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Excitation spectra of the negative-U Hubbard model: A small-cluster study
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An exact-diagonalization technique on small clusters is used to study low-lying excitations and supercon-
ductivity in the two-dimensional negative-U Hubbard model. We first calculate the Bogoliubov-quasiparticle
spectrum, condensation amplitude, and coherence length as functions of the coupling strength Ult, thereby
working out how the picture of Bogoliubov quasiparticles in the BCS superconductors is affected by increasing
the attraction. We then define the Cooper-pair operator as a spatially extended composite boson and make a
variational evaluation of its internal structure. We thereby calculate the single-particle spectral function of the
Cooper pair and obtain the dispersion relation for its translational motion. The dynamical density correlation
function of the pairs is also calculated. We thus demonstrate the applicability of our numerical method for
gaining insight into low-lying excitations of models for the intermediate coupling superconductivity relevant to
cuprate materials.

I. INTRODUCTION

High-temperature superconductors typically show very
short coherence length and small carrier numbers, and may
be in an intermediate regime between two well-understood
regimes, i.e., the BCS weak-coupling superconductivity and
Bose-condensation of preformed bosons. Although much
theoretical effort has been devoted to examining this cross-
over regime, not very much is known, in particular, of the
low-lying excitations. ' To consider this problem, we have
studied the negative-U Hubbard model because of its con-
trollable strength of attraction. This model, much discussed
recently, '

may be a good reference system to more rel-
evant models, such as the t-J model, for cuprate supercon-
ductivity.

The negative-U Hubbard Hamiltonian is written

tuation of the pairs. We thus demonstrate the applicability of
our numerical method for gaining insight into low-lying ex-
citations of models for the intermediate coupling supercon-
ductivity.

II. BOGOLIUBOV QUASIPARTICLE

Let us first examine the validity of the Bogoliubov-
quasiparticle picture in the negative-U Hubbard model as a
function of attraction U/t. We use a recently proposed
technique, ' i.e., an exact calculation of Bogoliubov quasi-
particle spectrum on small clusters. We thereby see whether
low-lying states of the negative-U Hubbard cluster of a given
attraction U/t can be described by this picture.

We define the one-particle anomalous Green's function as

H= —t g (c; c; +H.c.)+ Ug n;tn;i
(4)~

G(k, z)=(ez+ czzz cz
„z ez

z —0+Ep (2)

with a negative value of U, where ct (c; ) is the electron
creation (annihilation) operator at site 1 and spin o. (=$, J ),
and n; =ct c; . The summation (ij) is taken over all the
nearest-neighbor pairs on the two-dimensional square lattice.
We employ an exact-diagonalization technique on small
clusters; a 4X4 cluster with periodic boundary condition is
used throughout the work, and ground states and dynamical
correlation functions are calculated by the Lanczos algo-
rithm.

As an approach from weak-attraction limit we first calcu-
late the Bogoliubov quasiparticle spectra in the BCS pairing
theory as a function of U/t, and demonstrate how the picture
of Bogoliubov quasiparticles is affected by increase of the
strength of attraction. " Condensation amplitude and coher-
ence length are also estimated. We then make a variational
calculation of the Cooper-pair wave function and examine
U/t dependence of the internal structure of the pair. Next we
calculate the wave functions of pairs with nonzero momenta
and examine the single-particle excitation spectra of the pair
to see its translational motion. Finally we calculate the dy-
namical pair-density correlation, and examine a density Auc-

where
I t//o) is the cluster ground state with N (even) elec-

trons, Eo is the ground-state energy (averaged over energies
of the N and N+2 electron states), and c„ is the Fourier
transform of c; . We then define the spectral function
F(k, to) = —(1/m)ImG(k, to+i r/) with t/=+0 and its fre-
quency integral

Fk ( Wo I cktc kt I &o) .

This Green's function should describe the excitation
of a 8ogoliubov quasiparticle in the cluster, i.e.,
F(k, co) = Fk8(co —Ek) with Fk= b, k//2Ek for the quasiparti-
cle energy Fk and gap function Ak, provided that the low-
lying states of the cluster can be described by the microca-
nonical version of the BCS pairing theory. '

The calculated results for F(k, to) at N=8 and 10 are
shown in Figs. 1(a) and 1(b), respectively. Fermi momentum
kF is at (m/2, 0) for N=8 and at (7r/2, vr/2) and (m, 0) for
N=10. We find that, at U/t= —2, the spectrum fits fairly
well with the BCS spectrum (dotted curves) with s-wave gap
function Ak=Ap. pronounced low-energy peaks appear at
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FIG. 2. Condensation amplitude F„and coherence length ( as a

function of the attraction U/t calculated for the 4X4 cluster with

filling of N=8.
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The result (see Fig. 2) shows a rapid but smooth crossover
from a Cooper-paired state to a Bose condensed state of
tightly bound pairs. At ~U /t=3 —4, ( is of the size of the
nearest-neighbor to next-nearest-neighbor distance. Note that

Fk goes to zero when
~

U~/t~0 for kAkF in agreement with
the BCS pairing theory; nondivergence of g at

~

U~/t +0 is-
an obvious finite-size effect.

III. COOPER PAIR

As an approach from strong-attraction regime we intro-
duce a spatially extended "composite-boson" operator de-
fined as b=fX„(nr)c f1c+f„ i(Ref. 14) and its Fourier trans-

form bf with n(k) = X„n(r)e'"'. We then define a
variational wave function by adding a zero-momentum pair
of up and down electrons to the N-electron ground state:

~
Ig ) = coilstX bf III I//o )

0
0 5 &oo

co/ t
5 10 1

=constX g n(k)c —kT ktl/p).

FIG. 1. Bogoliubov quasiparticle spectra F(k, &o) for the 4X4
cluster with filling of (a) N=8 at U/t= —2 (left panel) and —6
(right panel), and (b) N= 10 at U/t= —2 (left panel) and —6 (right
panel). Dotted curves in the left panels show the BCS spectral func-
tion obtained for (a) ho/t=0. 28 and (b) 0.4. We use the value

y/t=0. 15 for Lorentzian broadening of the spectra.

where N, is the number of lattice sites. We determine varia-
tional coefficients n(k) so as to maximize the overlap with

the exact wave function ~((//o
+

~

Q&+ ) ~

under the condition

that
~

I//o+ ) be normalized to unity, which leads to a gener-
alized eigenvalue problem

kF, smaller peaks appear at higher energies for other mo-
menta. The observed gap is isotropic, and the spectral
weights are consistent with the BCS form of the condensa-
tion amplitude Fk with a maximum at kF (see Fig. 2). How-
ever, at Ult = —6, the peaks already extend to higher-energy
regions and the dispersion becomes rather deformed, indicat-
ing that the Bogoliubov quasiparticle is becoming a less well
defined excitation although the lowest-energy peaks at kF are
still sharp and well defined. For much larger values of
~U~I/t the spectra are totally incoherent and the notion of
Bogoliubov quasiparticles loses its significance.

We also calculate the coherence length (' defined as

(4)

IIFk Fki N)&kr]kn(k ) = 0, (6)

with Fk of Eq. (3) and

(&olckJC klc k, &ck il l)
(see Ref. 15). We find for the cluster that an overlap of
X=0.95 is generally achieved. Defining Fk by replacing

with Qz in Eq. (3), we have Fk=Xk n*(k')Nk„
and XkFkn(k) = 1. One may use these relations with the
exact Fk to check the validity of the variational wave func-
tion; actually we find values of XkFkn(k) (=X' ) to be
close to 1 within a few percent.

Figure 3 shows the Cooper-pair wave function thus deter-
mined; the pair is added to the state with N = 8 and
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FIG. 3. (a) Cooper-pair wave function n(k) and (b) its Fourier
transform n(r) calculated for the 4 X 4 cluster with filling of
N=8.
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IV. EXCITATIONS OF COMPOSITE BOSONS

Let us next examine excitation spectra for translational
motion of the Cooper pair. We first introduce a creation op-
erator of the finite-momentum (q) pair which is defined as

1
b = ~ nq(k)c k+qtck&,

N, k
(7)

with q-dependent internal structure nq(k) (which reduces to
b" defined in Sec. III at q= 0), and again perform the varia-

tional evaluation of nq(k) by a generalization of the above
procedure where Fk and Nkk also depend on q. The opera-
tor thus obtained is compared below with the on-site pair-

field operator bt(1 /vN)X; &cc
te t'~', i.e., Eq. (7) with'l

nq(k) = 1. We find for the cluster with N= 8 that the overlap
}i.~0.7 (mostly around -0.8) is achieved by the optimiza-
tion; the presence of the Fermi sea is again found to play an

important role in the k and q dependence of n~(k).
We then define the pair-addition spectrum as

1- 1 NP(q, cu) = ——3 Qo bq /vbz t/'o, (8)
7T o)+i rg

—H+E

kF = (vr/2, 0). We find in Fig. 3(a) that when
~

U~/t~6 n(k)
has a peak at kF, and with increasing

~
U~/t, it broadens over

the entire Brillouin zone; the Pauli principle acting between
the added electrons and Fermi sea plays an essential role in
the structure of the Cooper-pair wave function. In real space,
as is expected from the BCS pairing theory, n(r) [see Fig.
3(b)] shows an oscillation of wavelength 27r/kF correspond-
ing to the peak in n(k), and the oscillation decays with the
length scale of ( as one may see via U/t dependence of
n(r)

hW~
5 -5 0

Co/ t

FIG. 4. Pair-addition spectra P(q, co) calculated for the 4X4
cluster with filling of N= 8 at U/t= —4. Vertical dotted lines indi-

cate p . Left panel: the spectra for bt with optimized n~(k) val-

ues. Right panel: the spectra for the on-site pair-field operator.
Lorentzian broadening of g/t= 0.05 is used.
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first of all find that with the optimization higher-energy peaks
are suppressed strongly and the lowest-energy peak is en-
hanced at each momentum q, indicating that the spatially
extended "composite boson" describes the low-energy exci-
tation of the system fairly well its effective mass, e.g. , is
noted to become heavier with increasing

~

U~/t. An indica-
tion of the off-diagonal long-range order is also seen in the
calculated momentum distribution (b bq), i.e., its enhance-

ment at q=(0,0), although in the thermodynamic limit a
macroscopic number of bosons are condensed into q=0
state. One may then check how the Bogoliubov theory for
interacting bosons' works for these composite operators; we
directly calculate the density correlation function defined as

whereby examining the single-particle excitation of the Coo-
per pair. The chemical potential for the Cooper pair is de-
fined as p,„=BE/BN =E„+ —Eo where N„(=N/2) is the
number of pairs. Figure 4 shows the calculated result for
P(q, cu) with optimized values of nq(k); we compare this
with the result obtained for the on-site pair-field operator. We

0
0 4 8 0 4 8I/t

FIG. 5. Density correlation function B(q, co} of composite
bosons calculated for the 4X4 cluster with N=4 and U/t= —4.
Lorentzian broadening of g/t =0.05 is used.
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with the density operator dq= ( I/PN, )2kb„+ qbk. The calcu-
lated result for B(q, co) at U/t= —4 is shown in Fig. 5; the
spectrum is approximated well by a single peak around
q=(0,0), which is consistent with the expected picture of
the collective sound mode. For larger momenta this mode
decays into pair-breaking excitations observed in F(k, ro)

V. SUMMARY

tions in the BCS superconductors loses its significance as the
coupling strength increases and how the picture of spatially
extended composite bosons works as the coupling strength
decreases. Application of the present numerical technique to
strongly correlated electron models will help us gain insight
into the intermediate-coupling superconductivity relevant to
cuprate materials.

We have proposed numerical techniques for examining
the low-lying excitation spectra of the two-dimensional
negative-U Hubbard model and studied the (i) Bogoliubov-
quasiparticle excitation, (ii) condensation amplitude and co-
herence length, (iii) internal structure of the Cooper pairs,
and (iv) single-particle and density excitations of the pairs,
as functions of the attractive interaction. We have demon-
strated how the picture of Bogoliubov-quasiparticle excita-
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