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We consider the phase transition from the para- to the ferro- phase for a system in which an m-fold Lifshitz
point exists. Nearby the Lifshitz point, the critical behavior at finite distance from T, is nonasymptotic,
described by crossover phenomena, and strongly influenced by the Lifshitz point. The asymptotic behavior on
the para-ferro segment of the critical line belongs to the universality class of an isotropic magnet with short-

range interaction, with an upper critical dimension d, =4. The crossover depends on the nonuniversal static
parameters further away from the critical temperature T,(x), especially on the dispersion (wave-vector depen-
dence) in the quadratic part of Landau-Ginzburg-Wilson Hamiltonian. The susceptibility and the specific heat

have been calculated using the field-theoretical renormalization-group procedure. The effective exponents,
which characterize the crossover behavior, have also been discussed.

I. INTRODUCTION

Crossover phenomena are common near phase transitions.
They can occur for several reasons, and one of them, which
is related to our work, is that irrelevant, but strong interac-
tions, connected with some unstable fixed points, may domi-
nate further away from the critical temperature T, until the
relevant interactions have driven the system to its asymptotic
stable fixed point.

The renormalization-group method, incorporated with e
expansion, ' has been applied extensively to study the cross-
over behavior for many different systems. The crossover map
for magnetic fixed points for d(4 is given in the review
article by Fisher. Lawrie and Sarbach in their review article
studied the crossover behavior phenomena, which is a par-
ticular interest in the observation of tricritical systems. Re-
cently, this method has been applied to study the crossover
behavior in uniaxial dipolar ferromagnets. Using another
theoretical treatment, the uniaxial dipolar ferromag nets'
crossover in d dimension was investigated by Stephens. The
crossover from isotropic to directed percolation has been re-
viewed in Ref. 6. Most of these crossover phenomena are
connected with a change in the upper critical dimension of
the system.

In this paper we study the crossover in a system that ex-
hibits an m-fold Lifshitz multicritical point type, (see Horn-
reich, Luban, and Shtrikman ). As proposed in Ref. 7, a Lif-
shitz multicritical point divides a second-order phase
transition (k) line into two segments, (X,) and (X2), such that
on only one of them (Xi) is the critical order parameter,
characterized by a fixed equilibrium wave vector, usually
q=0. On the segment of k2 the wave vector increases con-
tinuously, and a phase transition from a paramagnetic to a
helical phase takes place. In other words, an m-fold Lifshitz
point is characterized by an instability, associated with the
absence of the q term in the Landau-Ginzburg-Wilson
(LGW) Hamiltonian for all i = 1,2, . . . , m~ d, where d is the
dimensionality of the space.

Experimental evidence for a Lifshitz point in the magnet

MnP material has been reviewed by Shapira. The specific-
heat exponent and its corresponding critical amplitude ratio
for the Lifshitz point in MnP were measured experimentally
by Bindilatti, Becerra, and Oliveira. However, other realiza-
tions have been proposed, e.g. , in structural phase transition
Nboz, ' RbCaFz, " (there even a tricritical Lifshitz point is
expected) and in liquid crystals. ' Recently, Vysochanskii
and Slivka' analyzed the phase diagrams of the ferroelectric
crystal Sn2P2(Se, S, ,)6 and a Lifshitz point was found.
Selke, in his article, '" reviewed most of the current theoreti-
cal and experimental work related to this subject.

The paper is arranged as follows: Section II is written to
introduce our theoretical model using the generalized
renormalization-group procedure, incorporating the minimal
subtraction scheme formulated by Amit and Goldschmidt. '

In Sec. III, we review the limits of the second-order critical
and multicritical points. In Sec. IV, we calculate the renor-
malization constants and the How of the coupling constants.
In Sec. V, the susceptibility will be calculated and analyzed
in terms of the effective exponent. Section VI is devoted to
the calculation of the specific heat, which is followed by a
summary of our calculations in Sec. VII.

II. THEORETICAL MODEL AND RENORMALIZATION

The LGW free-energy functional, describing the critical
behavior of a system that exhibits an m-fold Lifshitz point,
can be written in the form

1
("o+p +gotI'+ crotl') Vo(k) Vo( —k)

2

u 0
0'0(kl) po(k2) ipo(k3) 9 o(k4)4! J ki J kp J k3 J k4

4

Xagk, .
i=1

Here tpo(k) represents the order parameter, e.g. , magnetiza-
tion, polarization, etc. The d-dimensional wave vector k is
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decomposed into q and p components of dimension I and

(d —m), respectively. In Eq. (1) we used the notations
Jk= fd k/(27r)", ro=(T T—,)/T, is the bare reduced tem-
perature, gp, and np are the parameters of the dispersion.
Near the Lifshitz point, when np)~gp@0, the np term drops
out asymptotically; however it may be of importance for the
critical behavior in the experimental regime when TNT, .
The Gaussian propagator for the graphical expansion has the
following form:

dr(l)
l =—r(l) j„(l),

dg(l) =—g(l)C, (l)

d n(l)
l —=u(l)s (l),

(6)

(7)

(8)

Go(ro. go. ~o) =(ro+ p'+ g oq'+ ~oq') ' (2) du(l)
l —=P„(l),

Proceeding as usual, in the minimal subtraction scheme
adopted from Amit and Goldschmidt, ' and used for dimen-
sional crossover by Frey and Schwabl, the dimension-
dependent pole and singularities, which appear in the un-
renormalized vertex functions I z ', could be absorbed
into a renormalization factors Z's. After introducing the
momentum scale p„ the renormalized parameter, coupling
constant, and fields are defined by rp=Z+ Z r Lt p

Z y ZpRK d ~ mtp gp y gg & AQ Z y Z~A& and clap=Z" q, with the dimensions of [ro]=p, , [ao]=p,
[g,]=p,', [qo]=p '"""", [u,]=p,', and e=4 —d.
The factor Kd =I'[(d —m)/2]S„S, where S„
= [2" ' vr" I'(d/2) ] ' has been introduced for conve-
nience. In our calculations, the mass and coupling renormal-
ization factors (Z„and Z„) are determined in one-loop order,
alid in tllis order we have Z Zg Zy 1

Regarding the phase transition phenomena, the accessible
quantities are for instance the susceptibility, or specific heat.
In order to obtain these quantities using the field
renormalization-group procedure, we have to calculate the
renormalized vertex functions I ~

' and I z ', by means of
solving the renormalization-group equations in the form

2 8
p, +p„(Q,) —+s„(A) +r —+g (Q)g-

ap, " 8u " 0 ar g 8g

0 I (0,2)

+C.(&)~ +4,(&) &(2,o) (r g, ~ u p)
)

I'R' .

with the initial conditions p(1)=p„r(1)= r, g(1) =g,
a(1)=n, and u(1) =u. The flow Eqs. (6), (7), and (8) are
solved by

l

r(l)=re ~

g(l) —
gefI (dp~p)gg(P)

and

~(i) ~efI(dplp)r (p) (12)

I (2 ())(„g ~ u p) —
( l)2eft(dp~p)r„(p)l (2 o)

r(l)
X 2 2, g, np, l,u(l), (13)

p l

for the susceptibility, and

I z(' )(r,g, a, u, p, )

(pl)
—e 2f&(dplp)tr(p)I'(02) ,u(l) g ~ 2l2

Via Eq. (10), a connection between the flow parameter l and
the correlation length g or the temperature distance T T, is-
made by the relation r(l)/pl= l,.

The general solutions of the renormalization-group equa-
tion (3) read'

3
P '~,2(g. ~ P)

0

In Eq. (3), we have defined (;(0)=p(8/Bp)lnZ, '
~o,

i = q&, r, g, u and P„=P(8/BP)u~o. II—=(g, nP, , u), and the
symbol ~o indicates that all derivatives are to be taken at fixed
bare parameter rp, gp, np, and up. The inhomogeneity of Eq.
(3), which is related to the additive renormalization of the
specific heat, has the form

&I
—(pl) ' p (p)ef)( p' p')I g, ( ) —p1

0 i P

for the specific heat.

III. LIMITS OF SECOND-ORDER CRITICAL
AND MULTICRITICAL POINT

(14)

d
~,2(g ~.p) = p 'Z,'p

d Z, 'f Z', I ""(p= 0)].„.,dp
(4)

Before we study the general case of crossover behavior,
let us first review the behavior of our system in the limits of
g=0, or a=0. In order to do so, we have to work out the
Lifshitz integrals in the form:

Equation (3) could be solved using the method of
characteristics' by means of p, (l) = p, l and s,(l) = j,(A(l)),
which in the present case leads to the set of the equations

d p(l)
l —= p, (l),

/„(r, g, n)=(27r) " d p d q(r+p +gq +nq )

(15)

where r = 1 and 2, to calculate the vertex functions, and other
related parameters.
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A. Second-order critical behavior limit (a—=0 and g 40)

The general solution of the integrals is given as follows:

=1 (m~ (e
Ii(r g, n=O) = —Kd I' —I' ——1 g r'

)

1u (m)
Z„(g=O, n, u, /M)=1+ —= I ' —~(up, )8e 4)

3 u (m~
Z„(g=O, a, p)=1+—= I —(ap, )8 e ~4)

(22)

1u (m
Z„(g,n=O) =1+ ——I —g4 E I, 2) (16)

1 (m~
I2(r, g, a=O) = —Kd I —I —g r

t, 2)

with the pole e=d, —d, and the upper critical dimension is

d, =4. The Z factors are calculated as usual' apart from a
trivial scaling with the anisotropy factor g, as can be seen
from the integrals. The renormalization constants for the
mass (Z„), coupling (Z„), and the corresponding s„and p„
equations are given by

The corresponding g„and p, equations are

u ~m~
f (g=O, ap, ) = —I —(a'p, )8 (4) (24)

3 , (ml
P, (g=O, ap, )= —au+ —u I —(ap, ) . (25)

8 (4)
Equation (25) suggests the introduction of the effective

fourth-order coupling u =u/4I'(m/4)(up, ) ', which is
marginal at the upper critical dimension d, =4+ m/2, to give
the flow equation (independent of a)

and

3 u (mi
Z„(g, a = 0) = 1+ ——I —g4 e i2)

u (m~
C.(g a=O)= I ' g4

(17)

(18)

p(u )= —eu +-,' u, (26)

with the fixed points u*—=(0,2/3 e), g„= (1/3) e as l~0, and

y=1.25 for d=3. In fact, it turns out from considering the
loop graphs that this effective coupling appears in every or-
der. The additive renormalization constant is also calculated
as

3 (ml
P„(g,a=O)= —au+ —I —u g4 i2) (19) 2 —1 (ml

B,2(g=o. /")= —Kd-, I —( /') ". (27)I4)
In Eq. (19), using ug=u/21 (m/2)g ', one finds the

usual flow equation in the form (independent of g)

3 -2
p(u )= —eu + —u, (20)

1 ~m~
B (g, n=O)= —K„ I —~g--- i2) (21)

Note that, the factor of I'(m/2) which appears in our results,
could be easily absorbed in the constant Kd . Also, the
factor g

' in Eq. (19) comes from the overall scaling of
the vertex function when one introduces u~, i.e.,

I ' (u g)=g ' I ' (u 1)

which gives the fixed points u*=(0,2/3e), f„=(1/3)e as
l~O, and y= 1+(1/2)$„=1.16 for d=3. The additive renor-
malization constant is also calculated as

With the above expressions (22)—(27) we recover the one-
loop results for the exponents of Hornreich, Luban, and
Shtrikman, if the effective coupling u is introduced in all
vertex functions.

IV. FLOW EQUATION FOR THE EFFECTIVE COUPLING

As already mentioned above, at g+0 the upper critical
dimension is d, =4, and in the other limit at m@0, the upper
critical dimension is d, =4+ m/2. In the former case, as the
perturbation theory suggests, the effective expansion coeffi-
cient is no longer the four-point coupling coefficient u, but a
suitably chosen effective coupling u. In the following, the
form of u containing both limits will be derived by consid-
ering the four-point vertex function.

In case of renormalization of the coupling constant and
the Aow diagram in one-loop order, the bare vertex function
I ~ is given by

~B (r0 go a0 +0) +0 2 +012(r0 go a0)(4) 3 2 (28)
B. Multicritical behavior limit (g=—0 and ag0)

In this case, the general solution for the integrals are
Using standard techniques, ' the divergent part of the inte-
gral I2 is found to be

1 (ml (p
I, (rg=O, a)= —Kd I —I ——1 ~a ' r' [/2(r = O~g~a~P')]sing —Kd mme1—2) —m/4

1 (m) /e~
I2(r, g =O, a) = —Kd I' —I —a '4r

(4)
(

-
i 2o —s/2o.

X c2+ (29)

with e= e+ m/2. The Z factors have poles in e instead of e,
and read

with g=g/+n. The constants ci, c2, and o will be fixed
using the matching procedure" of the new p„equation with
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the others in the limited cases. To do so, we have to calculate
the renormalized four-point vertex function.

Since there is no field renormalization in one-loop order,
hence the renormalized four-point vertex function is given by

1.0 I I ~ I I I III ~ I I ~ I I II I I ~ I I III I I I I I I I ~
I I I ~ I ~ I I II I I ~ I

I

0.8-

I'It I(r, g, n, u, p) = p,
' Z„uKd '

3 22 2 Zr g(
Z~Q Kd —m mI2 2, , Ap

i p p

(30)

0.6—

0.4—

0.2—

Therefore the coupling renormalization constant (Z„), and
the corresponding P„ function for the four-point coupling
constant are

0.0
108 10~ 10+ 105 10+ 103

flow parameter

102 10" &00

3
Z„(g,n, p, ) =1+ —uci

2
)

—m/4 (
-

i 2o. —e/2o

c2+

FIG. 1. Effective coupling u(l) as a function of the flow param-
eter l with m=u=p, =1, and for different values of g. The initial
value u(1) =0.01 has been taken.

(31)

(

P„(g, np, )= —au+ —c,u (np )
' 1+—

2 c2 t, p/
(32)

Matching the P„equations (19), (25), and (32), one can find
o =m/4, ci = (1/4)I (m/4), and c2=2I (m/2)/I (m/4).

Using the effective coupling u=ciu(np, ) [1
+ 1/c2(gl p, ) ' ] ', we obtain

1
Z„(g, n, u, p) =1+—uci

2)
—m/4 (

—
) m/2 —2e/m

c2+

(35)

and the corresponding function j„ is given by

1 ~ ~~ i u(l)
&,[u(/)1= —u(I) c t(nI') " 1+——

2 ' c2 jp) 2
(36)

P„-(g,u) = —etu+ —,
' u, (33)

with the "crossover" dimension et (p, ) = e+ m/2 [1
+ 1/cz(gl p, )

' ] '. Then, the fiow Eq. (9) reads

The renormalized two-point vertex function is expressed as

IR(rgnup)

dQ 3
I = —et(l)u(l)+ —u (l), (34)

2zr 1 ) r
2 ++d —mmJ 2&m, m , 0!p

p J
(37)

with

(
- )m/2--i

et(l) = e+ —1+—
2 c2 (pl)

if g=O, and et(l) =@ifn=O. The fixed points in Eq. (34) are
u~=O, and u*=lim/ o(2/3) ei(l) =(2/3)e.

To study the behavior of the flow equation, one has to
solve Eq. (34) numerically. u(l) has been plotted in Fig. 1

for m =p, =+=1 as a function of the flow parameter I, and
for different values of g(l = 1) as indicated in the graph. One
can see from Fig. 1 the pronounced effect of small values of
g on the shape of u(l). At small values of g and in the
interval (10 '~i~10 ), u(l) starts to increase to the Lif-
shitz fixed point value of one loop (=1). At small l value
(l(10 ), u(l) starts to go back to the usual fixed-point
value (=0.66).

where J(r/p, , g/p„np, )=I,(r/p, g/p„, np ) I, (O,g/—
p„np, ). The parameter integral J(r!p,g!p„np, ), will be
calculated in Appendix A.

Using standard techniques' for the evaluation of the in-

tegral I, (r/p, , g/p„np, ) in the dimensional regularization
scheme, one has

1.25—

1.20—

1.15—

------10
1.05 —

~ 0-4

V. TEMPERATURE DEPENDENCE
OF THE SUSCEPTIBILITY

In the case of the mass renormalization and susceptibility,
the same divergent part of the one-loop integral I,(r, g, n)
appears, therefore, the renormalization constant for the mass
1s

1,00—
~ I III ~ I I ~ I I I III ~ ~ ~ II ~ ~ ~ II ~ ~ III I I III ~ ~ I ~ I ~ I III ~ I I ~ I I I I ~ I ~ I ~ I

10 "210""10 "0 109 108 107 106 10 10+ 103 102 10" 100

flow parameter

FIG. 2. The effective exponent y,ff of the susceptibility as a
function of the Row parameter I for m=n=p, =1, and different
values of g.
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(
- )

- / —2P+m/2
7" g g Q f'

I) 2, —,uP, =C +

X( p') "2Fi 2p 2—p 2— r ( u(g
1+ — —+ 2 gr/p,

( -5 m/2

1+—

1 1
+ —;p+—;Q

(r g~ (r gl
X —f2 2 m —

I +f I m (39)

where

and

(m mI g 2+r-
C= —Kd I (P)B —,2P ——', Q=2)' g+2 r'

(d —ml g m
P= 1— —+ ——1

2 / 2 4

B and 2F, are the normal beta and hypergeometric functions.
Substituting in Eq. (37) for Z„, and making a suitable e
expansion, one can find (see Appendix A):

The effective exponent y,« is related to the susceptibility

y '(=I R
' ) by the relation

d Iny '(r/p, g/p„np, u),
y e« dlnr

with

g, l, , r(I) g
2, —,np, , u =l g '

2 2, , np I,u(l) .'
r

(41)

To first order in u and e, the one-loop order ye« is given by

1 d Iny '[1,g/pl, np, l, u(l)]
y ff 1+

2 nu(()]+

1 1 ( g= 1+ —u(l)+ —u(l) + 2
4 4 Lpl

( g )m/2 1 g i ( g
l —1+ —— —f2 1,m, —~+f& l, m,

dl c2 l plr 8 pl/ ( plr
(42)

where the matching condition r(I)/p, / = 1 has been applied.
In Fig. 2 the effective exponent ye« is displayed for m =p,

=&x=1 as a function of the Aow parameter l, and for differ-
ent values of g(l = 1) as indicated in the graph. One can see
from Fig. 2 the pronounced effect of small values of g on

y,«. At small values of g and in the interval (10 '~i~10 3),

ye«starts to increase to the Lifshitz point value of one loop
(=1.25). At small I value (l(10 ), y,«starts to go back to
the usual fixed-point value [=1(1/6)].The correction due to
the shape function, i.e., the third term in Eq. (42), turns out
to be small in our case. The solution of the matching condi-
tion leading to the relation between l and r, itself shows a
crossover between l = r in the Gaussian region and l =r"
in the asymptotic region as shown in Fig. 3.

This vertex function has to be normalized additively by
means of the relation

P(')=Z I(')—PZ I(')q
R y2 B L y2 B Ising ~ (44)

1
~B (P 0) 12(ro go no)

where the renormalization constant Z„2 is identical to the
mass renormalization, i.e., Z„2=Z„, and I R

' is given by(0,2) ~

Eq. (14).
Since there is no zero-loop contributions to the specific

heat, the vertex function I B
' is given to one-loop order by

VI. TEMPERATURE DEPENDENCE
OF THE SPECIFIC HEAT

Ii(ro go no) .
Br0

(45)

The specific heat CB could also be calculated by using the
cumulant (C) definition:

12 12Ca= —
q o(P =0) —qo(p = 0)

2 2
(43)

C,= I ~&'"(&= 0).

Above T, , this quantity is related directly to the vertex func-
tion I ai

' i(p = 0) with two y insertions:

See Appendix 8 for the calculation of the I2 integral. Using
Eq. (29), then the additive renormalization is found to be

1 g
'I m/2 —1

(Bp2( gn, P')=
2 Kd m Ci(nP, ) 1+—

C2 Pj
(46)

For the renormalized scaling function of the specific heat,
one finds (see Appendix 8)
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10 2 10 ~~ 10" 10 108 10 106 105 10+ 103 102 10" 10O

FIG. 3. Flow parameter l as a function of r according to the
matching condition for m =a=p,=1, and different values of g.

i ~ I iI ~ i ~ ~ I I i ~ iI ~ i I ~ I ~ ~ ~ iI i i i ~ I ~ i ~ II ~ I i II ~ ~ i ~ I I i I ~ I ~ i ~ iI i i ii-2
10 "2 10 "" 10 10 10 10 " 10 10 10 10 10 2 10 " 100

flow parameter

FIG. 4. The logarithmic of the dimensionless specific heat C as
a function of the flow parameter In[I] with m=n=p, = 1, and for
different values of g.

1 g
(fi4 —2fi2)+2fi4 +f3'

r
(47)

VII. SUMMARY

The present work is an attempt to study crossover behav-
ior in the neighborhood of a Lifshitz point. Using the field
theory, incorporated with the minimal subtraction scheme,
we were able to calculate the crossover functions for the
susceptibility and the specific heat. Mainly, we analyzed the
uniaxial Lifshitz point (where the wave vector instability oc-
curs in one dimension only, i.e., m= 1), since it is the most
relevant case for the experimentalists. The crossover behav-
ior in the cases of m=2 and 3 turns out to be more pro-
nounced. This is related to the higher critical dimension d,

The renormalized dimensionless specific heat (C) is de-
fined by C= p, 'I I

' i. In Fig. 4, the log, o[C] has been plot-
ted versus log, o[l] for m =a= p, =l, and for different values
of g(l = 1) as indicated in the graph. One can see from Fig.
4 the asymptotic behavior C= l ' at small l value
(l(10 ). On approaching the Lifshitz point, experimental
measurements' show an increase in the effective exponent
of the specific heat. These results are in fair agreement,
qualitatively, with the changing in the slope of the specific
heat (see Fig. 4) at a fixed temperature region with decreas-
ing g. Theoretically, at d=3 and one-loop order, the specific
heat exhibits the usual crossover from Gaussian behavior
(l '), to the asymptotic behavior (l ' ), and, in between the
Lifshitz behavior (l '), extends over a small l region.
Therefore, it is quite hard (experimentally) to distinguish the
Lifshitz behavior from the usual crossover even by looking
at the effective exponent. Consequently, the decision about
the type of crossover should not rely on the specific heat
alone.

for larger I, and therefore stronger fIuctuation effect at d =3.
In a comparison of the results with experiment one has to

bear in mind that our results are calculated in one-loop order,
usually not verified by experiments. E.g. , the asymptotic
value of the n=l susceptibility exponent y is to the best
knowledge yB„,&=1.240, ' whereas the one-loop value is

y,„,&„&=1.167. At the Lifshitz point such an accurate value
and even the two-loop value is not available (for m=1).
However we expect a shift of y„'f h't 1.25 of similar size as
at the usual critical point (but see, on the other hand, the
experimental values of the crossover exponent P which is
compatible with the one-loop value. ). Nevertheless one
could treat our results by a phenomenological procedure as
suggested in Ref. 21. Similar considerations could be made
for the specific-heat exponent u (not to be confused with the
parameter n from above), which at the usual critical point
takes the respective values ~B„„=0.107, u,„,„,~=0.167
and nL;&,h;„=0.25. In the magnetic system MnP a large value
of the specific-heat exponent about 0.45 has been found
experimentally, which would not be in accordance with a
"shift" procedure as just mentioned. So the situation remains
unclear and not suitable for phenomenological procedures
and further experimental work addressed to the crossover
behavior seems to be necessary.

In ferroelectrics, the situation is complicated by the pres-
ence of uniaxial dipolar forces. Then a competition be-
tween several possible crossovers may lead to a much more
structural of y,ff. Similar complicated situations have been
studied for the case of anisotropic uniaxial dipolar
ferromagnets. Another complication in the application to
Sn2Pz(Se S, ,)6 ferroelectrics might be the influence of the
virtual tricritical point near the Lifshitz point, ' leading to a
possible tricritical uniaxial dipolar Lifshitz behavior.
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APPENDIX A

In the following, we calculate the parameter integral
J(r, g, o/) =I&(r,g, n) —I, (O, g, n), suppressing p, for sim-
plicity, which we used in calculating I R

' . Starting our pro-
cedure by Eq. (38), using the duplication formula (AS
p. 256, 6.1.18) (Ref. 25) [I (P)/l (2P)]1 (m/2)=2 '(P
+1/2)I (m/4), and I (2P—m/2)=I (e—2)=1/2e. , one can
find

and

I,(O, g, a) = = n '
g '(a(0) + ec(0)),

we can get

C(
J(r,g, a) = = n '"(g+ 2 ')Se

(A5)

C]I i (1,g, C1 )=:Cl
Se (Al) X(fi(r, m, g)+ @f2(r,m, g)), (A6)

where t, =(g +2 Vr) ', t2=(2'$2Fi(r, K;(;Q)), r=c 2, —
K=(E m/2 —1)/2, and (=(E+m/2 —1)/2. Note that, the
factor of ( in t2, used to cancel the accidental singularity at
m=2 in the expansion of 2F, .

Using the abbreviation

where

and

fi(r, m, g) =(g+2+r) a(r) —g a(0) = —8r,

(2F i( r, K; g; Q) = a(r) + eb(r),

then t2 could be expanded to first order in e, to give

(A2) f2(r m. g) =' (g+2P~)'c(v) g'—

t2=a(r)+ ec(r), (A3)

where c(r) = b(r) + a(r)ln(2). In (A2), we defined
a (r) = Z, 0(a;/4) Q', where a o

= —2+ m, a, =4+ 2m, and
a2= —2+ m, and b(r) = X "; ob;Q', where the first few terms
could be read as

g
X c(0)—a(0)ln

(g+2 r/

Also, to the first order in e, Z„could have the following
form:

1
bo=—2'

1
Z„= 1+ —uc~

—m/4

+ -m/2] —2e/m

(m+6)b]=—

(20 —12m —3m )
b2=

8(2+m)

(6 —m)(m —2)
b3= 12(6+m)

where

I g™2 1=1+ —u(g+2+r) ' 1+
2 C2

X(1+@f3(r,m, g)),

fs(r, m, g) = ln[(g+ 2+r)(c2+ g
' ) 2'™].

APPENDIX B

(A7)

(m —10)(m —6)(m —2)
b4= 48(60+16m+m )

(14—m)(m —10)(m —6)(m —2)
bg= 120(840+284m+30m +m )

'

In this appendix, we evaluate the integral I2(r, g, a),
which is related to I /~

i by Eq. (43). By means of Eq. (Al),
then

(m —18)(14—m)(m —10)(m —6)(m —2)
b6= 240(15210+5952m+824m +48m3+m4) '

(Bl)

With a simple differentiation, one can find to the first order
of e

(22 —m)(m —18)(14—m)(m —10)(m —6)(m —2)
b7= 420(6+ m)(10+ m)(14+ m) [(18+m)(22+ m)]

'

In the above definitions of a(r) and b(r), the other argu-
ments such as m and g, have been suppressed for simplicity.

%'ith the integrals

C)
I2(r, g, n) = — n ' (g+2+r)Se

X f, , + e (fi4 2 fi2)+2fi4—
(B2)

I,(r,g, r/) = n ' (g+2+v) '(a(v)+ ec(r)), A4
where
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d d
f~q=~ln(2) a(r)+ b(r

dg dg

Also, to the first order of e, we have

and

ft4 = 2b( r) + a(r) [2 ln(2) —I ],

gftt=2 a(r) — a(r) +4a(r)= —8.
r dg

The functions a(r), b(r), and f3(r, m, g) are defined in Ap-
pendix A.

On sabbatical leave at: Institute of theoretical Physics, Johannes

Kepler University at Linz, A-4040 Linz-Auhof, Austria.
'K. G. Wilson and J. Kogut, Phys. Rep. 12C, 75 (1974).
M. Fisher, Rev. Mod. Phys. 46, 597 (1974).
D. Lawrie and S. Sarbach, in Phase Transition and Critical Phe-

nomena, edited by C. Domb and J. Lebowitz (Academic, Lon-

don, 1984), Vol. 9.
"E. Frey and F. Schwabl, Phys. Rev. B 42, 8261 (1990); 43, 833

(1991).
C. Stephens, J. Magn. Magn. Mater. 104-107, 297 (1992).
E. Frey, U. Tauber, and F. Schwabl, Phys. Rev. E 49, 5058 (1994).
R. Hornreich, M. Luban, and S. Shtrikrnan, Phys. Rev. Lett. 35,

1678 (1975).
Y. Shapira, in Multicritical Phenomena, Vol. 106 of NATO ASI

Sevies B: Physics, edited by R. Pynn and A. Skjeltorp (Plenum,
New York, 1984).

V. Bindilatti, C. Becerra, and N. Oliveira, Phys. Rev. B 40, 9412
(1989).

' A. Aharony and D. Mukamel, J. Phys. C 13, L255 (1980).
' K. Muller, W. Berlinger, J. Buzare, and J. Fayet, Phys. Rev. 8 21,

1763 (1980).
' Incommensurate Phases in Dielectrics, edited by R. Blinc and A.

Levanyuk (North-Holland, Amsterdam, 1986), Vols. 1 and 2.
' Yu. Vysochanskii and V. Slivka, Sov. Phys. Usp. 35(2), 123

(1992).
' W. Selke, in Phase Transition and Critical Phenomena, edited by

C. Domb and J. Lebowitz (Academic, London, 1992), Vol. 15.
' D. Amit and Y. Goldschmidt, Ann. Phys. (N. Y.) 114, 256 (1978).
' J. Binney, N. Dowrick, A. Fisher, and M. Newman, The Theory of

Critical Phenomena, An Introduction to the Renormalization
Group (Oxford University Press, Oxford, 1992).

' D. J. Amit, Field Theory, the Renormalization Group, and Criti-
cal Phenomena, 2nd ed. (World Scientific, Singapore, 1984).

' I. Nasser, Int. J. Theor. Phys. (to be published).
' J. C. L. Guillon and Zinn-Justin, Phys. Rev. Lett. 39, 95 (1977).

D. Mukamel, J. Phys. A 10, L249 (1977);R. M. Hornreich and A.
D. Bruce, ibid. 11, 595 (1978) (theoretical papers); C. C. Bec-
cera, Y. Shapira, N. F. Oliveira, Jr. , and T. S. Chang, Phys. Rev.
Lett. 44, 1692 (1980); Y. Shapira, C. C. Beccera, N. F. Oliveira,
Jr. , and T. S. Chang, Phys. Rev. B 24, 2780 (1981) (experimental

papers).
'K. Ried, Y. Millev, M. Fahnel, and H. Kronmuller, Phys. Rev. B

51, 15 229 (1995).
R. Folk and G. Moser, Phys. Rev. B 47, 13 992 (1993).
K. Ried, Y. Millev, M. Fahnel, and H. Kronmuller, Phys. Rev. B

49, 4315 (1994).
A. Abdel-Hady and R. Folk (unpublished).
M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions with Formula, Graphs, and Mathematical Tables, 4th
ed. (Dover, New York, 1972). Formulas quoted from this refer-
ence are identified in the text by the code AS, followed by the
relevant page and equation numbers.


