III. EX.AMPI E: THE FC)UR,-ATOM B.INC

PIG. 2. Dimer con6gurations used in the model calculation
to demonstrate the importance of lattice rotation in limiting
the accuracy of the linear approximation.

a't (rp cos 0 pp sin 0), as in Fig. 2(b). The true energy
is still zero, but its value calculated to second order in
u (which is equivalent to its description by a Green s-

function energy expression) is 2krp(1 —cos 0) and thus
gets progressively less accurate [O(0 )] as the rotation
gets larger. Now stretch the dimer to a length of r0 + b.
Then u = (rp+ h) cos 0 —Tp and the true energy is —k82,
but the energy to second order in u is

E = —ku=1 2

2

= —k[rp(1 —cos 0) + 287"p(cos 0 —1) cos 0 + b cos 0],
2

(2O)

which leads to an error O(0 ).
Consider next a trimer, say, lying in the z direction.

Then additional energy terms for the third atom in the
trimer must be added for the additional bond, corre-
sponding to those already written in Eq. (20). When a
rigid rotation occurs the x components of the interatomic
separations are reduced below their equilibrium values
and so, in the linear approximation in which we work, the
internal interactions generate expansive forces to coun-
terbalance the e6'ective compression. The central atom
in the trimer does not feel these forces due to symmetry,
however. By similar arguments, for a rotated bulk lattice
the Green s-function approximation will generate a uni-
form expansion in the solid. With this uniform expansion
no net forces will be generated at any atom, and nothing
will happen. However, symmetry-breaking strains added
to the rotation will contain rotation-induced errors in the
Green's-function representation of the energy and forces.
More seriously, at any surface in the lattice, the effective
pressure generated by the rotation will generate a surface
force due to the destruction of the symmetry at the sur-
face. Thus, a surface site will have errors of order O(02u)
in the energy generated using the Green's-function de-
scription when rotation and strain u are combined, and
of order O(04) on a surface when rotated without strain.

It is therefore necessary to evaluate components of
Eq. (19) for atoms near the nonlinear zone after a local

To understand the energy functional better, consider a
simple example: four identical atoms in a linear chain
with periodic boundary conditions, treated within a
nearest-neighbor two-body model. To reduce computa-
tional effort (as is necessary for large periodic systems)
we work in q space so that the Fourier transform of the
spring constant matrix 4;z(q) = g C,~(R, , O)e'~' is
block diagonal. (The blocks are of side mp, for atoms free
to move in m dimensions with p atoms per unit cell. ) We
use tildes to denote Fourier space quantities.

Taking the nearest-neighbor separation to be 1, we
chose Vq(l + u) = (1/2)ku + au as a model potential.
Values of the spring constant matrix depend only on the
separation between the atoms. Defining 4(~m —n~)
C'm, n,

4(0), 4(1),C&(2), 4(3) = 2k, —k, O, —k,

(recalling the periodic boundary conditions). At this
point a complication arises. In q space the diagonal com-
ponents of the 4 matrix are

e(O), e(~/2), C(~), e(3~/2) = 0, 2k, 4k, 2k (22)

G (0), G (1),G (2), G (3)

5 1 3 —1

16k ' 16k ' 16k ' 16k

We now consider the following problem. Designate two
neighboring atoms (atoms 1 and 2) to be in the nonlinear
zone, and the other two atoms to be in the linear zone.
Figure 3(a) shows the equilibrium configuration. We cal-
culate the energy of the system when each atom in the
nonlinear zone is moved towards the other by distance e
so that uNL = (v, —v) and additionally these atoms are
subjected to external forces of magnitude fk acting in
the same direction as their direction of displacement so
that F'"' = (fk, fk, 0, 0) [Fig. 3(b—)]. Noting that

3.0 y
(+NL, NL) 2 k

-', k )
1Pk
3

(24)

(all off-diagonal elements vanish), so that the matrix can-
not be inverted because of the q = 0 translational mode.
As explained in the Appendix we therefore calculate the
Green's function omitting its q = 0 component in the
back Fourier transform from q to real space, and use
those values in subsequent calculations. The resulting
matrix, designated G in accordance with the Appendix
notation, is (in real space)
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way to do this is discussed below. ) This method uses a
standard conjugate gradient routine which requires input
of an initial guess for the reduction in energy between the
input atomic configuration and the equilibrium, and of
a (small) tolerance related to the sum of the squares of
the forces in the supposed equilibrium (which should be
zero). This tolerance is also hmited by rnachine precision.

While the two tolerances on having found. the equi-
librium are not identical, they are in fact closely re-
lated since the vector of the relevant conjugate gradi-
ent "forces" is given (for the case when all external
forces are applied in the nonlinear zone) by F'" + F"—
(GNr, Nz, ) u, as can be seen from Eq. (15). Squaring
this gives a quantity close to the quantity tol used as
a test for equilibrium in the iterative method except for
multiplicative factors of order G, which for our test case
are typically of order 1. Thus the fact that difFerent cri-
teria are used for the two methods should generate only
small errors when making quantitative comparisons of
their relative efficiencies. Quantitative tests confirm this.
Table I shows that the number of iterations needed for
convergence using the conjugate gradient algorithm in-
creases only slowly as the tolerance is tightened. (The
smallest value for the tolerance in the table is the limit
for which rnachine precision did not affect the accuracy. )
Thus the precise value of the convergence test has only a
small impact on the run time.

The initial test problems (run here with a bulk Green's
function rather than with a crack Green's function) use
nearest-neighbor pair forces between atoms in a hexag-
onal lattice with nonlinear zones of difFerent sizes. The
applied external forces are such as to open a crack over
a substantial fraction of the nonlinear zone in each case,
and the initial configuration is the elastic solution to the
relevant problem. Figure 4 shows the CPU time for con-
vergence (on a Silicon Graphics R4000 workstation) as
a function of the number of degrees of freedom in the
nonlinear zone. The fi.gure shows three curves for the
iterative method, corresponding to o, = 0.1, 0.5, and 1,
and one curve for the conjugate gradient method.

Figure 4 shows that in all cases the conjugate gradient
energy method takes much less time than the relaxation
method. (It should be noted that it takes about 20 s to
read in the very large Green's-function file at the begin-

4 l

I

o o 0 0, ~
I

a 0 0', ~

0
O 0

0
I
I0

() Q

0
00"0

Q LINEAR ZONE

NONLINEAR ZONE

EXTERNAL FORCE

FIG. 3. Periodic array of four atoms used for the model
total energy calculation. (a) shows the equilibrium configura-
tion when no external forces are applied. (b) shows the con-
figuration for the first model problem when external forces
are applied in the nonlinear zone. (c) shows the configuration
for the second model problem when forces are applied in the
linear zone.

we now evaluate the total energy using the energy ex-
pression Eq. (14):

8E" = 16nv + —v k —2fkv
3

(25)

This is identical to the energy obtained by solving for the
zero-force positions of uL, and using the whole Hamilto-
nian, illustrating that using C introduced no error.

A related problem [Fig. 3(c)] is to calculate the energy
for the system with uNg unchanged but with the exter-
nal forces imposed outside the nonlinear zone instead of
inside it: F'"t = (0, 0, fk, —fk). The anharmonic and
harmonic terms are unchanged &om the first problem
but there are new linear and. constant contributions to
the total energy. Equation (14) gives

(26)
Once again this agrees with the direct calculation using
the full Hamiltonian. "

E = 16nv + —v k + fkv + f—k — f k— —4 12 32
3 3 24 8

IV. COMPARISONS
OF OLD AND NEW METHODS

To compare the efBciencies of the old and new meth-
ods we find equilibria for cracks of varying lengths. For
consistent comparison we use the same Green's function
and the same force law routines in all the calculations.
The original relaxation method involves iteratively cal-
culating

u(~+ i) = u(~) +o(o(F-'+F"'(u(~))} —u(~)) (27}

until tol = (G[F'"t + F"i(u(i))] —u(i)) is less than
some predetermined constant chosen to reBect machine
precision. The constant o. may be varied between 0 and
1 during the course of the minimization. (The optimum

Tolerance
10-4
10
10
10
10
10

10
0 11

Number of iterations
170
182
195
211
227
245
253
259

Output energy
-16.888 89
-16.888 965
-16.888 970
-16.888 9721
-16.888 97228
-16.888 9722975
-16.888 97229789
-16.888 972297908

TABLE I. Number of energy-function calls as a function
of the input tolerance for convergence for a crack problem
using the conjugate gradient method. The output energy on
"convergence" is also given to show the relation of the error
in the energy to the tolerance for this problem.
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FIG. 4. Time to convergence in seconds for crack problems
with diferent numbers of degrees of freedom using the conju-
gate gradient method and the relaxation method with three
di8'erent values of the constant n.

FIG. 5. Time to convergence in seconds as a function of
the size of the convergence tolerance used by the conjugate
gradient method for a crack problem.

ning of each calculation. Thus the actual computation
time is even smaller than it seems in the graphs —only
about 10 s for the problem with just 124 degrees of free-
dom when using the conjugate gradient method, for ex-
ample. )

The iterative method is considerably more delicate to
use than the conjugate gradient method. Figure 4 shows
that the time to convergence is strongly dependent on
the value of n chosen (which is held constant during
each relaxation). In general, the smaller the n value,
the longer to convergence, as would be expected since
smaller a involves taking smaller steps towards the equi-
librium. However, it is not feasible to take large o, in gen-
eral. For example, when the value o. = 1 was tried on a
small sample of 102 atoms the system had not converged
even after 20 000 iterations and more than 4000 s of CPU
time. The solution in this case would be to change a to
a smaller value as the system got closer to equilibrium.
For simple cases such a strategy is possible (and was in
fact used when finding equilibria for the earlier published
work; there, however, the time to convergence was much
reduced by using a crack Green's function). There is,
however, no general procedure for determining when and
how to change a. Thus, eKcient use of the method, using
optimum o. values to minimize CPU time for a given run,
demands much prior experience using similar force laws
and similarly shaped and sized nonlinear zones. Further-
more, when the interatomic forces are chosen to be longer
ranged and there are large numbers of degrees of &eedom
in the nonlinear zone it is found that moderately large
values of n (such as 0.5) frequently lead to the whole sys-
tem blowing up after significant amounts of CPU time.

When we consider the conjugate gradient method there
is no sensitive dependence on a numerically required in-
put parameter, analogous to a in the iterative method.
Figure 5 shows the CPU time for convergence as a func-
tion of the guessed difference AE between the input and

equilibrium energies. The time is unrelated to the ac-
tual AE (which is in this case 18 energy units) over a
range of input guessed LE's of more than two orders of
magnitude spanning the correct value. This makes the
energy-based method much more robust than the former
method. Furthermore, our experience has shown that
this method is much less likely to fail to find a minimum
at all by reaching a state where the system has blown up.

V. CONCLUSIONS

We have developed a method, using an energy func-
ti.onal and conjugate gradients, for finding the equilibria
of a large number of atoms using Green's functions. It is
seen to be faster, easier to use, and able to find equilibria
for much larger numbers of degrees of freedom than the
old method, to which it is, however, equivalent at equilib-
rium. The actual time (and also the scaling of the time
as a function of size) depends in an intricate way on the
force law (particularly on the number of neighbors per
atom) and on the size of the nonlinear zone. For crack
problems the time is reduced by using a crack Green's
function instead of a bulk Green's function. The method
extends the usefulness of the Green's function approach
because it may be used to calculate activation energies.
This can be done by calculating the minimum of the en-
ergy when a constraint on relative displacements of the
atoms is imposed to ensure the symmetry of the state
at the top of the energy barrier. Finally, it is useful to
note that while at present we use the conjugate gradient
method to find minima, the fact that we have defined
both an energy functional and its derivatives makes it
equally possible to use quasi-Newton or simulated an-
nealing methods instead. Thus this approach to solving
the equilibrium equations provides increased possibilities
of locating hard to find minima and of comparing their
relative energies.
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APPENDIX

This appendix shows how to calculate the Green's
function, de6ned as the inverse of the force constant ma-
trix, in spite of the fact that the force constant matrix is
singular. The procedure used. , which is justi6ed in detail
below, is to omit the q = 0 term in the back Fourier
transform from q to real space.

First note that the 4 matrix is always singular, what-
ever the force law or lattice. This is so because its q = 0
term 4;~(0) = P 4',~(R, O) is always zero. This means
that the q = 0 component of the Green's-function ma-
trix C(0) = [4(0)) i does not exist. The solution is to
note that we use Green's functions only when the sum
of all externally imposed forces is zero, to And equilibria.
In such cases the Fourier transform of the force vector
F'" (0) = 0. Newton's third law ensures, on the other
hand, that F"i(0), given by the suin of the nonlinear
forces over the nonlinear zone, must also be zero. For a
system whose Green's function has translational symme-
try the convolution theorem allows us to rewrite Eq. (19)
as

~(q) = G(q) [F'"'(q) + F"'(q)) Vq, (Al)

showing that the behavior of G(0) may be ignored when
calculating atomic positions since it just multiplies a
quantity which is zero. Hence treating C(0) "incor-
rectly" has no effect on the resulting equilibria, at least
for systems which before loading have translational sym-
metry.

We now describe the way in which we treat G(0). First
define a projection operator P = g,. lq = O, i)(q = 0, il,
where the sums are, for example, in three dimensions,
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more standard molecular dynamics approaches, with Dr.
Robin Selinger of NIST. As a result of these discus-
sions, we were motivated to work out the accuracy lim-
itations of the Green's-function methodology more care-
fully, as reported in this paper. We gratefully appreciate
support from the OfBce of Naval Research under Grant
Nos. N00014-92-3-4049 (at Washington University) and
N00014-92-F-0098 (at NIST).

over the directions x, y, and z. Its real space matrix
elements are given by

P;~(R, R ) = —) P;~(q„q2) e '~' e
q1q2

1
N

VR, R' (A2)

where N is the number of distinct q values, and the nor-
malization ensures that (P) = P. Now define a per-
turbed force constant matrix 4'~ = 4'+ PP, so that the
perturbation removes the singularity. In q space the per-
turbed matrix is block diagonal with PP nonzero only
for q = 0, and 4 nonzero only for q g 0. This means
that in a system with translational invariance (4'~) is
the sum of the inverses of its two components, provided
that when we Fourier transform back to real space we
omit the q = 0 term in the calculation of (4') . Defin-
ing G~ = (4'~), and noting that the P piece does not
contribute to the inverse when P = oo, it is clear that

C~ = G-+ —I1

The physical value of P is zero but we choose to carry
out the calculations with the "incorrect" P = oo, so that
the choice can be implemented simply by using the un-
perturbed 4 matrix and omitting the q = 0 term in the
Fourier transform of G.s (This has been discussed in an
earlier paper from a difFerent point of view. )

It is frequently of interest to compare the energies for
different local minima, for example, to see which of sev-
eral local minima is most likely to be global. We need
therefore to show that the energy functional, Eq. (14),
and not just the atomic configuration, is unaffected by
the q = 0 perturbation. This is complicated by the fact
that the boundaries of the nonlinear zone break the trans-
lational symmetry and thus the factor (G Ni, NL) means
that convolution theorem arguments cannot be used for
the energy expression.

We proceed as follows. Define g = (CNL NL) and
P = Pgl, gg, the nonlinear zone submatrix of P, so that
'P = pP, where the factor p comes from the differences
in size of the supercell and the nonlinear zone. Then,
if I is the appropriately dimensioned identity matrix,
Eq. (A3) gives

(GNL, NL) GNL, NL + = g I+ —7'@
1

�

@v@ @v, vga't v@v v@

+ „, ). 1 —
~

+ o((»)') l~)(~l, &,~ x„go &

(A4)

where lv) is an eigenket of 'Pg'P with eigenvalue A, and the sum is over all lv) with nonzero eigenvectors. Taking
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the limit P -+ 0,

(+NL, NL) ~ ~+ ) V V

A„go
(A5)

[Note that 'P(1 —P& &o ~v)(v~)V = 0.] In general the second term will not be zero, suggesting that using (CNL NL) in

the total energy expression will give incorrect energies. Consider, however, cases where F&&(q) and FP (q) separately
vanish for q = 0. Then premultiplying Eq. (15) by P gives

P7—E' ' = —PguNz„ (A6)

so that (GN& N&) uN1, = (GNL N&) uN1, if the system is in a minimum or at a saddle point of the total energy.
We have therefore shown that if the overall Green's function has translational symmetry then the atomic positions

in zero-force configurations are correctly given by using G instead of C, and furthermore that if the sums of the
applied forces inside and outside the nonlinear zone separately vanish, then the energies for these configurations are
correct for any shape of the nonlinear zone. The arguments may be extended to systems where the Green's function
no longer has translational symmetry, as, for example, when a crack Green's function is used. For this case [using the
fact 4'(q, 0) = 4(0, q) = 0], it can be shown that all the above conclusions still hold.

We now apply this procedure to the four-atom example, giving

(A7)

The Fourier transform is

so that

4~(0), e~(~/2), C~(~), C~(3~/2) = P, 2k, 4k, 2k, (AS)

p p p p 1 4k+ 5P 1 4k P 1 4k 3P 1 4k P
16 kP ' 16 kP

' 16 kP
' 16 kP

The limit of this expression as P ~ oo is used in the energy calculation in Sec. III.

(A9)

R. Thomson, S. Z. Zhou, A. E. Carlsson, and V. K. Tewary,
Phys. Rev. 8 4B, 10613 (1992).
R. Thomson, in Solid State Physics, edited by H. Ehrenreich
and D. Turnbull (Academic, Orlando, FL, 1986), Vol. 39, p.
1.
Two properties of the force constant matrix used in this pa-
per are that 4,~

= C'~, and that P& 4,~
= 0. The first is

true because % is a matrix of second derivatives. The sec-
ond follows from the fact that if the whole crystal is moved
by an arbitrary fixed amount so that the atoms remain in
equilibrium, then the ith component of the linear force on
the atom a, given by —ui P C', , must be zero. In addi-
tion, note that the derivation of Eq. (4) is simplified for the
case of one atom per unit cell by noting that in that case
4, . = C;, by the inversion symmetry of any Bravais lattice.
When calculating the nonlinear energy, the inclusion of lin-
ear bonds only when both atoms are in the nonlinear zone is
paralleled by the inclusion of pair potential terms only when
both atoms are in the nonlinear zone. For three-body and
embedded atom potentials the correct treatment of those
terms when some atoms are inside and some atoms are out-
side the nonlinear zone is more complicated. It will not be
further discussed here. An additional complication comes
about, even with pair forces, when the force ranges beyond
nearest neighbors, so that the equilibrium separation is no
longer given by the length corresponding to the pair force
minimum but is instead determined by a balance of forces
from atoms at different separations. In this case, even if
no external forces are applied and we consider what should

be the equilibrium configuration, the establishment of the
nonlinear region breaks the symmetry and hence leads to
bound. ary atoms experiencing nonzero forces. These must
be subtracted in finding the true equilibria and hence they
give rise to an extra term, proportional to u, which must be
added to the total energy functional.
For an isolated system it is clear what the ulhole system is.
More commonly, however, the Green's-function method is
used for systems with periodic boundary conditions; in such
cases the energy is actually the correct value for all atoms
in one supercell.
S. J. Zhou, A. E. Carlsson, and R. Thomson, Phys. Rev. B
47, 7710 (1993); S. J. Zhou, A. E. Carlsson, and R. Thom-
son, Phys. Rev. Lett. 72, 852 (1994).
It is, however, possible to construct configurations for which
the out-of-equilibrium energy calculated using G gives the
wrong answer (because of- the neglect of the q = 0 terms)
This is so even though energy minimization gives the correct
equilibrium positions and energies. Consider an asymmetric
problem: four atoms as before, but with atoms 1, 2, and 3
in the nonlinear zone and only atom 4 in the linear zone.
No external forces are applied and the atomic configuration
in the nonlinear zone is taken to be uNi, = (v, —v, 0). In
order for the fourth atom to experience no force it must
move by v/2 to be equidistant from atom 3 and the atom
corresponding to atom 1 in the next cell. Note, however,
that using Eq. (12) and R shows erroneously that it does
not move at all, since moving it leads to a nonzero q = 0
component of the displacement. [Using Eq. (12) is laborious,
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but the simpler Eq. (19) does not apply here because the
speci6ed nonlinear zone positions mean that the atoms are
not in equilibrium without external loading. ] Similarly the
energy obtained by using Eq. (14) is 3kv + 17o.v while the
true energy adding up bond energies is 3—kv + 17o;v . The
difference may be completely accounted for by the error in
the assumed position of atom 4. The point is that the proof
in the Appendix for the correctness of the energy applies

only for the zero-force condition, which is not met in this
case.
To understand this further note that the g = 0 value

(P 0 0)
C (0)=»m~0 P 0

while G (q) = C (q) for all nonzero q.


