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The electric field E induced in type-II superconductors during the penetration of magnetic flux exhibits a
strange profile when the sample has the usual square or rectangular cross section perpendicular to the applied
field B,(t). For example, in the Bean critical state with full penetration of the current density j, though
Jj=Jj. is constant, E is not constant but is a linear function of space directed along concentric rectangles (like
J) with magnitude E exhibiting a zig-zag-folded profile with (a) sharp minima with E=0 along the disconti-
nuity lines where the current flow bends, (b) sharp maxima along the median of the short sides, and (c) sharp
folds along two lines which are at a distance of half the short side from the short side. This fold defines new
discontinuity lines occurring in regions where the current flow is quasihomogeneous. The resulting electric
charge density g = €ydivE is piecewise constant in twelve sections of the rectangle where it is either zero or
q=*€ydB,/dt. These exotic features of E apply to arbitrary specimen thickness, unlike the current density
and the magnetic field, which during flux penetration or exit are qualitatively different in longitudinal and
transverse geometries. From a nonlinear diffusion equation, which is local for longitudinal and nonlocal for
transverse geometry, the current density, magnetic, and electric fields, vortex velocity, charge density, and local
energy dissipation are calculated for penetration and creep of longitudinal or transverse flux in slabs, strips,
rectangular bars, and rectangular films or plates of a superconductor which is characterized by a highly

1 DECEMBER 1995-1

nonlinear resistivity.

I. INTRODUCTION

A magnetic field H can penetrate into a type-II supercon-
ductor in the form of Abrikosov vortices. When the pen-
etrated magnetic field changes with time, an electric field E
is generated inside the superconductor according to the in-
duction law VX E=—B where B is the magnetic induction
and the dot denotes the time derivative. Inside a type-1I su-
perconductor, in general, B differs from H, while in vacuum
or in a nonmagnetic insulator one has B= uyH. The time
variation of B may be caused by ramping the applied field
H,=B,/uq or, when the ramping is stopped and H, is held
constant, by the decay of persistent currents due to the dis-
sipative motion of vortices. The vortices are driven by the
Lorentz force density BX j exerted by the circulating persis-
tent currents of density j. The resulting vortex motion with
velocity v induces an electric field E=BX v which coincides
with the electric field obtained from VX E= —B if one may
disregard the temporal change of the Meissner surface cur-
rents flowing within the magnetic penetration depth. The vor-
tex motion is called flux flow or free flux flow when the
effects of vortex pinning are negligible! (this applies when j
or the temperature 7 are sufficiently large), and it is called
flux creep” or thermally assisted flux flow> (TAFF) when the
pins are overcome by thermal activation. By definition, in the
TAFF regime (at sufficiently large T) the response E is linear
in j, while flux creep leads to a highly nonlinear E(j) curve.
For detailed mapping of the E-J-B surface of high-T, super-
conductors see Ref. 4.

The electric field inside the superconductor depends on
the current density via E=pj. Here p is a scalar (isotropic)
resistivity if one disregards the flux-flow Hall effect, if no
current flows along B, and if the material is isotropic; else
the resistivity is anisotropic and p is a tensor. The resistivity
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in general depends on the induction B=|B| [e.g., for flux
flow p=pgr~p,B/B., with p, the normal-state resistivity
observed above the upper critical field B,,(7)], on the tem-
perature T [e.g., for TAFF one has p~ pgrexp(— U/kT)<pgg
where U is an activation energy], and on the current density
j=lil, i.e., p=p(j) in general is a nonlinear resistivity. The
free flux-flow and TAFF regimes are characterized by a lin-
ear resistivity p=E/j= const, and the flux-creep regime by a
highly nonlinear p=E(j)/j=p(j).>® For example, the
Anderson model’ yields E( J)=E_exp(j/j.—1) and the col-
lective creep® and vortex glass’ or Bose glass'® models pre-
dict E(j)=E exp[—UGY/KT] with U(j)=[(j./j)’~1]U,,
where U is a characteristic activation energy, >0, j, is the
critical current density, and E . is defined by E(j.)=FE,. Be-
low the power-law model E(j)=E_.(j/j.)" will be used,
which describes many experiments and corresponds to an
activation energy with logarithmic dependence on j,!!~!?
U=Uyln(./j), thus E=E_exp[—UQGYKTI=Ejl/j)" with
n=Uy/kT. !4 The Bean assumption j=<j_. corresponds to the
limit n—o in this power law. The original Bean model®
makes the three assumptions n—o, j.(B)= const, and lon-
gitudinal geometry, i.e., long superconductors in parallel
field. Below, all three assumptions shall be relaxed.

In this paper I consider the electric field E(r,t) induced
inside a superconductor by an increasing applied field H, or
by flux creep when no current is applied by contacts. For a
superconductor of arbitrary shape, E is determined by the
induction law VXE=—B and by the boundary condition
that at the sample surface E is along the surface; this follows
from E=pj and from the condition that the current cannot
cross the free surface in the absence of contacts. In addition,
the electric charge density g= €,V - E should have zero av-
erage, i.e., (divE)=0 when the total charge of the sample is
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zero. The local charge density, however, in general will not
be zero.

The induced electric field determines the local dissipation
of energy p(r)=jE. In particular, within the Bean model
J<j., the local power loss is proportional to E=|E|,
namely, p(r)=j E(r) since j=j. in places where E#0 and
E=0 in places where j<j.. Below we will see that within
the Bean assumption j<j, both in longitudinal and trans-
verse geometry the total dissipation P along the virgin mag-
netization curve, i.e., for applied field H, increasing from
zero, can be expressed in terms of the total magnetic moment
of the sample,

1
m=> f rXxjd’r. (1)

Writing H,=ZH ,(t) one has in these geometries for the vir-
gin curve of a superconductor m=zm(H,), with m(0)=0
and m(H,)<O0 for H,>0. The dissipated power P>0 may
then be written as

P= f JE d*r=—B,[m(H,)—H,m'(H,)]. 2)

with m'=dm/dH, . Using /9t=H,9/0H, and B,= uyH,
one finds the total dissipated energy Uy, along the virgin
curve from P=j_ [E d3r=9Ugy/dt,

m(H,)

Ha
Udiss=/L0J Hdm_ll«ojO m dH

0

Ha
=ﬂ0Ham(Ha)—2M0f0 m(H) dH. (3)

It appears that the expressions (2) and (3) are restricted to the
special case j<j., j.(B)= const. In this Bean model the
complete magnetization curve in arbitrarily cycled H,(t) is
uniquely determined by the virgin curve m(H,). In particu-
lar, when H, is cycled between + H, and — H, the magnetic
moment m_ on the decreasing branch and m, on the in-
creasing branch are given by m_(H,)=m(Hy) —2m(H,/
2—H,/2), mi(H)=—m_( -—Ha)‘28 The dissipated energy
during one cycle of the hysteretic magnetization curve is
given by the area of the hysteresis loop, Ugye
=pobm dH=po$H dm; this very general thermodynamic
result is not restricted to the Bean model.

When the applied field H,(¢) is increased continuously to
a sufficiently high value, a superconductor with pinning
reaches a critical state in which everywhere in the sample j
has reached its maximum value j., above which the vortices
depin. If the B dependence of j_. is negligible in the range of
B values occurring in the sample, then the only contribution
to B is from the increasing applied field, B=Bazuoﬁa.l6
The electric field in the critical state is thus a universal func-
tion depending only on the sample shape and on the ramp
rate B,. Moreover, as shown by Gurevich and Kiipfer16 for
longitudinal geometry, and by Gurevich and Brandt!” for
transverse geometry, the electric-field profile is universal also
during flux creep: When the increase of H,(#) is stopped at
time =0, then E(r,7) ~f(r)/¢ separates into a universal spa-
tial profile f(r) and a time dependence ~ 1/¢. This separation
is exact for E(j)~exp(j/j;) with slabs (strips) or cylinders
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(disks) in longitudinal (transverse) applied field, but it also is
a very good approximation for other specimen shapes and
sufficiently nonlinear E(j), e.g., E~j" with n=3. However,
the geometry should be either longitudinal or transverse, i.e.,
the specimen should have a constant cross section perpen-
dicular to H,||z, with parallel extension much larger or much
smaller than the perpendicular extension. In these two cases,
j» B, and E do not depend on z during the relaxation. This
restriction of the universality of flux creep to either long or
thin samples, is not required if the quasistatic critical state is
considered, i.e., if the ramp rate B, is finite and full penetra-
tion was reached.

For homogeneous isotropic slabs, strips, circular cylinders
or disks, J, B, and E depend only on one coordinate x or
r=(x?+y?)2 and their orientations are obvious from sym-
metry, j|§ or jlé, Eli, and B|z. The electric field in the
critical state is then easily obtained from VXE=—B,
namely,

E(x)=—B,yx (slab, strip),

E(r)=—B,¢r/2 (cylinder, disk). 4)
For example, B,=0.002 T/s and |x|<0.5 cm yield a maxi-
mum E=107° V/m inside the superconductor. The corre-
sponding universal profiles E(x) and E(r) during flux creep
are given in Refs. 16 and 17. Remarkably, these creep pro-
files of E in longitudinal geometry are monotonic, but in
transverse geometry they exhibit a maximum at x/a= 1/\/5
and r/a=0.652 where a is the strip half-width or disk radius.

In this paper these considerations are extended to super-
conductors with square or rectangular cross section. We will
see that this realistic geometry exhibits some nontrivial fea-
tures. In particular, discontinuity lines in the current flow will
appear which start at the corners of the specimen.'®~2! As an
interesting feature I predict discontinuity lines in the electric
field £ and in its gradient or in the charge density
q= €pdivE. Some of these lines start on the specimen sur-
face at positions where there is no corner.

The outline of this paper is as follows. The fully pen-
etrated critical state of superconductors with rectangular
cross section is described in Sec. II. Partial penetration of
flux in the longitudinal and transverse geometries is dis-
cussed in Secs. III and IV. For both geometries numerical
methods are presented which yield the distribution of J, H,
and E by time integration of a nonlinear and local or nonlo-
cal diffusion equation. Some numerical results for square and
rectangular cross sections are depicted. The universal profiles
of the electric field during flux creep in various geometries
are discussed in Sec. V, and a summary is given in Sec. VL

II. CRITICAL STATE OF SUPERCONDUCTORS
WITH RECTANGULAR CROSS SECTION

A. Current density, electric field, drift velocity, local
dissipation, and charge density

A superconductor with rectangular cross section
|x|<a=b, |y|<b, and arbitrary extension d along Z||H, in
the fully penetrated critical state in increasing field has rect-
angular current stream lines with (Fig. 1)



15 444

JIITIT

) lmmlmll’l’l',"

LT
ORI

FIG. 1. Current density j (5) and modulus of the electric field
E (6) inside type-II superconductors with square (leff) and rectan-
gular (right) cross section and arbitrary thickness in the Bean criti-
cal state in an increasing magnetic field. Shown are the current
stream lines (top) and the absolute value E of the electric field as a
3D plot (middle) and as contour lines (bottom). The local dissipa-
tion is j E (8) and the vortex velocity is E/B, (9). The orientation
of E|[j can be seen from the current stream lines.

j=—j.§ sgn(x) for |y|<|x|+b—a,

j=jXxsgn(y) for |y|>|x|+b—a, 5)

where sgn(x)=x/|x|. Here and in the following I shall use
the abbreviation s=|y|—|x|+a—b; the two regions in (5)
then correspond to s<0 and s>0. The electric field satisfy-
ing Elj and (VXE)z=JE,/dx—JE,/dy=—B, inside the
superconductor in this critical state is (Fig. 1)

E=-B,x for |y|<b—a,

E=B,ys sgn(x) for |y|>b—a, s<O0,

E=B,%s sgn(y) for s>0. (6)

In particular, for square cross section (a=2>5) one has from

(6)

E=B. (Iy|=|x]) sgn(x) for |y|<[x],

E=B, (ly|—|x]) sgn(y)

Note that for the electric field one has 12 qualitatively dif-
ferent regions in the rectangle and eight differing regions in
the square, whereas the current flow divides both rectangle
and square into only four differing sections. As a new result

for [y[>[x]. )
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FIG. 2. The electric charge density g (10) inside a square (right)
and rectangular (leff) superconductor in increasing magnetic field is
piecewise constant. The zeros denote areas with g=0, and * areas
with g= *+ €,B,,. Top: Fully penetrated critical state for arbitrary
specimen thickness. Middle: Partly penetrated state in longitudinal
geometry. Bottom: The current stream lines or contour lines of the
magnetic field in the partly penetrated state in longitudinal geom-

etry.

I obtain that the modulus of the electric field has a sharp fold
along the lines y=*(b—a), which are not symmetry lines
and do not pass through corners.

This electric field of the critical state applies to arbitrary
specimen thickness. From j=j, and j||[E follows the local
dissipation p=jE=j E, which with (6) is

p=j.B,x for |y|<b—a,

p=jc Bdls| for |y|>b—a. (8)

The velocity of the vortices is perpendicular to j and to
E=vXB. Explicitly, one has v=EXz/B,, thus
v=—(B,/B,) X x for |y|<b-—a,

v=(B,/B,) X s sgn(x) for |y|>b—a, s<0,

v=—(B,/B,) § s sgn(y) for s>0. 9)

Finally, the local charge density g= eydivE=€y(JE,/dx
+0E,/dy) (since E,=0) is from (6) (Fig. 2)

q=0 for |y|<b—a,

q=—€yB, sgn(xys) for |y|>b—a. (10)
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In particular, for the square one obtains

g = €yB, sgn [sin(p/4)]. 11)

with ¢=arctan(y/x), i.e., ¢ has constant modulus and alter-
nating sign in eight equal sectors of the square.

These results mean that in a superconducting parallelepi-
ped in the critical state, when the applied field H,, is oriented
along one of the edges and is increased further, the magnetic
flux penetrates fastest along the middle planes x=0 and
y=0 which are parallel to the sides x=*ag and y=*b. As
opposed to this, the vortex velocity is zero along the bisector
planes s=|y|—|x|+a—b=0, |y|=b—a, which pass
through the corners and which coincide with the ‘“‘disconti-
nuity lines” (or planes)'®~2! at which the current stream lines
bend sharply. Note that E (6) and v (9) are linear functions
along all straight lines going through one of the two points
x=0, y==*(b—a) and along all lines which do not cross the
lines y=*(b—a).

Therefore, in the critical state flux penetrates mainly from
the middle of the edges of the rectangle but not from the
corners, in contrast to what might be expected naively. These
results apply to arbitrary thickness. However, for thick speci-
mens in the ideal critical state the dominating flux penetra-
tion from the middle of the sides is not obvious in the
magnetic-field distribution since the lines of constant
H,(x,y) coincide with the straight rectangular current stream
lines; for finite exponent n in E~j", these lines are even
concave (barrel-like). But for thin specimens the penetration
from the middle of the edges is clearly visible in H,(x,y)
since the lines of constant H, are convex (starlike or cush-
ionlike). This will be shown now.

B. Magnetic field

While the rectangular current pattern (5) and the electric
field (6) in the critical state are independent of the specimen
thickness d, the magnetic field H(x,y,z) does depend on d.
A comprehensive calculation of H(x,y,z) from the Biot-
Savart law was performed by Forkl and Kronmiiller? for
superconductors of various thicknesses d and rectangular and
polygonal cross sections. Computations for circular disks of
finite thickness are presented in Refs. 23—-25. In the limits of
large and small d analytical solutions are available:

Large d: In longitudinal geometry, i.e., inside a long bar
with rectangular cross section in parallel field, at a sufficient
distance away from the ends, one has H(x,y,z)~2H,(x,y)
where H,(x,y) has the sandpile form with constant slope
j. obtained by Bean.!® In particular, for rectangular cross
section one has

H.=H,—j.(a=|x]), <0,

Hz:Ha_jc(b——b)I)? >0, (12)

or in compact form, with max(---) = maximum value,

. b=1yl). (13)

The lines H,(x,y)= const in this longitudinal geometry co-
incide with the current stream lines of Fig. 1.

Small d: In thin plates or films with d<€a =<, the magnetic
field in the critical state depends on d in a trivial way and can

H,=H,—j.  max(a—|x
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FIG. 3. Contour lines and 3D plot of the magnetic field
H,(x,y) (14) inside and outside a thin square superconductor in the
fully penetrated critical state in perpendicular magnetic field. The
bold contour line indicates H,(x,y)=H,.

be calculated analytically for simple specimen shapes from
the known sheet current J=jd=%XJ,+§J, and the Biot-
Savart law. In general, the parallel components of H at the
upper surface of a film are H,=H,+J,/2, H=H,—J,/2
and at the lower surface H,=H,—~J,/2, H,=H,+J,/2. For
rectangular films one has to insert here j, and j, from (5).
The perpendicular component H, in the specimen plane z=0
inside and outside of the rectangle is obtained by a straight-
forward calculation,

Je
Hz(x,y)=Ha+4— > flpx,gy),
Tp,g==1

V2P+a+b—x—y

\/EQ—a-Fb—x-y
(P+y—b)(y—b+a)(P+x—a) x I
o=pe Ty b ra)-a)(0+x)|
(14)

f(x,y)=12In

with P=[(a—x)*+(b—y)*1"% Q=[x*+(b—a—y)*]"~
This H, is depicted for b/a=1 (square) and b/a=1.4 in
Figs. 3 and 4. Note the flux concentration in the middle of
the edges and the logarithmic infinity of H, near the discon-
tinuity lines s=0 and x=0 and near the edges. The ‘‘neutral
line”” H,(x,y)=H, is emphasized as a bold line. During flux
creep away from the critical state, this neutral line'7?% sepa-
rates the inner region where H, increases, from the outer
region where H, decreases, see Sec. I'V.
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FIG. 4. As Fig. 3 but for a rectangular superconductor with side
ratio b/a=1.4.

II1. FLUX PENETRATION IN LONGITUDINAL
GEOMETRY

A. Bean model with j_ = const

During flux penetration in increasing applied field, before
full penetration is reached, the circulating current and the
electric and magnetic fields in general cannot be obtained
from such simple arguments as apply for the fully penetrated
critical state discussed in Sec. II. An explicit solution for the
partly penetrated state is known only for longitudinal slab
geometry. For an arbitrary specimen cross section the addi-
tional assumption B= uoH is required, which is equivalent
to zero lower critical field H,;=0. For a bar with rectangular
cross section |x|<a, |y|<b, in the penetrated outer region
|x|=x, or |y|=y, the stream lines of the current density
j(x,y) (5) are concentric rectangles and H=ZH (x,y) has
the shape of the sand pile (13). In the nonpenetrated inner
region |x|<x, and |y|<y, one has j=0 and H=0. Here
xp=a—H,/j.andy,=b—H,/j. denote the distances of the
flux fronts from the specimen center.

The electric field which satisfies El[j and 0E,/dx
—0JE,/dy=—B, in the partly penetrated state is with
s=|y|—|x|+a—b from above (Figs. 2, 5-8),

E=0 for [x|<x,. [y|<y,.

E=B,§[x,sgn(x)—x] for |x[>x,, [y|<y,,
E=B_§s sgn(x) for ly|>y,, s<O0,
E=B,Xs sgn(y) for |x|<x,, s>0,

E=BX[y—y,sgn(y)] for |x[<x,, [y[>y,. (15)
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FIG. 5. Partly penetrated state in a square bar in longitudinal
field computed from Eq. (23) for the current-voltage law
E=E(jlj.)" with n=19 on a grid of (2X22)? equidistant points.
The depicted state corresponds to H,=0.5 in units j.a (for the
computation one puts a=E.=j,=H,=1). Top: Current stream
lines or contour lines of H, and the 3D plot of j. Note the saturation
of j to j. in the penetrated zone and the depression of j to j./ \/5
along the diagonals where the current density j bends by a right
angle. Middle: Contour lines and 3D plot of the magnitude of the
electric field. Bottom: The magnetic field H(x,y) inside and outside
the bar.

This expression does not simplify much for the square. Note
that in the partly penetrated state the electric field divides
both the rectangle and the square into 13 different regions,
whereas for the current and magnetic field only five different
regions may be distinguished. The charge g = €,divE is zero
everywhere except in the squares |x|>x,, |y|>y, near the
corners where one has p=— eOBasgn(xys) as shown in
Fig. 2.

Remarkably, H, and E are also known at the two ends
of a long bar, namely, they are one half their bulk values
(13) and (15), since when two such bars are put together at
their ends, the two equal values H (x,y,*d/2) and
E(x,y,*=d/2) have to superimpose to give the bulk value.
This fact, in principle, allows us to measure the voltage pat-
tern predicted by Eq. (15) by contacts at the ends of a long
rectangular specimen.
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FIG. 6. As Fig. 5 but for the fully penetrated state (H,=1 in
units j.a).

The magnetic moment m (1) of the rectangular bar of
length d with flux penetrated to a depth 6=H,/j, is

m(H,<aj.)=—2H,[2ab—(a+b)6+%6°]d. (16)

(a<b). At full penetration H,=aj, one has 6=a and the
magnetic moment saturates to the constant value

a
m(HaBajc)=m0=—2jca2(b—§) d. (17)
The dissipated power P in increasing field is

P=2j.B,8%(b+a—1%8) d. (18)

One easily verifies that the same expression is obtained from
the magnetic moment (16) by Eq. (2). The dissipated energy
3) is

2

MoH,
Udissz—j,—(b+a—-§-5) d. (19)

Equations (2) and (3) apply also to a cylindrical bar of radius
a. For the cylinder the assumption j<j . yields j=H=E=0
for r<r,=a— 46 with 6=H,/j,, and for r=r, one has
Jj(r=j., Hry=H,—j.(r—a), and
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FIG. 7. As Fig. 5 (H,=0.5) but for a bar with rectangular cross
section with b/a=1.4 and for a larger exponent n=39. Also shown
is the 3D plot of —H(x,y) inside the superconductor (bottom,
right).
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E(r)=B,[rl2—(a—8)?/2r]. (20)
The magnetic moment of the cylinder is
m(H,<aj.)=—wH,[[a*—ad+ /3] d, (1)

and the dissipated power and energy are

. o
P=mj.B,6(a—39), Udiss=‘2j—cﬁz(a‘ 36), (22)
which again agrees with (2) and (3). Remarkably, the above
results for m, P, and U g coincide for bars with square and
circular cross sections if referred to the sample volume.

B. General numerical solution

A useful method to compute the time-dependent penetra-
tion, exit, or creep of flux in superconductors with arbitrary
cross section in longitudinal geometry goes as follows.
Within continuum theory and disregarding the Meissner sur-
face layer and the finite H.; one may write B=py H
=ZH (x,y,t). The electrodynamic behavior of a supercon-
ductor in a time-dependent applied field H,(¢) is then com-
pletely determined by its nonlinear resistivity p(j,H) or, in
the TAFF or linear vortex-glass states, by a linear complex
resistivity p(w) which in general depends on the frequency
w/21. From Maxwell’s equations one then obtains a very
general equation of motion for the current-caused magnetic
field h(x,y,t)=H (x,y,t)—H,(¢) in longitudinal geometry,

h(x,y,t)=V-(DVh)—H,(1). (23)

In (23) D= p(x,y,t)/ p is the flux diffusivity which in gen-
eral depends on the spatial coordinates x and y and on the
time ¢ implicitly via H(x,y,t) and j(x,y,t)=|j|=|Vh|, or
explicitly when the material is inhomogeneous. For example,
one may insert in (23) a nonlinear model resistivity
p=p[jlj.(x,y)]" ! with n>1 to simulate a superconduc-
tor with inhomogeneous pinning. Equation (23) may also be
generalized to anisotropic resistivity; for E,=p,,j, and
E,=p,,j, the gradient term in (23) is replaced by
Vx[pyyvxh]+vy[pxxvyh]’

This equation thus, in general, describes the two-
dimensional nonlinear diffusion of flux in an inhomogeneous
and anisotropic medium, driven by the ramp rate H,(¢). In
particular, for an ideal conductor with p=0, Eq. (23) yields
fz=—Ha, which means that the internal field H=H,+h
stays constant; depending on the initial state, this means
frozen-in flux or ideal screening. In the opposite limit of an
insulator with p—oo, any finite A(x,y) would diffuse apart
rapidly such that =0 results, meaning instantaneous and
full penetration of H,. In the one-dimensional geometries
(slab or cylinder) one has j=|h’| (the dash denotes d/dx or
d/dr) and Eq. (23) takes the simple form h=u,'V
-E(|Vh|)Vh/|Vh|—H,. For a power law E(j)=E_.(j/j)"
with odd n one explicitly gets for slabs and cylinders, respec-
tively,

h(x,)=c[ (h')" 1" = H,(1), (23a)

h(r,t)Z(c/r)[ r(h' )" ]'—Ha(t) (23b)
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with ¢=E_/jhuy. For numerical integration of Eq. (23a)
and (23b) it is helpful to note that 4(x,t) and A(r,t) are even
functions of x or r which vanish at the surface |x| =r=a and
thus may be represented as Fourier series, and that one of the
two derivatives acts on an even function and one on an odd
function.

The equation of motion (23) is easily time integrated on a
personal computer starting with 2(x,y,0)=0 and H,=0 and
then increasing the applied field H,(¢). Note that only the
time derivative Ha enters (23) but not the absolute value
H . For rectangular cross section it is convenient to express
h(x,y) in terms of a finite Fourier series which ensures that
h(x,y,t)=0 at the specimen boundaries and which facili-
tates the computation of the required spatial derivatives. The
accuracy of this numerical method is easily checked by look-
ing at the nonpenetrated region where h(x,y,t)+H,(t)=0
should apply. This is indeed satisfied with high precision
even when only few grid points (x;, y;) or few Fourier co-
efficients are used. Figures 5 to 8 show some of these nu-
merical results for half and full penetration of longitudinal
flux into rectangular bars with side ratios b/a=1 and
bla=2, using E=E_(j/j.)" with n=19 or n=139. For such
large n the time integration of (23) virtually reproduces the
Bean critical state. Note, however, that this computation in-
cludes flux-creep effects, which lead to a sweep-rate depen-
dent effective j. and to magnetic relaxation after the sweep
of H, is stopped, cf. Sec. V.

IV. FLUX PENETRATION IN TRANSVERSE GEOMETRY
A. Long strip with j, =const

The penetration of perpendicular flux into thin supercon-
ductors was recently calculated analytically, within the Bean
assumption j<j_, for thin circular disks?’ and long strips28
in a transverse field H,, and for strips carrying a transport
current, 3! see also the analytical solution for a strip with
bulk pinning and edge barrier.3?3* These theories yield ex-
plicit expressions for the sheet current J= jd = $J (r) for the
disk and J=yJ(x) for the strip, and for the magnetic moment
m=Zzm(H,) in increasing H,. For the strip, but not for the
disk, analytical expressions are also available for the perpen-
dicular field H, in the specimen plane z=0. For a strip with
width 2a (|x|<a) and length 2b>2a, magnetic flux pen-
etrates to the positions |x|=x, where x,=a/cosh(H,/H,)
with H.=J. /7, J.=j.d. One thus has H (x)=0 for
|x|<x, and J,(x)=—J.sgn(x) for x,<|x|<a. The non-
trivial part of the solution® may be written in the compact
form

Jy(x)=—2H, arctanu, |x|<x,, (24)
1—u
Hz(x)=(Hc/2)ln 1+u ’ _xpSl_xI<OO, (25)

with u=cx/|)c12)—x2|”2 and c=(1 —xlz,/az)m:tanh(Ha/
H.). From H, (25) one finds the electric field E=yE (x)
with E(x)=0 for |x[<x, by using the induction law
OE,lox=—podH,l0t=—B,9H,/9H,,  thus  E,(x)
=—Bafﬁp[c9Hz/¢9Ha] dx, yielding (Fig. 9)
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FIG. 9. Sheet current J (24), magnetic field H, (25), and electric
field E (26) for a long strip in perpendicular magnetic field. Shown
are —J/J,., H,/J., and —ElaB, for half penetration (x,/a
=0.5) occurring at H,/J .= arcosh2/m=0.42.

E,(x)=—B, (x*~x})"7 sgn(x), x,<[|x|<a. (26)

From the electric field (26) and the constant current density
J, in the penetrated region b<|x|<a one obtains the total
dissipated power per unit length of the strip, P/2b=2J,
ffc'pEy(x) dx. This yields

H, H,/H,

= : 2 H.  cosh’(H /H.)
P(Ho)/2b=J Boa| tanh o= = <o m) |

(27)
Noting that the magnetic moment per unit length of the strip
. 28

is

m(H,)/2b=—1J, a* tanh(H,/H,), (28)

one confirms that the same dissipation (27) is obtained by
inserting m(H,) (28) into Eq. (2). Thus expressions (2) and
(3) apply to both longitudinal and transverse geometries.

B. Numerical solution for strips and disks

If the critical current density depends on B, or if one is
interested in the detailed dynamics of flux penetration and
exit or creep in long strips in perpendicular field H,(z), then
one may use the following numerical method. First one
writes down the perpendicular field component H (x) gener-
ated in the specimen plane z=0 by H, and by the sheet
current J(x)=j(x)d flowing along the strip (along y). Using
the symmetry J(—x)= —J(x) of the induced sheet current
one obtains from Ampere’s law

Hz(x)=Ha—ﬁ O—JET_—lleu. (29)

1 J'a2u J(u)

The time-dependent induction B,= uoH, induces an electric
field along the strip, E(x,t)=— uofsH,(x,t) du, which
drives this sheet current according to E= pJ/d. Eliminating
E one gets an equation for J(x,t),34
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J(x,t)=T{walila(t)+f01K(x,u) J(u,t) du], (30)

ad x—u

T , K(x,u)=In . (31)

- 2mp x+tu

In (30) the half width a of the strip was used as unit length.
The relaxation time 7 in general depends on x, J, and H, via
the nonlinear resistivity p.

In the equation of motion (30) the time derivative is on
the “wrong” side. In order to facilitate the integration over
time, this equation has to be inverted such that J goes out of
the integral. By formally introducing the inverted kernel
K~ '(x,u) one may solve (30) for J,

j(x,t)=f01K_l(x,u) f(u,t) du, (32)

Flx,t)=J(x,t)/ 7—2wxH ,(1). (33)

In practice the inversion of the integral kernel K(x,u) (31)
means the inversion of a matrix K;;= K(x;,x;)w; where the
x; are grid points with weights w; which approximate an
integral by a sum, [} f(x) dx~Z"_ f(x)w;, e.g, x;=(i
—1/2)/N and w;=1/N with N=10... 100, see Ref. 32 for
details.

The equation of motion (32) is easily integrated on a per-
sonal computer starting with H,(0)=0, J(x,0)=0, and using
a model resistivity, e.g., p(J)=p.(J/J,)" 1. From the re-
sulting sheet current J(x,t) one obtains H,(x,t) by Eq. (29)
and the electric field by E=pJ/d.

A similar one-dimensional solution method is described in
Ref. 35 for thin circular disks in perpendicular field. Ex-
amples for field and current distributions in superconducting
disks and rings are given in Refs. 36 and 37 and in Fig. 10.
General expressions for the complex ac susceptibility of
strips and disks are derived in Refs. 38 and 39.

C. Thin plates of arbitrary shape

A general two-dimensional (2D) equation of motion for
the sheet current J(x,y,?)=jd in a thin planar conductor or
superconductor of thickness d and arbitrary shape in a per-
pendicular field z H,(¢) is derived as follows. As in the lon-
gitudinal case (Sec. III B) the material will be characterized
by B= u,H and by a resistivity p=E/j or sheet resistivity
p,=E/J=pl/d, which may be nonlinear, e.g., p(j)=p.(j/
jo" Y, or linear, complex, and frequency dependent,
p=pa.(w)=p'+ip”. The sheet resistivity p (x,y) may de-
pend on the position either directly in a nonuniform speci-
men, or implicitly via J(x,y) and B,(x,y). As in the longi-
tudinal case, planar anisotropy of p can be easily
incorporated.

First, one expresses the sheet current by a scalar function
g(x,y) as

J(x,y)=—2XVg(x,y)=VXZ g(x,y). (34)

This substitution guarantees that divJ=0 and that the current
flows along the specimen boundary if one puts g(x,y)
=const=0 there. In general, the lines g(x,y)= const coin-
cide with the current stream lines. The physical meaning of
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(o} r/a 1

FIG. 10. The penetration of perpendicular flux computed from a
1D integral equation (Ref. 35) similar to Eq. (2), for a circular disk
and ring with radius a and thickness d<<a, for E=E_[j/j (H)]"
with n=19, and j.(H)=j.=const or j.(H)=j./(0.8+|H|)
(middle). Here the perpendicular field H=H, is in units j.,d
(a=E,=j,od=H,=1). The applied field is increased from zero to
H,=0.1, 0.2,0.3, 0.4, 0.5, 0.7, 1. Shown is the sheet current J=jd
(left) and the magnetic field H, for a full disk (top and middle) and
for a ring with inner radius 0.4a (bottom).

g(x,y) is the local magnetization or density of tiny current
loops. Thus, the integral of g(x,y) over the specimen area
yields the magnetic moment (1),

m=%j rx J(r) d2r=iJ g(r) d?r. (35)

Next, one determines the integral kernel Q(r,r’) (r=x,y)
which relates the perpendicular field H,(x,y) in the speci-
men plane z=0 to g(x,y) by

H(r)=H,+ LQ(r,r’) o) P, (36)

g(r)= LQ”(r,r’) (H(r)-H,]d'.  (37)

Here the integrals are over the specimen area A and Q! is
the inverse kernel as discussed below Eq. (32) and (38).
Finding the 2D integral kernel Q is not trivial, since when
one performs the limit of zero thickness in the Biot-Savart
law, the kernel becomes highly singular, Q
=—1/4m|r—r’'|3; this form of the kernel thus applies only
when r lies outside the specimen, but inside the specimen
area (where r=r’ can occur) one should perform part of the
integration (36) analytically to obtain a well behaved kernel
as described in Ref. 40. Alternatively, one may obtain this
kernel numerically. for a small but finite height z above the
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specimen.*! Knowing that the field of a tiny current loop (or
magnetic dipole) of unit strength located at x=y=z=0 with
axis along z is H,(x,y,z)=(1/4m)(2z2—x2—y2)/(x?
+y2+22)>2, one obtains for the kernel

Q(r,r’)=—Ilim 22— p° (38)
)= 4,”1_.0———‘7’22+p2)52

with p?=(x—x")2+(y—y")2. From Q (38) the inverse ker-
nel 0! may be obtained by Fourier transform (see below)
or by introducing a grid with positions r;=(x;,y;) and
weights w;, the vectors H;=H,(r;) and g;=g(r;), and the
matrix Q;;=Q(r;,r;)w;. The integrals (36) and (37) then
are approximated by the sums H;=%;0;g;, and
g,:EjQi;lHj (for H,=0) where Q,;l is the inverse matrix
of Q;;, see also Appendix A.

As the last step, the equation of motion for g(x,y,?) is
obtained from the 3D induction law VXE=—B and from
the material laws B=uoH and E=pj, valid inside the
sample where j=J/d=—12X(Vg)/d. Note that the required
z component B,=% B=—%(VXE)=—(2XV) E=—% JE/
dy+Yy JE/dx does not depend on the (unknown) derivative
JE/dz. With p,=p/d one may write inside the sample
E=pj=p,J=—p,2XVg and thus B,=(ZXV)(p,2XVg)
=V .(p, Vg). Inserting this into Eq. (37) one obtains the
equation of motion for g(x,y,?) in the form***3

§(r,1)= f 0 (r.r) [ (K0~ H(1) 1 d2r', (39

f(r.)=V-(D, Vg), (40)

where D =p,/uo=p/dug is the sheet diffusivity of flux.
Note the similarity of Egs. (23) and (39), which describe 2D
diffusion of magnetic flux in longitudinal and transverse ge-
ometry, respectively. In transverse geometry, the diffusion is
nonlocal, characterized by the integral kernel Q" !(r,r’). In
the longitudinal geometry this kernel formally reduces to a
delta function §(r—r’) times the specimen thickness d, and
g(r) coincides with H,(r) — H,, . In addition, the diffusion in
general is nonlinear since both Egs. (23) and (39) apply also
when the flux diffusivity p/u, depends on r, J, and H,.
When the resistivity is anisotropic (Ey= pyJ,, Ey=pyyJ,)
Eq. (39) still applies but with modified

f(r.0)=V.[(py, /d)V,g]+V,[(p./d)V,g].  (41)

In the limit of a long strip or of a rectangle with extreme
anisotropy p,,<p,,, one can show that Eq. (39) reduces to
Eq. (32) for the infinite strip.

D. Rectangular plates

In the particular case of films or plates with rectangular
shape, the boundary condition that J flows along the speci-
men boundary may be satisfied by writing g(x,y) as a 2D
Fourier series in which each term vanishes at the edges. For
a rectangle filling the area 0sx<<2a, 0<y<2b, one
writes*?

g(x,y,t)=% gx(?)sinK  xsinkK,y, (42)
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where the K are reciprocal-lattice vectors with the compo-
nents K,=(2m—1)7/2a and K,=2n—1)7/2b, m,n
=1,2,3,...; the sum X is over all m=1, n=1. A similar
Fourier series may be written for the field H, inside the
specimen area,

Hz(x,y,t)=2 Hy(t)sinK xsinK,y. (43)
K
From (36), (42), and (43) one obtains

HK(r)=§ Okxgx: (1), (44)

where the Qkk are the 2D Fourier coefficients of the inte-
gral kernel Q in Eq. (36),

o(r,r')= 2 Oxx/SinK ,x sinK,ysinK x’ smK
bgx'
(45)
Explicitly one finds from (38) and (45) (Ref. 42)
2 fw K. K. (1+cos2ak,)
Ow="2.% |, (K*—K*)(kK2—K',2)
dek . K K} (1+cos2bk,) 46)
X .
o (KK (k;—K',2)

The integrand in (46) is sharply peaked at K,=K, and
K,=K,. Without the common factor k=(ki+k§)“2 the
double integral (46) would separate and would exactly equal
(1/2) gk . Therefore, at large K or K' one approximately
has Qkk'= Skk:K/2. This useful approximation allows to
write down the inverse kernel explicitly as QI;II(F Sk 2/K
and to obtain approximate analytic expressions.

For perpendicular (or normal conducting) rectangular
plates or films in increasing, constant, or cycled applied field
H (1), the magnetization g(x,y,?) may be computed by time
integrating the nonlocal diffusion equation (39) with the ker-
nel Q (45, 46) and a material law E=E(j) inserted, see
Appendix A for details. From g(x,y,t) the sheet current
J=jd=—12XVg, magnetic field H (36), and electric field
E=E(J/d)j are obtained. Figures 11-14 show the flux pen-
etration into a square or a rectangle with b/a=2 for the
model E=E_(J/J,)" (J.=j.d, n=19 or 39) at applied fields
H,/J.=05and H,/J. —15

V. FLUX CREEP

When the applied field is increased and then held constant
at times =0, one has H,(¢)=0 in Egs. (23), (33), and (39),
which then describe free, nonlinear, and local or nonlocal
diffusion of H(r,) or of g(r,t). As shown by Gurevich,'®!
in one-dimensional (10) geometries and for sufficiently non-
linear E(j), the electric field E(r,¢) inside the superconduc-
tor after some transient time decreases approximately as 1/¢
with a time-independent universal profile from which the
current density, magnetic field, and magnetization during
flux creep may be obtained by inverting the laws E=E(j)
and j=V XH.

For longitudinal geometry the

Maxwell equations
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FIG. 11. Penetration of perpendicular magnetic flux into a thin
superconducting square with E=E _(j/j.)" for n=19 and H,=0.5
in units j,d (a=E.=j.d=H,=1) computed from Eq. (39) on a
grid with 20X 20 basic points. Shown are the current stream lines
and a 3D plot of the magnitude of the sheet current (top), the con-
tour lines and a 3D plot of the magnitude of the electric field
(middle), the contour lines of the magnetic field H, (bottom, left)
(the bold line indicates H,=H,), and the local magnetization g
(bottom, right), whose contour lines coincide with the current
stream lines.

VXE=—-B, B=u,H, VXH=j=j(E)E, E=E/E, lead to
the equation

VXVXE=—u, Jj(E)E 1/dt. (47)

From the boundary condition B=B, and from dB,/dt=0
follows that at the surface VXE=0. Neglecting a possible
time dependence of the unit vector E and writing
djldt=(0E/dt)dj(E)/dE one gets for the rather general
case where Jj(E)/dE~j,/E [e.g., for E~(j/j.)" one has
djldE=(j/n)/E~j,/E with j,=j./n since for n>1 one
has j~j,. wherever E#0]

VXVXE=—uo(j, /E)(JE/ot)E. (48)

This equation is solved by the separation ansatz
E(r,t)=f(r)/¢t, which is the asymptotic solution for large



15452

Iy
U !

{
{f

yiilim

Nt
W\

W\

NN

\‘\\\\x\

\

FIG. 12. As Fig. 11 but for almost complete penetration,
H,=1.5.

times since it does not depend on the initial shape E(r,0).
The resulting equations for f(r) are then

VXVXE(r)=—puoj i f/f,  VXEE) qurtace=0.  (49)
This separation of variables is exact for slabs and cylinders
in parallel field H,||z. For slabs with |x|<a one has

f(r)=yf(x), f"(x)=—poj15gn(x), f'(x==%a)=0, yield-
ing!®14

fslab(x)zlu‘ojlx(a—lxl/z)~ (50)
For circular cylinders with radius a one gets from (49)

£f(r)=pf(r), [rf' (N1 == poji7, (rf)|=,=0, yielding

3a2—r% In(r/rgy) rz—rg

4  In(alrgy+1 4 |

nyl(r)zl‘l’Ojl (51)
where ry<<a is an inner cutoff radius, f(ry)=0.

For transverse geometry the separation of variables is also
possible and yields E(r,7) =f(r)/z. One finds'” for the strip

=3 sip(x) ([x|<a) and for the disk f=dfgu(r) (r<a)
with

Fuip(X) = (moj1ad/2m)[(1+ 77)In(1+ 5) = (1— n)In(1 - 7)

—27ylnn], (52)
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FIG. 13. As Fig. 11 (H,=0.5) but for a thin rectangular super-
conductor with b/a=1.4, n=39, and 25X 35 basic points.
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FIG. 14. As Fig. 13 but for almost complete penetration,
H,=1.5.
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f/f(a)

0 x/a, r/a

FIG. 15. The universal profiles f(x) and f(r) of the electric field
E= f/t induced during flux creep in a slab, cylinder (ry=a/100),
strip and circular disk, Eq. (48)—(51), normalized to their values at
the specimen edge x=a or r=a. Also shown is the product f(r)r
for the cylinder and disk.

Fais(r)=(poj1ad/27)[0.4588 9+ 0.37315° — 1.5571 5lny
—0.9748(1— 9)In(1— )], (53)

where p=x/a=r/a. The universal functions fg,y,, SFeyts
Ssip» and fgix normalized to their edge value at x=r=a are
depicted in Fig. 15. Whereas in longitudinal geometry the
flux density during flux creep increases uniformly in the en-
tire superconductor, in transverse geometry the perpendicular
flux density B,= uoH, increases only in the central part of
the superconductor but it decreases near the specimen edge
since there H, exceeds H, due to demagnetization effects.
The regions of increasing and decreasing H, are separated
for the strip by a pair of neutral lines at x=*a/+/2 deter-
mined by f;mp(x)ZO, and for the disk by a neutral circle at
r=0.876a determined by [rf4u(r)] =0.

The separation of variables, leading to the universality of
E(r,t), is strictly valid only in the four 1D geometries slab,
cylinder, strip, and disk as described in Refs. 16 and 17.
Remarkably, our computations from Eq. (23) and (39) show
that this universal behavior of E(r,t) =f(r)/¢ holds to a very
good approximation also for superconductors with rectangu-
lar cross section. In all these geometries this universality, in
principle, applies to any starting state. However, if the creep
does not start from the fully penetrated critical state, then the
transient time until the universal shape E(r,z)=f(r)/t is
reached will be extremely long.

Figures 16 and 17 show the computed electric field in-
duced by the creep of longitudinal flux away from the criti-
cal state in bars with square and rectangular (b/a=1.4) cross
section for the model E(j)~ j", n=39. Note the similarity of
these 2D profiles of E(x,y,t) with the 1D parabolic profile
(50) in slabs. As a special feature, in square and rectangular
superconductors during creep E(x,y,?) stays zero (or ex-
tremely small) along the current discontinuity lines discussed
in Sec. II. The depicted E profiles do not change over many
decades of the creep time 7, and their amplitude decreases as
E~1/t (more precisely, as ™"~ D=73938 gee below).
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FIG. 16. Universal magnitude of the electric field E during
creep of longitudinal flux away from the critical state in a super-
conducting bar with square cross section and exponent n= 39, com-
puted from Eq. (23) on a 25X 25 grid. Top: Contour lines. Middle:
3D plot. Bottom: Profiles E(x,y;) cut parallel to the sides of the
square.

Note that the time scale of our computation is effectively
logarithmic since, for numerical stability, the time step was
chosen as At~ 1/E ,, where E_,, is the maximum value of
the electric field inside the superconductor; with E~ 1/¢ this
means At~t, yielding a time ¢ which increases exponen-
tially with the number of integration steps.

The creep of perpendicular flux away from the critical
state in square and rectangular (b/a=2) plates or films is
depicted in Figs. 18 and 19 for E(j)~j", n=239. As in lon-
gitudinal geometry, these E profiles stay unchanged over
many decades of the creep time. The similarity with the E
profiles (52) for the strip is obvious, but on the discontinuity
lines of the current one has £=0. Note the four or six
maxima in E occurring inside the square or rectangle, re-
spectively; in longitudinal geometry similar maxima occur at
the surface of the superconductor, cf. Figs. 18 and 19. The
neutral lines separating the regions with increasing and de-
creasing flux density, are now defined by H, (x,y)=H,;
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FIG. 17. As Fig. 16 but for a bar with rectangular cross section
with b/a=1.4 using 25X 35 basic points.

these neutral lines are emphasized as bold lines in the con-
tour plots in Figs. 3, 4, 12, and 14.

During flux creep the current and magnetic-field profiles
are close to their profiles in the critical state since the
changes of j and H and of the magnetic moment m are
approximately logarithmic in time and are thus very slow.
More precisely, in our power-law model E~ j" with n=39
the separation of variables yields E~:~"/*~D and thus
AH~Aj~Am(t)~EU"~t‘ Vin=1) =~ (138 1 — (1/38)1nz.
These time dependencies are confirmed by our computations
over many decades with high precision. Gurevich’s universal
features of creeplé’ are thus very general, applying with
good accuracy also to geometries and current-voltage laws
where the separation of variables in the nonlinear diffusion
equation strictly spoken is not valid.

Of course, the nonlinear diffusion equations (23) and (39)
allow also the computation of creep away from any partly
penetrated state or at any point of the irreversible magneti-
zation curve. Depending on the geometry and magnetic his-
tory, such computations yield a plethora of interesting fea-
tures which cannot be discussed in this paper. The richness
of phenomena in perpendicular geometry is increased further
when the effects of an edge barrier’>**> or of finite speci-
men thickness are considered.
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FIG. 18. The magnitude of the electric field during creep of
perpendicular flux away from the critical state in a thin supercon-
ducting square with exponent n =39, computed from Eq. (39) on a
20X 20 grid. Top: Contour lines. Middle: 3D plot. Bottom: Profiles
E(x,y;) cut parallel to the sides of the square.

VI. SUMMARY AND DISCUSSION

The electric field E in type-II superconductors is not zero
when the applied field H, varies with time (even at zero
temperature) or when flux creep is considered. Flux creep,
observed mainly at high temperatures and when H, is held
constant, is due to a finite and highly nonlinear resistivity of
the superconductor. The electric field is induced by moving
flux lines and exhibits interesting spatial dependences,
which, in principle, may be measured by contacts. The E
profiles in both longitudinal and transverse geometries are
discussed for the fully penetrated critical state, where E is a
linear function of the spatial coordinate with a strange zig-
zag profile that is independent of the specimen thickness, and
for the more general case of partial penetration of flux. Other
cases like a cycled H,(t) or inhomogeneous or anisotropic
superconductors will be discussed elsewhere.

In inhomogeneous superconductors, e.g., with j.=j.(r),
large peaks of E and of the vortex velocity and local dissi-
pation may occur during flux penetration or exit, which may
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FIG. 19. As Fig. 18 but for a thin rectangular superconductor
with side ratio b/a=2 on a 20X 40 grid.

trigger thermal instabilities.*® For example, such peaks in E
occur along a line leading from the sample edge to an inclu-
sion which destroys the homogeneous current flow, see Fig.
8 of Ref. 21. Sharp peaks and ridges of E occur also when
Jo(r) jumps along a straight line such that the critical state
exhibits “‘isolated” triangular regions into which flux lines
can enter only through one point on the specimen surface
and then move along the jump of j., from where they flow at
a right angle to the current stream lines into the triangular
area; see Ref. 47 for one such example.

The discontinuity lines'®2! in the current density of rect-
angular superconductors and the corresponding logarithmic
infinities in the flux density in thin films, at finite tempera-
tures have a finite width determined by the curvature of the
current-voltage law E(j) near j=j., e.g., by the exponent n
in the model E=E_(j/j.)". The result that E exactly van-
ishes on the discontinuity lines (even for finite n) means that
vortices can never cross these lines since the drift velocity is
v~E=0 on these lines. More precisely, in a rectangle the
sheet current on these lines is suppressed from J. to
JC/\/E, and thus E is suppressed by a factor of 27 "/2,

As a result I find discontinuity lines at which the electric
charge density during flux penetration has a step. A finite
charge density g = €,divE occurs in regions where the vortex
velocity v has a finite rotation VX v+ 0. For homogeneous
rectangular superconductors g is piecewise constant. This
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new type of discontinuity lines occurs also in regions where
the current flow is quasihomogeneous, e.g., on the two me-
dians of a square-shaped sample. Interestingly, when one
takes the nth power of the almost constant current density
Jj(x,y) in the Figs. 5-8 and 11-14, one obtains the zig-zag
electric-field profiles shown in the same figures; this should
be so since E~j" was assumed in our computations. The
nature of these discontinuity lines will be discussed in more
detail in a forthcoming paper, where a comparison with the
domain structure in soft ferromagnets*® is given.

General numerical methods are presented which allow the
computation of the motion of magnetic flux in square and
rectangular (and arbitrarily shaped) superconductors by time
integration of a nonlinear diffusion equation. In longitudinal
geometry the diffusion (23) of H(x,y,t) is local. In trans-
verse geometry the diffusion (39) of the magnetization
g(x,y,t) (34) is nonlocal, i.e., the time derivative of g de-
pends on the values of Vg in the entire superconductor.

This numerical method is fast and stable and correctly
yields the typical features of thin rectangular superconduct-
ors in perpendicular magnetic field,*? namely, (a) at small
H, the ideal screening state with 1x singularities of H(x)
at the edges of thin plates; (b) at intermediate H, the cush-
ionlike penetration of flux which was observed
magneto-optically;?**7 and (c) at large H, the critical state
with discontinuity lines at which the current flow performs
sharp bends, the flux density exhibits logarithmic infinities,
and the electric field goes linearly through zero. The numeri-
cal method also allows us to compute the linear and nonlin-
ear response of rectangular superconductors to longitudinal
or transverse ac magnetic fields** and the exact behavior of a
rectangular superconductor performing tilt vibrations.**~>! In
all these cases the superconductor is characterized by a non-
linear resistivity or by a linear, complex, and frequency-
dependent resistivity, and the lower critical field H,; is as-
sumed to be zero. Some interesting effects of finite H., are
discussed in Refs. 52 and 53.

The universal behavior of the electric field during flux
creep predicted for the 1D geometries in Refs. 16 and 17, is
shown to apply to a very good approximation also to super-
conductors with square and rectangular shape in both longi-
tudinal and transverse geometries. This means that, after
some transient time, E takes the form E(r,?)=f(r)/t, or
more generally, E(r,) =f(r)/(t++ 75), where the shape of
f(r) is determined by the geometry. This separation of the
variables works whenever the current-voltage law E(j) of
the superconductor is sufficiently nonlinear.'®!” From the
universal electric field E(r,z) one then obtains the creep pro-
files of the current density j and the flux density B, by using
the specific law E(j) of the problem.

Magnetization curves m(H,) of superconductors with
rectangular cross section are given for the Bean model in
longitudinal geometry by Eq. (16). For transverse geometry
m(H,) has to be computed from Eq. (39). As pointed out by
Gilchrist,> in the Bean model j<j.= const, the magnetiza-
tion curves for various geometries differ only very little if
they are normalized to the same initial slope m’(0) and satu-
ration value m(). In particular, the normalized magnetiza-
tion curve of the long strip®® or rectangle*? exceeds that of
the disk?’ by less than 0.011m(). I find that the m(H,) for
a thin square differs from that of a circular disk only by
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*+0.002m (). More details on theoretical magnetization
curves and nonlinear susceptibilities of thin rectangles with
various current-voltage laws, e.g., E(j,B)=E.[ j/j.(B) 1",
will be published elsewhere.
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APPENDIX

The computation of current and flux distributions in a
rectangular film or plate proceeds as follows. One defines an
equidistant grid x,=(u—1/2)a/N, (u=1...N,), y,=(v
—1/2)b/N, (v=1...N,). These N=N,XN, points
r;=(x;,y;) (i=1...N) cover one quarter of the rectangle,
which suffices because of symmetry. Then one calculates
the N? Fourier coefficients Qg (46) for N, values K, and
N, values K, ie., for m=1...N,, n=1...N,. The N
double integrals (46) are computed rapidly by two one-
dimensional integrations (or matrix multiplications) if appro-
priate grids for the k, and k, are chosen. Note the symmetry
Oxk'=Qx'k- Next one calculates and tabulates the NXN
symmetric matrix Q;;=(ab/N)Q(r;,r;)=(Q;; from the Fou-
rier series (45). Finally, the inverted matrix Qi;l is computed
and tabulated; this inversion requires ~2 X N3 floating point
operations and typically takes a few seconds to a few min-
utes on a personal computer if N,, N,=10-40 is chosen.
For a square specimen the additional symmetry reduces the
size of the tabulated matrices by a factor of 4. All these
computations have to be performed only once for a given
side ratio b/a and grid size N, XN, .

Using the tabulated matrices Q;; and O ,;1 , the equation
of motion (39) for the vector g;(r)=g(x;,y;,t) is easily in-
tegrated over time, starting with g,;(0)=0. This was done for
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various sweep rates H,(z), for cycled H,(z), and for creep
problems (H,=0), choosing several current-voltage curves
or resistivities p(H,J). From the resulting g(x,y,?) one ob-
tains the sheet current J(x,y,t)=—zX Vg and the magnetic
field H;(1)=H,(x;,y;,t)=2;0;;8;. Both J=|Vg| and H
are required at each time step since they enter the resistivity,
which was chosen in the form p=p(x,y,t)=polJ/
J(H)1""! where J=jd and J.=j.d. Even for large expo-
nents n=99 the numerical method is quite stable when the
spatial derivatives in (40) are calculated from Fourier series
of the form (42) using a weak smoothing by multiplication of
the Fourier coefficients by a Gaussian. An important trick is
that also-the spatially constant ramp rate H 4(2) is convoluted
by a Gaussian to avoid sharp discontinuities at the edges of
the rectangle.

A very sensitive check of the accuracy of the numerical
method for large exponents n>1 is the vanishing of the
magnetic field in a wide region inside the rectangle before
flux has penetrated: The central field vanishes only when the
numerical solution yields a shielding current which exactly
compensates the applied field in the field-free region. Any
flaw or inaccuracy in the numerics would destroy this com-
pensation. Another test of the accuracy is the constancy of
the sheet current in the penetrated region when Bean’s as-
sumption J .(H)=const is used. In this case a further effec-
tive test of the numerical results is the known analytical so-
lution (14) for the fully penetrated critical state which is
reached at H,>J; from the field (29) for the strip, or from
the field (14) for the rectangle, one can show that full pen-
etration is reached when H,~ (J./m)In(4a/d). In a rectangu-
lar superconductor in the critical state the current flows along
concentric rectangles since the current cannot cross the sur-
face and must have constant modulus. While our dynamic
theory with a smooth current-voltage curve (e.g., E~j" with
finite n) yields rounded corners of these rectangular current
stream lines, the static Bean model (j<j. or n—®) gives
sharp bends not only near the specimen corners but also in-
side the specimen.
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