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The nonlinear transport of electrons bound in quasi-one-dimensional channels on the surface of liquid

helium is studied theoretically in the case of large clamping fields normal to the surface. It is shown that, due

to the weakness of the electron-ripplon interaction, the nonlinear effects in the electron mobility arise at driving

electric fields near 10 V/cm. The mobility is an increasing function of the driving field for all clamping fields

considered. The calculations are carried out in the two limiting regimes corresponding to different roles of the

electron-electron correlations. The results in the two approximations differ significantly, which allows us to

check out the role of the electron-electron interaction in the quasi-one-dimensional charge system through a

comparison with experimental results.

I. INTRODUCTION

In the last years the studies of quasi-one-dimensional
(Q1D) electron systems over the liquid-helium surface be-
came one of most developing trends in the physics of low-
dimensional charge systems. Q1D electron systems, which
are realized near a superAuid helium surface with a finite
curvature, have all the essential features of quasi-two-
dimensional surface electrons (SE) over bulk helium such as
cleanness, homogeneity and the possibility of modifying the
charge density and the strength of both the electron-electron
and electron-ripplon interactions by varying the clamping
electric field perpendicular to the surface. Furthermore, elec-
trons can move freely in one direction, along the channel
axis, due to the lateral potential imposed by geometrical con-
finement, in contrast to the SE system where the electrons
are free to move in the whole plane.

The methods for creating Q1D electron systems, by using
the properties of liquid helium, were first conceived
theoretically. ' Recently, physical arrangements of the sys-
tem were realized experimentally as pointed out by Kovdrya
and Nikolaenko and by Kirichek et al'. In Ref. 4 a strong
anisotropy of the electron mobilities, along and across a se-
ries of parallel channels created by grooves filled of helium,
was observed. In Ref. 5 experimental data were obtained for
the electron conductivity in a single Q1D channel on the
helium surface strongly distorted by capillary forces due to a
wedge geometry. Sokolov and Kirichek found the disper-
sion relation of the plasma excitations in the Q1D electron
system confined by a parabolic potential and Sokolov and
Studart determined the electronic structure in the presence
of a magnetic field in order to establish connection with the
spectroscopic transitions between the confined states.

The study of the kinetic properties is the most useful tool
to get information about the peculiarities of the electron sys-
tems in one more reduced dimensionality, as it was demon-
strated in the case of SE. In a previous paper, hereafter

referred to as I, the authors made a theoretical analysis of the
electron mobility in the Q1D system in the linear regime of
small driving fields when the electrons are in thermal equi-
librium with the liquid helium. The role of electron-electron
correlations was investigated by solving the Boltzmann
equation in the two opposite limiting cases of electron cor-
relations, the one-electron approximation and the complete
control regime, where the electron-electron collision fre-

quency is much larger than that typical frequencies of
electron-ripplon and electron-gas collisions. It is well known
that for SE's over a bulk helium surface, the gaseous, liquid
and crystal phases of the two-dimensional (2D) system are
realized in terms of the fundamental plasma parameter of the
2D electron plasma I'= e (~n, )", where n, is the electron
density. The electron density can be easily varied by chang-

ing the holding field E~ in the case of SE's. For I (1, the
one-electron approximation describes well the gas state. For
I ~137 the system undergoes a transition to a Wigner crys-
tal. At intermediate values, 1~I ~137, the strong electron-
electron interactions lead to the liquid state. It was shown in
Ref. 9 that for low holding fields and, hence, low electron
densities (small I'), the experimental data are coincident
with the theoretical mobility calculated by neglecting the in-
teractions between electrons. But in the liquid state (interme-
diate I ) the so-called complete control regime, where the
average drift velocity of electrons and the effective electron
temperature can be introduced, was realized in a definite
range of electron densities up to 4 X10 cm, where
I =47 and the single-particle approach is no longer appli-
cable. The model was found to describe the kinetic properties
of the SE's system over bulk helium. The basic question
should be understanding how a model of independent elec-
trons can describe the main features of the transport proper-
ties of the system in the correlated regime. Nevertheless, it
has been demonstrated that such a classical model based on
quasielastic scattering of independent electrons gives results
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in good agreement with the experimental results for zero
magnetic field. "At low-field the results are still close to
zero-field theoretical values», ip, i2-i6 but at higher fields, the
magnetoconductivity depends on the electron density indi-
cating that many-electron effects are important. "'"The data
have been interpreted with excellent agreement in terms of
the theory of Dykman' ' where the effect of the electron-
electron interaction upon the electron scattering is due to the
presence of a density dependent fluctuating electric field. The
influence of many-electron effects on the high-field magne-
toresistivity and the limit of applicability of single-electron
approximation has been discussed in Refs. 10 and 18. At
extremely strong magnetic field, the ultraquantum limit, the
extended self-consistent Born approximation was demon-
strated to describe the magnetotransport data perfectly. ' Un-
fortunately, the conditions necessary to study many-electron
effects in the Q1D system are not so well established at the
present time because the anisotropic character of the electron
motion and a complicated dependence of the electron density
on the holding field. However, we hope that, as in the zero-
field case for SE's, the complete control approximation
should describe the main features of the electron transport in
the Q1D system.

It was shown in I that in view of the weakness of the
electron-ripplon and electron-vapor gas interactions, which
are the main mechanisms of scattering, the mobility depends
strongly on the temperature and the clamping electric field.
So, we expect that such a weakness of the electron-scatter
interactions can lead to substantial nonlinear effects with a
strong driving-held dependence of the mobility. The role of
nonlinear effects has been demonstrated since the earliest
times of the investigations of SE transport. ' In the
present work we calculate the high-field mobility in the Q1D
electron channel. We found in our calculation that the non-
linear effects in the electron mobility take place at driving
electric fields E~~ near 10 V/cm. We also show that the
contribution of the two-ripplon process to the energy dissi-
pation rate is the dominant one as compared with the one-
ripplon process. As in I, we also consider in the nonlinear
regime two opposite limiting cases of electron correlations,
the partial control regime where the momentum relaxation
frequency v are much larger than the frequency of the
electron-electron collisions v„(corresponding to the one-
electron approximation with an effective electron tempera-
ture) and the complete control regime, where v„ is much
larger than that typical frequencies of electron-ripplon and
electron-gas collisions. In both regimes v is much bigger
than the energy relaxation frequency v~. We show that elec-
tron correlations inAuence significantly the structure of the
electron distribution function and lead to different depen-
dences of the mobility on the driving field. The theoretical
approach and the calculations of the energy loss rate func-
tions and the electron mobilities in both approximations are
presented in Sec. II. Section III is devoted to the discussion
of the results obtained. Our conclusions are summarized in
Sec. IV.

etry) filled with liquid helium whose surface is strongly dis-
torted due to the capillarity forces from the substrate with a
curvature radius R about 10 —10 cm. The channel is
along the x axis. Under the action of a clamping electric field
along the z axis (normal to the helium surface), the electrons
move to the bottom of the channel. At E~)10 V/cm, the
energy eE~R is much larger than the binding energy of SE
on the helium film covering the top of the dielectric plates
(near 100 K) and the electrons are favored energetically to
stay at the bottom of the channel. If the electron is displaced
by a distance Y (&R from the bottom across the channel, it is
subjected to a parabolic potential given by

m cop/
2 2

U(y) =
2

which laterally confines the electron in the y direction with
cup= eE~ /mR, where m and e are the mass and the charge

2

of the electron, respectively. Under this potential the energy
spectrum of the electron turns out to be

fi, k
E„,(k, ) = +(n+ I/2)frroo+b, (2)

1
'p. (k.) = exp(r' k.x) V.(y)Xr(z),

L
(3)

where L is the size of the system in the x direction

1 1 / y'~ (y1
0 n(y) r/4 1/2 „xp 2 2 +n

yo 2"n! ( 2yo/ lyo/
(4)

y (z)=2@'"ze ",

where n=0, 1,2, . . . and k, is the one-dimensional wave
vector. The label l = 1,2,3, . . . numerates the quantized sur-
face states along the z axis. Because the condition (z)/(&R is
satisfied for not very large l, where (z)/ is the mean electron
distance from the surface, the energy spectrum 6& can be
taken as in the case of a Oat helium surface. As it was shown
in I, Eq. (2) is valid for wide range of clamping fields and for
large enough values of n. According to our estimates in I,
the energy gap ficoo between the states with different n (we
shall call them transverse states) is near 0.3 K at E~ =450
V/cm and 0.8 K at E~ = 3000 V/cm. For this reason at tem-
peratures T-1 K one should take into account the finite
population of not only the ground (n=0) but also of the
excited transverse levels (n~ 1). One should note that the
experiments are carried out at T=1.5 K. By the contrary,
the energy gap between the first two vertical levels (I= 0 and
l= 1) is near 14 K for E~= 1000 V/cm and 30 K for
E~ = 3000 V/cm. So, for high clamping fields, we can con-
sider only the subband l=1. In this case the electron sub-
bands corresponding to the energy spectrum, given by Eq.
(1) can be written as

II. THEORETICAL FORMULATION

As in I, we consider a single Q1D channel formed by two
dielectric plates meeting at a sharp angle (the wedge geom-

where yo= (fi/m too)
' (&R is the localization length in the y

direction and the parameter y is related to the mean distance
of the electron from the surface, (z), =3/2y '. In general,
y is dependent on E~ . H„(t) is the Hermite polynomial.
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f.o(T.) = 2 mfr 1 ( nfi, o)o

mT, L,Z„( T, 2mT, )
'

—exp' — — (6)

where Z„= I/2[1+ coth(I1, coo/2T, )]. The procedure for calcu-
lating the electron mobility as a function of the effective
temperature T, is different in the partial-control and the
complete-control regimes, but is the same as that used in
semiconductor physics.

The above description of the subband structure is used to
calculate in the Born approximation the electron probabilities
for scattering by helium atoms in the vapor phase which
dominates at T~ 1 K and ripplons at lower temperatures. As
it was shown earlier for SE on bulk helium, because the
weakness of the electron-ripplon and electron-atom interac-
tions, the temperature of the system can become quite differ-
ent from the helium bath temperature, even at low enough
driving electric fields. As a consequence, the electron mo-
bility may depend drastically on the driving field along the
plane. ' In the Q1D system, the warming up of electrons
by a driving electric field along the x axis will change the
occupation of the transverse levels even though the vertical
level (l = 1) is not altered. For this reason, a consistent theo-
retical analysis, taking into consideration the intra- as well
intertransverse subband collisions is necessary in order to
determine the dependence of the mobility on the driving
field. This analysis should be given by using the explicit
dependence of the electron distribution function on the driv-
ing field. However, previous studies demonstrated that the
mathematical treatment is quite cumbersome and this method
does not lead to much better results when compared with
those obtained by using the approximation of effective elec-
tron temperature. ' Such an approach has been success-
fully employed in theoretical calculations of the nonlinear
mobility p, (E~~) of SE. Then we choose to employ the
effective-electron-temperature approximation to derive
p, (El) in the case of the Q1D system. In this case, the elec-
tron distribution at the subband n depends explicitly on the
effective temperature T, and can be approximated by

2 2

v, ", (x) = B„"(x)
4 e E~T

'7T A'I7/ Ct)0 X

and

v," (x) = B " (x),)
4 fi, ng(T)Ay ( l

m x

where x=fi, k, /(2mficoo), u is the surface tension coeffi-
cient of the liquid helium, ng(T) is the volume concentration
of helium atoms in the gas phase, and 4=4.676X10
cm is the effective cross section for the electron-helium
atom scattering. The functions B("~(x) and B("~(x) were
given in I by Eqs. (24) and (27), respectively. Following the
same steps as in I, we arrive at the electron mobility

p(8) =
+vrmZ„(8) ( ~ )

6 Q)0

n111, (oo~ &- Vxe e dx
X exp

n=o I, ~ / J o v~„(x)+ v~s (x)(~) (~)

[Eq. (22) in I] which leads to the following expression of the
mobility in the partial control regime:

p~(fia)0/T, ) s' / nfi, o)ol
jL Te exp1+coth(A, coo/2T, )„=0 ( T,

( oo
—(ill. O)OX /Te)d

z o (Tlfi coo)B("~(x)+ (p~/I ngA yle)B("l(x)

(12)

where p~ = o.6/meF~ . We remark that Eq. (12) has a simi-
lar expression as that of Eq. (31) in I, which gives the mo-
bility obtained in the equilibrium case in the one-electron
approximation at T,= T.

A. The partial-control regime

In this case, the relation v* (& v„(&v is fulfilled. Due to
the fact that the electron-ripplon and the electron-gas scatter-
ing are almost elastic the condition v* (& v is easily satisfied.
As described in I, the distribution function of the nth sub-
band can be written as

B.The complete-control regime

In this case, the frequencies must satisfy the condition
v* (& v(& v„. Now the distribution function should be rep-
resented by

(13)

f(ol+ f(llk
n n

fk
f

n (7)

If we substitute Eq. (7) into the Boltzmann transport equa-
tion for the distribution function f„, one obtains in a
straightforward way the following expressions:

where u is the drift velocity of the electron system. To find
the mobility p, = u/E~~~, we multiply the Boltzmann equation
by k and sum it over the possible electron states. After some
manipulations we arrive at the following expression of the
electron mobility p, in the complete-control regime:

(0)

+veg ) I xl

The frequencies of momentum relaxation, due to the
electron-ripplon scattering v(", ) and to the electron-gas scat-
tering v," are derived in detail in I and their expressions are

T.
p (T,) =pi —[I+ coth(A, coo/2T, ) ] G„(T,)

p~hn (T)A y T, ( Acro~
"

+ ' G, (T,)

where

(14)
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( A, cop(n+n'))
( )G„(g)(T,) = g exp — ) D"„„g,(T,) . (15)

n, n' 2Te J

The functions D„„, (T,) are expressed in the same form as
in I [see Eqs. (42), (43), (45), and (46) of I] with the replace-
ment of T by T, .

In order to obtain the dependence of the electron mobility
on the driving field E~~ in both regimes, by using Eqs. (12)
and (14), we need to find out the dependence of the effective
temperature on E~~ . This relation can be determined from the
solution of the energy balance equation, which is obtained
from the Boltzmann equation, by multiplying it by the en-

ergy F.„(k ) = 6 k, /2m+ (n+ I/2)Iirpp and . sum over n and
k . In the stationary case, the energy balance equation can be
written as

2'
P(')(k, ) = g I(n'Ie'q~~In)I

n, q'

x Q-', I& I
I V, (z)

I
I ) I

&rp.(q)

r A'
X8 6cpp(n n—')+ (q +2k,q, ) (20)

where the matrix elements must be evaluated with the sub-
band wave functions given by Eqs. (3)—(5). In Eq. (20) q is
the two-dimensional wave vector of the ripplon with a dis-
persion law c0„(q) =(n/p)q (p is the liquid-helium den-
sity); Q~=(6q/2prp„)"; 5 is the area of the liquid surface
and V~(z) is the electron-ripplon interaction. For the two-
ripplon processes, we obtain in the same manner

e/LF-~~ —W„(T,), (16)

4mK F()2 2

P'."(k.) =
„a~2 2 I&n'Ie'"'In&l'

n, q, s'

W, (T,) = Wt.(T.)+ W2.(T.) (17)

The function W&„(T,) represents the scattering process in-
volving one long-wavelength ripplon. In Ref. 31, it was dem-
onstrated that the main contribution to W„(T,), under the
condition T,&&T, arises from the processes with two short-
wavelength ripplons created in opposite directions, which we
are representing in Eq. (17) by W2„(T,) . Even though these
processes give negligible contribution in momentum relax-
ation, they can dominate in energy relaxation and are 2 or-
ders of magnitude more intense than the one-ripplon process
for E~~ 1000 V/cm

The electron energy loss can be written as

where W„(T,) describes the electron energy transmitted to
the scatter system due to the electron-ripplon interaction and
p, stands for the mobility in both partial- and complete-
control regimes. We have neglected the electron-gas scatter-
ing in the energy dissipation because the scattering by he-
lium atoms is negligible for T~1 K at moderate T, even in
the limit E~~~O. As was shown in Ref. 31, the function
W, (T,) can be split out into two terms

xQ- Q- -(A, cu„(q)+fico„(q —s))

6'
X(N-+ 1)(N ;+ 1)8 -Atpp(n ,

—n')+
2m

(21)

where Nq is the Bose distribution function for the ripplons,
s is the wave vector of the pair of ripplons created (we as-
sume that s~q), Ic =2mVp/A, and F()= Vp[4 t(0)]
Uo is the height of the potential barrier which prevents the
electron to penetrate in the liquid-helium phase and 4', (0) is
the value of the electron wave function at the liquid-vapor
boundary which is located in z =0. Using the results of Ref.
36, we take 4, (0) =59.7 cm ' for Vp= 1 eV.

Substituting Eqs. (19) and (20) into Eq. (18), we obtain
the following expression:

( /icppl
W, „(T,) = (T, —T) p(t„)(T,) 1+coth

2T, /

fi, cop(n + n ') )
X g exp —

! C ",)(T,), (22)2T j

( T'
Wt(2)„(T,) = 1 ——J(T,),

Te/

where J(T,) is the energy loss rate which is given by

where
18

2+2m F
p(P)(T ) ~"'pe'~T

J(T,)=g P(')'( )(k,)f„(k, , T,) .
n, k

(19)
and

The functions P(')'( )(k ) determine the rate of energy losses
due to the electron-ripplon interaction in one- and two-
ripplon processes. The general expressions for these func-
tions were derived in Ref. 31 for the SE system. Following
the same steps, one obtains straightforwardly

x[I.'",
,
" ', )(Y)]'I„„,(y/4), (23)

with

6rpp [min(n«n )]
C""' (T') 2T, [ ( ')] ~

dy y exp( y)
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III. NUMERICAL RESULTS
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FIG. 2. Same as Fig. 1 but now for function W2„(T,).
FIG. 4. Same as Fig. 3 but within the complete-control approxi-

mation.

total energy loss rate is small in comparison with the two-
ripplon contribution W2„(T,) in the range of clamping field
investigated. The dependence of W2, on the clamping field

E~~ for T,)3 K, shown in Fig. 2, is a consequence of the
explicit dependence of 8'2„on the frequency coo, as dis-
cussed of the end of Sec. II. Once W, „(T,), W2„(T,), and
p, (T,) [given by Eqs. (12) and (14) in the two regimesj are
calculated, the energy balance equation, Eq. (16), is solved
and the driving-field dependence of the effective temperature
T,(El) is obtained. The results are presented in Fig. 3 for the
partial-control approximation, where the mobility was calcu-
lated using Eq. (12), and, in Fig. 4, for the complete-control
approximation whose mobility was given in Eq. (14). The
curves exhibit qualitatively the same behavior. However, for
a given driving field, the values of T, in the partial control
regime are larger than those in the complete-control regime.
It does mean that the effective temperature T, , calculated in
the complete-control approximation, goes up to higher driv-
ing fields as compared with that calculated in the partial-
control approximation. From the knowledge of the function
T, (E~~), the electron mobilities, given by Eqs. (12) and (14)
in the two opposite regimes, can be obtained as a function of

the driving field. One should point out that the contribution
coming from the electron-gas scattering is negligible in com-
parison with the contribution due to the electron-ripplon
scattering for all effective temperature and clamping fields
considered in this work. The results of p, (E~) in the partial-
control approximation are shown in Fig. 5 and those of p,

(E~~) in the complete-control approximation are depicted in
Fig. 6. The figures show that the mobilities are almost con-
stant for E~~( 10 V/cm, but increase fast for higher driving
fields. However, one should remark that the energy dissipa-
tion rate for the two-ripplon process, given by Eqs. (21) and
(25), is valid only if the effective temperature is significantly
higher that the helium bath temperature. For this reason the
effective temperature dependence of the mobilities is only
qualitative for intermediate T, . But at E~~)10 V/cm,
which corresponds to T,~1.5 —2.0 K, the curves obtained
give a reliable description of the behavior of p, (T,) and

6 (T.).
A comparison between p(E~~) and p, (E~~) for two values

of the clamping field is depicted in Fig. 7. As one can see
again, the mobility in both partial- and complete-control re-
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FIG. 3. The effective temperature as a function of the driving
field within the partial control approximation. The solid, dashed,
and dotted curves present the results for E~ =1000, 2000, and
3000 V/cm, respectively.

FIG. 5. The dependence of the mobility p, (E~~) for the partial-
control regime at T= 0.6 K for F~ = 1000 V/cm (solid curve), 2000
V/cm (dashed curve), and 3000 V/cm (dotted curve).
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40.0

30.0

o 20.0E

10.0

and clamping field larger than 3000 V/cm. In both cases, the
results show a monotonic increase of the mobility with the
driving field. Such a behavior demonstrates that the confine-
ment of the electron motion in the y direction does not in-
fluence significantly the nonlinear characteristics of the elec-
tron transport at high fields, which is determined by the
electron-ripplon scattering. On the other hand, as shown in I,
in the equilibrium case T, = T, the restricted character of the
electron motion along the Q1D channel leads to a nonmono-
tonic temperature dependence of the mobility, which is not
observed in SE over bulk helium.

0.0
10 10 10 IV. CONCLUDING REMARKS

E» (V/cm)

FIG. 6. The dependence of the mobility p(El) for the complete-
control regime at T=0.6 K for E~ = 1000 V/cm (solid curve), 2000
V/cm (dashed curve), and 3000 V/cm (dotted curve).
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FIG. 7. A comparison between the mobility p(E~~) within the
partial-control approximation (solid curves) and p(El) within the
complete-control approximation (dashed curves) for E~ = 2000 and
3000 V/cm,

gimes start to increase near 10 V/cm. However the values
of the mobility in the complete-control case are 2.5 —3 times
smaller than those in the partial-control regime. In addition,
p, (El) increases more strongly than p, (E~) for driving fields
above the critical value of 10 V/cm. As one can observe,
from Figs. 6 and 7, the curves of p, (E~~) become steeper with
decreasing the clamping field E~. As a consequence, one
can guess a possible negative differential d[ p, (E~~) ]/
dE~~ at E~ & 1000 V/cm which would lead to an instability in
the electron current. However we must emphasize that for
E~ & 1000 V/cm, the electron transitions to excited subbands
with l~1 become essential at T,(10 K and the theory that
we have developed in this paper cannot be applied to calcu-
late the mobilities below E& = 1000 V/cm.

Finally, our results are very similar to those obtained for
the dependence of the mobility on the driving electric field
for electrons in SE over bulk helium, as calculated by
Monarkha in Ref. 23 using the partial-control approximation

We have calculated the dependence of the mobility of
electrons localized on Q1D channels over the helium surface
on the driving electric field. The bath temperature was
T=0.6 K and we have considered the electron-ripplon scat-
tering as the dominant scattering mechanism. The calcula-
tions were carried out in the effective temperature approxi-
mation in the two opposite regimes of the relationship
between the frequency of the electron-electron collisions
p„and the frequencies of the relaxation of electron momen-
tum and energy. The widely used effective temperature ap-
proximation is valid only if p„ is large enough compared
with other characteristic frequencies of the system. For SE
on bulk helium, where the electron densities are easily
changed by varying the clamping field, the frequency v„can
be changed in a very wide range, and one can fulfill the
condition v„&& v, as it was demonstrated in Ref. 9. In the
Q1D system, the dependence of the electron density on the
clamping field is more complicated and, as far as we know,
was not carried out in the general form up to now. Further-
more, the specific nature of the electron motion in the chan-
nel is different of the 2D SE and we cannot say that we have
the conditions of validity of the effective temperature ap-
proximation. However, we believe that this approximation
has described at least the main features of the nonlinear ef-
fects of the electron mobility in the Q1D system as in the 2D
case. We have obtained a strong dependence of the mobility
on the driving field for E~~)10 V/cm. We have also ob-
served large differences in the mobilities calculated in the
two different regimes of electron-electron correlations. Un-
fortunately up to the present, there is no systematic experi-
mental study of the kinetic properties of electrons in a single
Q1D system, except the results presented in Ref. 5, where
the dependence of the mobility on the clamping field was
investigated. We hope that the different behaviors of the
driving-field dependence of the mobility can lead to check-
ing the possibility to achieve the complete-control regime in
Q1D, as in the 2D case, and in addition, to different tempera-
ture dependence of the mobility in the partial- and complete-
control regimes, as predicted in I. The theory developed here
is not appropriate for clamping fields such that the effective
temperature, which is related to the driving field, are higher
than 10 K, because the electron transitions to higher sub-
bands (l) 1) become significant and can inliuence the mo-
bility drastically. This question is however out of frame of
the present work.
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