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The Heisenberg spin ladder is studied in the semiclassical limit, via a mapping to the nonlinear o model.
Different treatments are needed if the interchain coupling K is small, intermediate, or large. For intermediate
coupling a single nonlinear o model is used for the ladder. It predicts a spin gap for all nonzero values of X if
the sum s+ 5 of the spins of the two chains is an integer, and no gap otherwise. For small K, a better treatment
proceeds by coupling two nonlinear o- models, one for each chain. For integer s =+, the saddle point approxi-
mation predicts a sharp drop in the gap as K increases from zero. A Monte Carlo simulation of a spin-1 ladder

is presented which supports the analytical results.

I. INTRODUCTION

Interest in one-dimensional quantum antiferromagnets has
been great ever since Haldane conjectured' that integer-spin
chains have a gap in their excitation spectrum while half-
integer-spin chains do not. More recently, coupled spin
chains have aroused some interest, in particular the so-called
Heisenberg ladder, whose Hamiltonian may be written as
follows:

H:JE {Si'Si+l+§i'§i+l}+K2 S:Si. (1)

wherein S; and S; are the spin operators at site i for chains A
and B, respectively. The relevant parameters are the spins s
and § of each chain, and the coupling ratio K/J. Since this
system is one dimensional and is characterized by a continu-
ous order parameter, one does not expect any long range
order for any value of the couplings J and K. The important
question is rather how the spin excitation gap A develops or
varies as the interchain coupling X is turned on. The case of
two spin-3 chains is the one that has received attention re-
cently, and has been studied with various techniques:
bosonization,> exact diagona]ization,3’4 quantum Monte
Carlo* and density-matrix renormalization.>® The prevailing
conclusion is that a gap A appears for any nonzero interchain
coupling K. This gap increases with K in an almost linear
fashion.

In this work we will study the Heisenberg ladder with
semiclassical techniques, i.e., by using an approximate map-
ping from the Hamiltonian to the nonlinear o model. As long
as K and J are not too different, one may assume short range
antiferromagnetic (AF) order along and across the chains,
and work out a direct mapping with the nonlinear o model.
This will be described in Sec. II. However, the validity of
such a mapping is questionable when K/J is too small (or too
large). If K<<J one should rather consider two coupled non-
linear o models, one for each chain. For spin- chains this
analysis is complicated by the existence of topological terms,
and we shall carry it only for integer spin; this is done in Sec.
III. In Sec. IV we will compare these semiclassical results
with the outcome of a quantum Monte Carlo simulation of
the spin-1 Heisenberg ladder.
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II. INTERMEDIATE COUPLING ANALYSIS
A. Derivation of the o model

In this section we will show how the AF Heisenberg lad-
der defined by the Hamiltonian (1) may be described, in the
continuum and semiclassical limit, by the one-dimensional
nonlinear o model with Lagrangian density
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wherein the field m(x,?) is a unit vector. The coupling g and
the velocity v obtained semiclassically depend on the spins s
and s, and on the interchain and intrachain couplings K and
J. If the two chains are alike (s=y7), these parameters are

' 1
v=2asJN1+K/2J, g=;\/1+K/ZJ. 3)

If s#5, the corresponding expressions are more compli-
cated.

In addition to the o model Lagrangian (2), there also ap-
pears a topological term

7
Frop= . m(J,mXJ,m) (4)

with §=2m(5—s). One easily shows that, with suitable
boundary conditions at infinity, the action obtained by inte-
grating %, is an integer times 6. It follows that this topo-
logical term has no effect if §—s is an integer. On the other
hand, if §—s is a half-integer, i.e., if one of the chains is
made of half-integer spins and the other of integer spins, then
the topological term appears as it does in the semiclassical
analysis of a single half-integer spin chain, from which we
conjecture, following Haldane, that such a system does not
have a gap.
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Let us now go through this semiclassical derivation. We
will proceed as in Ref. 7. The idea is to first describe the
dynamics of a single spin in the Lagrangian formalism, with
the help of spin coherent states. For details on this technique
the reader is referred to Fradkin’s text® or to the review by
Manousakis.’ The dynamics of a single spin S without inter-
action is described by a unit vector n such that S=sn and the
corresponding action, named after Wess and Zumino (WZ),
is nonlocal:

T 1 T
Swi= [t Fogms [Lar [ mamxam. @)
0 0 0

Here the time ¢ runs from O to some finite period 7 and 7 is
an auxiliary coordinate introduced in order to parametrize,
along with ¢, the spherical cap delimited by the curve n(?)
from t=0 to t=T. What is actually needed is the variation
of this action upon a small change Jn:

T
6SWZ=SI dt 5n(n>< o",n). (6)
0

Each spin on the ladder may be described by a unit vector
n like above. We expect short range AF order, with a “mag-
netic cell” containing four spins. If we call r the position of
a reference spin in each magnetic cell, the positions r’ of
each of the four spins within the cell may be written as

¥ =r+ ak+ B, 7)

where X and y are the lattice vectors (respectively along and
across the ladder) and where « and B each run from O to 1.
The short range AF order motivates the introduction of a unit
vector n which varies slowly in space:

S(r)=sn(r),
S(r+Xx)=—sn(r+x),
§(r+§')= —sn(r+y),

S(r+x+§)=sn(r+x+7%). (8)

The four spins of the unit cell may be described differently,
at our convenience, by four different vectors, which we
choose as follows (in terms of the unit vector defined above):

n(r)=m(r) +ally(r) +1o(r) +1;;(r)],
n(r+X)=m(r)+a[ly(r) —lo(r) = I;;(r)],
n(r+y)=m(r) +a[ —lp(r) +15(r)—1;;(r)],

n(r+x+y) =m(r) +al —lo(r) = L(r) +1;;(r)]. ~ 9)

The mean value of n within a magnetic cell is m. In addition,
we have introduced three deviation fields 1y, Iy;, and I;;
which describe deviations from strict AF order. We have in-
cluded a factor of the lattice spacing a in front of these
deviation fields in order to emphasize our assumption that
the deviations from the short range AF order are small, and
to control this approximation in the same way as the con-
tinuum limit. The four fields m and [;; all depend on the cell
position r=xX only, since they are defined for a cell as a
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whole, and are entirely equivalent to the specification of the
four spins S(r') of that cell. They are not independent, but
must obey the constraints imposed by the relation n*=1.
Thus, we have 4 X2=28 degrees of freedom per unit cell.

So far the treatment has been exact. Now we will express
the kinetic term S\, (the sum of the Wess-Zumino actions for
each of the spins) and the potential term (the Heisenberg
Hamiltonian) in terms of these new variables, to lowest non-
trivial order in a. We will then integrate out (in the func-
tional sense) the deviation fields to end up with a theory
defined only in terms of the staggered magnetization m.

Let us start with the kinetic term. In principle this term is
nonlocal, as expressed in Eq. (5). The local AF order allows
us to write it in local form (to first order in a) since the WZ
action is odd under the reversal of spin and Eq. (6) may be
applied between two neighboring sites. If we define the dif-
ference

sn(r')=n(r'+x)—n(r’) (10)
(likewise for d,m) one may write the kinetic term, to first
order in a, as

Sin=> [~s8n(r)+55n(r+3)](mxdm). (11)

Since &,n(r)=—2a(ljp+1;;) and Sn(r+y)=—2a(lj
— 1), this reduces, after replacing the sum by an integral, to
the following:

Skin=f dxdt [(s+§)l“+(s—§)llo](m>< (9,m) (12)

The Heisenberg Hamiltonian may be separated into three
parts: H=V,+V,+V, where, up to an additive constant,

vf%szfz {{em()P+[om(r+]%},  (132)

@%5"’12 {[om(r+HTP+[Sn(r+§+ T},
(13b)

Vy=;—s~sK2 {{8,n(r)*+[s,n(r+%)]*}.  (13¢)

Expressing the above in terms of the fields defined in (9), we
perform a first-order Taylor expansion on m, while we es-
sentially neglect the spatial variations of the deviation fields.
For instance, we have

5xn(l‘+§’+ﬁ)=2aﬂxm+Za(llo—l“). (14)

Converting the sums of Eq. (13a) into integrals, we find the
following Hamiltonian density:

FH=2Jas>

1
5(‘9Xm)2+ (Lot Lo+l + 6xm)}

1
+ 216152{5(5&1“)2"' (Lo L))o=+ 5’xm)}

+2Kass(B,+B). (15)
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The complete Lagrangian density is of course £=_%;,
- .

The next step is the functional integration of the deviation
fields. Since these fields occur at most in a quadratic fashion,
they may be integrated simply by solving the classical equa-
tions of motion and substituting the solutions back into the
Lagrangian density. Taking variations of % with respect to
lio, lp1, and 1y}, one finds, after some algebra,

) 1 s+5§ y 16
“_ZZJ_—Es”_(m d,m), (16a)
Ip1=0, (16b)
. 1 (mx 5= L+ K (s+3)?
107 Eaxm (m a'm)4Jas§ 2J  sS
(16¢)

Substituting into the expression for .%, one finds

1
K= 5(§—S)m((9,mx d,m)+A(d,m)>—B(d,m)?.

(17)
where the constants A and B are
1 1+(K/2J)(s—5)%/4s§
=17 2432 R (183)
dal 1+(K/RJ)(s*+57)/2s§
B=}al(s?+5?). (18b)

Of course, a simple substitution of Egs. (16) into ¥ may
seem dishonest since, as we indicated earlier, the deviation
fields are not independent, but constrained by the fixed

length of each spin. Expressed in terms of m and [;;, these
constraints are

m?+ a5+ B+ 5)=1, (19a)

m-ly +alyy-1;,=0, (19b)

m-lgt+aly-1,;=0, (19¢)

m-l +aly-ly;=0. (19d)

Since the classical equations (16) are valid only at lowest
order in a, it suffices to apply the above constraint equations
at that order:

m’=1, m-l;=0. (20)
In this form the constraints are entirely compatible with Egs.
(16) and we may forget our misgivings. The constraint
m?=1 is part of the definition of the model (2). The charac-
teristic velocity of Eq. (2) is then v = \B/A and the coupling
is g=1/2Av. The coefficient of the topological term is in-
deed =2 m(5—s), as announced above. It is easily checked
that the correct expressions for v and g in the case s=§
coincide with Eq. (3). This concludes the semiclassical deri-
vation of the nonlinear model for the Heisenberg ladder.
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B. Estimating the gap

The O(3)/0(2) nonlinear o model—as the model de-
fined in (2) is precisely known—Iends itself to an estimate of
the spin excitation gap in the saddle point approximation.
This has been described in the literature (cf. the reviews in
Refs. 10 and 9) but will be summarized briefly here.

If it were not for the constraint m?= 1, the model defined
by the Lagrangian (2) would simply describe free, massless
excitations. A classical analysis of the model (incorporating
the constraint) reveals a spontaneous breaking of the internal
rotation symmetry to a ground state in which the field m is
uniform. However, this ordered state is destroyed by quan-
tum fluctuations in dimension 1. This is revealed by the fol-
lowing saddle point analysis: First, one implements the unit-
vector constraint by introducing a Lagrange multiplier
o(x,t) at every space-time point and by adding the term
o(m>—1) to the Lagrangian density. After rescaling the
fields and going to imaginary time 7= —if, the complete
Lagrangian may be written as

Fp=1(om)*+ Lo(m?>—1/g). (21)

Here (9m)? stands for (4,m)>+ (J,m)>. We have set the
velocity v equal to one and will restore it later by dimen-
sional analysis. The field m is now unconstrained, and its
functional integration yields the effective potential V(o) for
the multiplier field o. In the saddle point approximation, the
fluctuations of o are neglected (o is then a constant) and the
derivative of the effective potential is

gy ] 3fdk do 1
()=3273) 2m 27 o’ %0
! + 3 In(o/A2 22

wherein A is a momentum cutoff, such that Aa~1. The
saddle point is thus fixed by the vanishing of the above,
which occurs at oy=A%exp—(47/3g). A nonzero value of
the saddle point means that the field o should be redefined
with respect to the position of the saddle, as o=+ oy,
wherein ¢ is a field fluctuating about zero and o is a con-
stant multiplying 2m? in the quantum effective action of the
nonlinear o model. Thus, o has the interpretation of a quan-
tum fluctuation-induced mass squared for the field m. At this
level of approximation we consider no other correction to the
effective action: in the language of the 1/N expansion, we
stay at lowest order. Restoring the characteristic velocity, the
excitation gap may be expressed as

A=Avexp—(2m/3g). (23)

Note that this expression is ‘“‘nonperturbative,” in the sense
that it admits no series expansion in powers of g about
g=0. Since g~ 1/s is the natural expansion parameter of
spin-wave theory, it is quite understandable that the latter
cannot account for the existence of the Haldane gap.

If we now substitute the expression (3) for v and g, we
find

27s

AlJ=2(Aa)s\1+KRJexp— ————.
( ) P 3V1+K/2J

(24)
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FIG. 1. Reduced gap A/A, as a function of interchain coupling
K/J, as obtained in the saddle point approximation of the nonlinear
o model. The value of Ay comes from the saddle point approxima-
tion in the single-chain nonlinear o model.

This formula indicates a growth of A as a function of K, due
to the variation of both g and v. Since the model is defined
on the continuum, an arbitrary lattice spacing a has been
introduced and the precise value of the gap cannot be known.
However, it is hoped that its dependence on various param-
eters may be well approximated by this method. The K de-
pendence of the gap A obtained in this fashion is illustrated
in Fig. 1. Up to fairly large values of K, the dependence is
almost linear. The small K behavior is grossly wrong, as will
be discussed below.

C. Extensions

The calculation of Sec. II A may also be applied to the
case of a ferromagnetic interchain coupling (K<<0). We sim-
ply have to redefine the spins of the second chain by a sign:
§i—> —-g,- . Of course Eq. (8) has to be modified (the last two
RHS’s change sign) but Eq. (9) stays the same. We find that
the Hamiltonian density (15) is unchanged, but the kinetic
term is modified to

_%’kin=2sllo(m>< o",m) (25)

(we set s=s for simplicity). Integrating out the deviation
fields, we find in this case that all traces of K disappear. We
again find the nonlinear o model Lagrangian (2), but this
time with the parameters

v=2Jas, g=§ (K<0). (26)
If we compare with the corresponding parameters for a
single isolated chain (v=2Jas and g =2/s), we see that the
ladder behaves as if it were a single chain of effective spin
2s, albeit with a characteristic velocity half as large, which
implies a gap half as large as that of the single chain. In other
words, this approach implies that the spin-3 ladder with fer-
romagnetic interchain coupling should behave like a single
spin-1 chain, but with half the usual Haldane gap:
A=0.205J, for all values of K. Of course, like everything in
this section, this result is not to be trusted when K<<J. How-
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ever, it has been confirmed by density-matrix renormaliza-
tion group calculations!! for reasonable values of K.

Another possible extension of the above analysis is a vari-
ant of the Kondo necklace, wherein the coupling is taken to
be Heisenberg-like. The corresponding Hamiltonian is ob-
tained from (1) by deleting the S;-S;,; term. In this system
we also expect short range AF order and we may use the
same decomposition (9). Here the Hamiltonian density will
be simpler [the second line of Eq. (15) will disappear] with
the end result v = \/ﬁ as and g=(1/s)VK/J.

III. WEAK COUPLING ANALYSIS

The results of the previous section are no longer appli-
cable if K<<J. Indeed, some of the heuristic assumptions
made in the derivation of the nonlinear o model are violated:
a small interchain coupling implies that interchain AF corre-
lations are weaker and the deviation field alj,; is not neces-
sarily small. We may guess the rough effect this will have on
the gap by the following crude argument. Assuming that the
nonlinear o model is still applicable, the fact that aly; is not
small alters the constraint on the staggered magnetization.
After rescaling the fields as in Eq. (21), this constraint would
be m?=1/g.<1/g. The “effective coupling” gy is greater
than g, and accordingly the gap is larger, as implied by Eq.
(23). We thus would expect the actual gap to be greater than
what is predicted by Eq. (24), as K approaches zero. In fact,
the gap obtained for a single spin chain in the saddle-point
approximation of the nonlinear o model is A/J=2s(Aa)
e~ ™", whereas the K—0 limit of Eq. (24) is smaller by a
factor ¢™". Of course, this holds for integer spin only. For
half-integer spin chains, the gap should disappear as K—0,
according to the Haldane conjecture.

Since the deviation aly; is not necessarily small at weak
coupling, the constraints (19) can no longer be simplified and
the integration of the deviation fields is no longer straight-
forward. Then we might as well treat the two chains sepa-
rately in the semiclassical approximation and incorporate the
interchain coupling afterwards. Each chain is then described
by its own staggered magnetization field m; (i=1,2) and its
own nonlinear o model with Lagrangian density (2). After
rescaling the fields as in Eq. (21), we find that the interchain
interaction takes the form %4, =hm,-m,, with h=2Ks/a.
In order to estimate the gap let us, as before, introduce
Lagrange multiplier fields for the constraints m%=m§= 1.
The total Lagrangian density in imaginary time now reads

2

1
Fp=3 2 [(om)*+o,(mi = 1/g)]+ hmy-my. (27)

We have again set the characteristic velocity to 1. We should
now integrate out m; and m,, except that we are dealing
here with a ““mass matrix”

_((Tl h)
3= n . (28)

o

The eigenvalues of this mass matrix are
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Ne=1{o+ 0, V(o —0y)*+4h%}. (29)

The effective potential V(o ,0,) obtained by integrating
the fields m, , is

e k2 +3
z—ﬂ_-ﬁtr n[ w 1-
(30)

The saddle po{nt equations dV/9o =0 and dV/do, =0 may
be expressed as

1 3
V(oy,o,)= §(0'1+02)—'2‘j

1 3 | A? 31)
_—=— n s
g 4m N n_

0= ——2In—. (32)

The solution to
N.=o0xh, with

these equations is o;=0,=0 and

o=vo,+h?, (33)

where o is the #=0 value. The square of the gap to the
lowest excited state being N _ , this gap, relative to its =0
value, is

A
A—=\/\/1+ﬁz—ﬁ, (34)
0

where ﬁ=h/A(2). If we substitute for A, the saddle point
value and the known numerical value 0.41J, we find
h=~23.8K/J. According to the relation (34), the gap de-
creases linearly as K/J increases and then flattens towards
zero. Because of the large numerical factor (~23.8) between
h and K/J, this drop is quite rapid. Note that Eq. (34) is
obviously wrong when K/J is too large.

The saddle point result (34) will receive corrections in
1/N. We shall not get into these calculations. Instead, let us
show how a slightly different result may be obtained by ap-
plying the saddle point approximation in terms of the masses
square X\ . instead of o ,. Let us make a linear transforma-
tion within the internal space spanned by the fields m; and
m, such as to make the mass matrix 3, diagonal. We proceed
to a functional change of integration variables, replacing o;
by A+, and m; by m.. . The Jacobian associated with this
change of variables is trivial in the latter case, but not in the
former:

= Aoho 35)
VO N 2O —N_—2h)

det

o;
2
If we call this Jacobian J(x,t), the partition function for this
systems reads

z=f {H d\ . dm. J(x,7)|exp—Sg. (36)

In order to bring this expression into its usual form, we must
bring the Jacobian within the exponential:

15323
IT J(x,7)=exp— W], (37

where
WA —fd dr —— 1 (A X )7~ 4k 38
had=Jdedr oo —ao oz | ©¥

Here we have introduced the lattice spacing a in the imagi-
nary time direction as well as in the spatial direction, in order
to incorporate the functional Jacobian into a local action.
Choosing the same lattice spacing in the imaginary-time and
space directions is somewhat arbitrary, but does the least
violence to the Lorentzian invariance of the theory. We may
now proceed to the functional integration of the fields m. ,
which is done exactly like in the ordinary nonlinear o model,
except that o is replaced by A .. The effective potential in
the large-N limit is then

Ar+tAs 1 [(Ny—A_)*—4n?
VIN:]=— =5 2In — e

3 fdk do [ N -

72 | araa T Erer 9

We now want to solve the saddle point equation for this
potential. To this end, let us write A . =a=* 8. The saddle
point equations are

av_o_l 3 | Ja?—p? 40
P P LR (402)
av_o_ " + > 1 ot B 40b
BT T8 e OV

Here again A is a momentum cutoff of the order of 1/a. In
the decoupled limit (2=0) the solution to these equations is
B=0 and a=ay=2Aexp—4m/3g. If we now define re-
duced variables @= a/ag, B=B/ay, and h=h/a,, we can
put the above saddle point equations in the following form:

a*—p2=1, (41a)
BB — i) g _ PR, (41b)
-

where 7>=8m/3aya®. The gap at finite interchain coupling
is then A(K)=A(0)Va—B. The equations (41) may be
solved numerically. We need some input about the parameter
7: using the saddle point value for «, one finds 7~ 14.1. A
numerical solution of Eq. (41) is illustrated in Fig. 2, along
with the relation (34). Both of these results are obtained in
the saddle-point approximation, but in terms of different
variables. Of course, the change of variables defined in Eq.
(29) should not make any difference if the exact value of the
gap could be calculated; the 1/N expansions in terms of A\ +
and o, are however different.

IV. NUMERICAL RESULTS

In this section we present some numerical results obtained
for the spin-1 Heisenberg ladder (s=s5=1) and compare
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FIG. 2. Reduced gap A/A, as a function of interchain coupling
K/J, as obtained in the saddle point approximation of the coupled
nonlinear o models. The upper curve illustrates Eq. (24), while the
lower curve is a numerical solution of Eq. (41), obtained in a dif-
ferent saddle point approximation.

them with the analytical predictions worked out in the pre-
vious two sections of the paper.

The system (1) may be studied numerically by essentially
two techniques: exact diagonalization and quantum Monte
Carlo. Exact diagonalizations may further be refined by ap-
plying the density-matrix renormalization procedure. The
disadvantage of exact diagonalizations is of course that the
amount of computer memory and computer time needed
grows exponentially with system size, whereas Monte Carlo
simulations are time consuming but may easily be imple-
mented on medium-size systems.

Before presenting results, let us briefly describe the
method. We used a projector Monte Carlo (PMC) technique,
adapted from the work of Takahashi,'? with slight modifica-
tions. The method requires that the off-diagonal elements of
the Hamiltonian be nonpositive. The Heisenberg Hamil-
tonian (1) does not immediately fulfill this condition, but on
a bipartite lattice such as the ladder, a unitary transformation
H—UHU ! may be defined that brings the Hamiltonian
into this form, with

U=expim >, [ 83+ 55,1 (42)

1 even

Let us still denote the resulting Hamiltonian by H.

The Hilbert space of the system may be described by the
basis of eigenstates of {S?,5%}: let us write such a basis state
as |{s;}). The essence of the PMC method is the discrete
(imaginary) time evolution of an ensemble of walkers. A
walker is a state that belongs the basis described above,
changing from time to time according to stochastic transi-
tions. Each walker |n) is assigned a non-negative weight
w,(7) which depends on time. The walkers are evolved by
repeated application of the operator W= exp—eH, where € is
some small time interval. This evolution operator is applied
stochastically, meaning that upon application, a state |{s;}) is
changed to an other state |{s;}) with a probability propor-
tional to the matrix element ({s;}|W|{s;}). At the same time,
the weight w, is multiplied by the diagonal element
{s:}|W|{s;}). Of course, the exponentiation of H is impos-
sible to achieve exactly without knowing the exact solution
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to the problem. We therefore divide the Hamiltonian into
different parts, each being the sum of mutually commuting
two-spin Hamiltonians. For the ladder, one needs three such
parts, as follows:

Hi=J 2 [S:Si1+8;-8..1 (43a)
Hy=J 2, [S:-Sis1+8;-Si11], (43b)
i odd
Hy=KX, S;-S;. (43c¢)

The discrete evolution operator is then replaced by
W=W,W,W;, where W;=exp—eH,. Since the different
terms in H; commute, we only need to exponentiate a two-
spin interaction, which can be done analytically. The smaller
€ is, the smaller the error made in this approximation to the
real exponential.

The iteration starts with a random distribution of N walk-
ers, all with equal weights (e.g., w,,= 1). More precisely, the
walkers are chosen randomly within the subspace of interest,
ie., for a fixed value of S§,. The number N is typically
10 000. At each step the imaginary time is increased by €
(typically €~0.05J) and the operator W is applied as de-
scribed above. After a few iterations the distribution of
weights becomes too sparse (its standard deviation becomes
too large in comparison with the mean) and the weights have
to be reconfigured by a procedure eliminating the light walk-
ers (see Refs. 12 and 13) and normalizing the weights. This
reconfiguration procedure is applied regularly, but should not
affect the physical properties of the ensemble when done
properly. After the system has evolved for some time
7=n,€, the energy of the ensemble of walkers is evaluated
by projecting onto some arbitrary state | £). For convenience,
this state is taken to have an equal projection on each of the
basis states |{s;}). The evolution then continues, an energy
measurement begin taken every n , iterations. The time inter-
val n, should be short enough to allow as many measure-
ments as possible, but long enough for successive energy
measurements to be statistically uncorrelated.

In order to measure the spin excitation gap this way, one
first finds the lowest energy level in the S§,=0 sector, and
then in the S ;=1 sector. The difference should be equal to
the gap A. Notice that the unitary transformation (42) has
effectively shifted the momentum of excitations by 7, so
that the first excited state of a Haldane system has now mo-
mentum zero and is not eliminated by projecting onto the
uniform state | £).

The outcome of the simulation for the gap and the ground
state energy per site as a function of K is presented in Figs.
3 and 4. Notice that the gap exhibits a sharp drop until about
K~0.5, after which it rises slowly. We have not performed
simulations on ladders longer than 24 rungs (48 sites), which
is not enough to do a satisfactory finite-size analysis for most
values of K. Nevertheless, we feel that the correct qualitative
behavior as a function of K may be extracted.
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FIG. 3. Results of a quantum Monte Carlo simulation for the
gap A divided by the K=0 value A,. The data are shown for
N=4, 8, 16, and 24, where N is the length of the ladder. A, was
also obtained from exact diagonalizations, when available.

V. DISCUSSION

In the first part of this work we mapped the Hamiltonian
of the Heisenberg ladder to the one-dimensional nonlinear
o model, within the path integral formalism and the approxi-
mation of local AF order. From our knowledge of the non-
linear o model (with or without topological term), we con-
cluded that the ladder has an excitation gap for all values of
the interchain coupling K if the spins s and s of the two
chains are both integers, or both half-integers (i.e., if s+§ is
an integer), whereas it has no gap if s+ 5 is a half-integer. In
the former case, the ladder is in a Haldane phase for all
nonzero values of K, positive or negative. This agrees with
the interpretation of Ref. 6.

However, the quantitative estimate (24) of the gap A as a
function of K, obtained via the saddle point approximation
of the nonlinear o model and illustrated in Fig. 1, is clearly
wrong in both the K—0 and K— limits. For small X, it
announces a uniform increase of the gap from a finite value
at K=0. In reality, the gap vanishes as K—0 if s=s5= 1,
whereas it drops from its K=0 value if s=5=1. If the nu-
merical results of Ref. 4 for finite-length ladders were plotted
in terms of A/Ay, as in Fig. 3, we would observe a rise of
the curve as the length L increases, in contrast to Fig. 3.
Thus, there is a qualitative difference between half-integer
and integer spin in the ladder when K is small, as we natu-
rally expect. This difference does not show up in the nonlin-
ear o model representation of the ladder.

For large values of K, Eq. (24) predicts a square-root
behavior ~\/_IE when K is large. In reality, the gap is ap-

28 § T T T T T T T T T
®

ROOG
(o4
&

&
»
T

Energy per site
; &
N

»
=
T

-2.80 % 9 9 9

»
IS
T

A
oo

Lamro o o o ]

@
8]
T

005 010 015 020 025
L ! 1 L L 1

1 1 1
02 04 06 08 1.0 12 14 16 1.8 20

L L 1 I ® -
<&
!

interchain coupling K/J

FIG. 4. Results of a quantum Monte Carlo simulation for the
ground state energy per site gg=E, /N, with N=4, 8§, 16, and 24.

proximately equal to K in that limit, i.e., the energy differ-
ence between a singlet and a triplet on a single rung, when J
is neglected before K. In fact, we do not expect the param-
eters of the ladder nonlinear o model of Sec. II to be correct
when the ratio K/J is too far from unity. However, for mod-
erate values of K (0.5<K<2), the gap of the spin-1 ladder
illustrated in Fig. 3 shows a moderate increase whose slope
is compatible with the estimate of Fig. 1.

The behavior of the ladder for small interchain coupling
(K<J) is better represented by two interacting nonlinear o
models. In the half-integer spin case, the presence of a topo-
logical term in each of the chain makes the analysis quite
difficult; we hope to report on this in later work. However,
the integer-spin case lends itself to a saddle point evaluation
of the gap which is much closer to reality. In the absence of
variational principle or other guideline, it is difficult to say
which of the two saddle point methods illustrated in Fig. 2
offers a better estimate of the gap. A comparison with the
Monte Carlo data of Fig. 3 tilts the balance in favor of the
lower curve, which displays a sharper drop as K increases
from zero. Recall that the saddle point approximation leading
to this curve neglects the fluctuations of the mass matrix 3, of
Eq. (28), whereas the upper curve is obtained by neglecting
the fluctuations of the Lagrange multipliers o; of Eq. (27).
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