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We study the magnetostatic modes in a Fibonacci multilayer consisting of alternating magnetic and non-

magnetic layers. The constant of motion, depending on both the in-plane wave vector and the frequency of the

mode, is explicitly obtained and used to describe general features of the frequency spectra. Furthermore, spin

wave spectra and precession amplitudes of magnetization for a finite Fibonacci multilayer are numerically

calculated by the transfer matrix method. For a given in-plane wave vector, the distribution of frequency
exhibits a triadic Cantor structure with large gaps in the low-frequency region, small gaps in the high-frquency

region, and many "isolated" modes in the gaps. The gaps strongly depend on the in-plane wave vector and the

thicknesses of the magnetic and nonmagnetic layers. We find three types of states in the quasiperiodic direc-
tion: extended states in the high-frequency region near the upper band edge, critical states in the triadic
subbands, and surface states in gaps. Besides the conventional Damon-Eshbach surface mode localized at two

opposite surfaces of the multilayer for positive and negative wave vectors, respectively, another kind of surface
modes are discovered. When the wave vector is reversed, these modes are still localized at the same sides of
the multilayer.

I. INTRODUCTION

One of the new rapidly developing areas of solid state
physics is magnetic multilayers. There has been a consider-
able amount of work on the collective excitations in mag-
netic multilayers. Especially, magnetostatic modes, the spin
waves in a magnetostatic limit, in periodic multilayers con-
sisting of alternating magnetic and nonmagnetic layers, have
been studied in more detail both experimentally and
theoretically. ' lt turns out that only the Damon-Eshbach
(DE) modes, localized on the surfaces of single magnetic
films, produce long-range dipolar fields outside of the films
and hence interact to form bulk spin waves of the multilayer
which have sinusoidal amplitudes across the multilayer. In
addition, when the system is finite or semifinite, a surface
spin wave of the multilayer, having the amplitude decreasing
exponentially as one penetrating into the multilayer, exists if
the thickness of magnetic layers is larger than that of non-
magnetic layers. This surface mode is often called the DE
surface mode of the multilyer, and can be regarded approxi-
mately as the DE surface wave of a single-thick magnetic
layer with thickness being the sum of all magnetic layers.

On the other hand, following the report in 1984 of the
existence of a quasicrystalline phase in metallic alloys, the
electronic and phonon properties of one-dimensional quasip-
eriodic systems, known as the Fibonacci chains or Fibonacci
multilayers, have attracted great interest from a theoretical
viewpoint. It has been found that both electronic and phonon
spectra of Fibonacci chains or Fibonacci multilayers are of
Cantor-set structures and the corresponding eigenstates may
be localized, extended, or critical. ' Parallel to the theoreti-
cal development, the experimental investigations have been
made in various aspects including diffraction, ' '
superconductivity, ' elasticity, ' and Raman scattering. ' '

However, so far only very little work ' has been done on the
magnetostatic modes in the Fibonacci magnetic multilayer

(FMM). We consider it worthwhile to explore the properties
of magnetostatic modes in such a magnetic multilayer, since
spin waves in a range of wave vectors (k=10 cm ') are
experimentally accessible in Brillouin light-scattering experi-
ments.

In this paper, the electromagnetic boundary conditions in
the magnetostatic limit are applied to match the magnetic
potentials in various layers. The recursion relations are ob-
tained and numerically solved by transfer matrix method for
finite Fibonacci multilayers. In Sec. II, we derive the recur-
sion equations and the expression of motion constant, and
give out the basic formula for numerical calculation, In Secs.
III and IV, we present our calculating results about frequency
spectra and amplitudes, respectively. Finally we discuss
some experimental aspects about FMM in Sec. V.

II. THEORY

A. Recursion relations

A FMM in the present study is constructed by two blocks,
A and 8, according to the following relations:

S/+, =(S/, S~ t), S) =A, Sp=AB

Each of blocks, A or B, consists of a magnetic film with
equal thickness d and a nonmagnetic film with thickness
d i for block A and d2 for block B.

We discuss here only the magnetostatic spin waves whose
wave vector k, parallel to the sample plane, is perpendicular
to the static field Ho which is also applied in the sample
plane (the Voigt geometry). We introduce a coordinate sys-
tem in such a way that the wave vector k is along the y
direction, the external field Ho and saturation magnetization
M, are along the g direction and the normal of the film along
the x axis. The intersections of midplanes of the magnetic
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films with thex axis arex~ (l=1,2,3, . . . ) withx&=0. Gen-
erally, the magnetic potential of the multilayers has the fol-
lowing form:

W(x, y) =X(x)exp(iky).

Following Grunberg, we write X inside the Ith magnetic
layer

X'"(x)=g,exp[Q(x —x,)]+h, exp[ —Q(x —x&)] (2)

and inside the Ith nonmagnetic layer

where the upper (lower) sign is for the positive (negative)
value of the wave vector. It can be proved that both M(1)
and M(2) are unimodular. Using the products of matrices we
have

ig
=M(l)M(l —1). M(1)

1 bl+ I / ("il
We define M =M(F,)M(F, 1) —M(l), where F, is the

jth Fibonacci number. Then the following recursion relation
for M can be obtained:

X'"'(x) =p,exp[Q(x —x,)]+q,exp[ —Q(x —x,)], (3) M, =MJ 2M, t, (j)2) (9)

where Q is positive and Q= ~k. Applying the boundary
conditions at the interfaces between magnetic and nonmag-
netic layers

~in ~ext

g pin g pin g yext
(1+K) —i v

Bx By Bx

with the initial condition

(10)

B. Constant of motion

Mt =M(1), M2=M(2)M(1).

The recursion relation (9) together with (10) defines a non-
linear dynamical map and gives a powerful calculation
scheme.

where

AH 0
~2 ~2' ~2 ~2&

H 0

Ho M0=
4mM, ' 4myM,

'

Similar to the method used in dealing with electronic and
phonon problems, ' by defining x =-,'trMj, the recursion

relation for xj reads

xj+ J 2xjxj —i xg

This relation leads to the result that the quantity

M, is the saturation magnetization, y the gyromagnetic ratio,
and ~ is the frequency, the coefficients p& and q& in the
nonmagnetic layer can be eliminated, and the coefficients

g, , h&, g&+, , and h, +, of two adjacent magnetic layers are
correlated by

j + ] j j i xj+ ixjxj —i 1
2 2 2 (12)

is a constant of motion on successive iterations and this con-
stant rejects the strength of the effect of quasiperiodicity.
From (9)—(12), I could be explicitly deduced as

i g(+ t~ (g(~
=M(l) ~

I+ 1 )

(A~+ ) —0
I= 2 2 2sinh (Qd)sinh [Q(d& —d2)].4 AH+AH —0

(13)
where M(l) is a transfer matrix. For our model, M(l) only
has two different forms, M(1) and M(2), and their explicit
forms are given as follows:

i a(i) b(i) ~

M(i)=, i=1, 2,

a(i) =(—[v —(K+ 2) ]exp(2Qd+ Qd, )

+ ( v K )exp(2Qd —Qd;))/c,

b(i) =(~ v —K)(~ v —K —2){—exp[Q(d+d;)]

Clearly, this expression is different from the expressions of I
for the electronic and phonon problems of Fibonacci chains.
Not only does the quantity I depend on reduced frequency

but also on in-plane wave vector k (Q= ~k~). When
d

&
= d2, I= 0, the system is recovered to a periodic

multilayer. According to Kornoto et al. , the structure of fre-
quency spectra including widths of bands and gaps is deter-
mined by the quantity I. A large I implies a large gap while
a small I corresponds to a small gap. Thus from the A and k
dependence of quantity I, we can discuss general features of
the frequency distribution. For the present FMM model, the
reduced frequency 0 is limited to the range

+exp[Q(d —d;)])/c,
g(AH+AH)(A(Q, H+ 1/2. (14)

c(i) =(~ v+ K)(~ v+ K+2)[exp(Qd+ Qd;)
—exp( Q d —Q d, )]Ic,

d(i)=([ —v +(K+2) ]exp( —Qd;)

+(v —K )exp(Qd;))/c,

c = 4(K+ 1)exp(Qd),

In this possible fequency range, quantity I is always positive
if d&Ad2. Quantity I increases with decreasing A for a
given wave vector k and increases with k increasing for a
given frequency. Thus the scaling of the frequency band is
not uniform. Frequency spectra have small gaps in the
high-frequency and small wave vector region. When
A —+A, H+1/2, I +0 corresponds to a zero gap. Thus near
this frequency, it is expected to obtain some extended states.
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FIG. 1. Model of a finite FMM, (a) even j and (b) odd j.

On the other hand, when A~ g(AH+ AH), I~~, and qua-
siperiodic features including frequency and amplititude dis-
tributions are expected to be the most obvious. This result,
compared to that of the phonon where I increases with fre-
quency (I~ ni ), seems somewhat surprising, but it is reson-
able indeed. Considering magnetostatic modes of periodic
multilayers is helpful for us to understand the present result.
In the periodic magnetic multilayers, the high-frequency
mode implies a iong-wavelength wave with a real wave vec-
tor normal to the film and the wavelength becomes shorter
with frequency decreasing. Thus in the high-frequency re-
gion, the frequency of the mode, due to its long wavelength,
is relatively insensitive to the local arrangements of magnetic
and nonmagnetic layers, and the behavior of spin waves in
FMM, on the average, is similar to that in periodic multilay-
ers.

C. Basic calculation formula for a finite FMM

A finite FMM studied here is made up of F~ blocks ar-
ranged in the Fibonacci sequence and an additional magnetic
layer of thickness d at right boundary (see Fig. 1). Thus all
N (N=F, +1) magnetic films are seperated by F, nonmag-
netic films. In this case, we can get two different configura-
tions at the right boundary, depending on odd or even num-
ber j (see Fig. 1).

The eigenequations for a finite FMM consist of (8) and
following two equations:

(~ v+ ~)gi+(~ v —a+2)exp(kd)hi =0, (15a)

(+ v+ ~+2)exp(kd)gjv+(+ v —sc)hjv=0, (15b)

which come from the boundary conditions at the left and
right surfaces of the system. Using the condition that the
equations have nontrivial solutions and applying a numerical
calculation, we can obtain the spectra of spin waves. Further-
more, the precession amplitudes rn and m of magnetization
in the lth magnetic layer are given by ' '

1
m, = (( vg+ +Q)giexp[Q(x —xi)]

+ ( ~ vQ —a Q) hiexp[( —Q(x —xi)]), (16a)

FIG. 2. Dispersion relations of a FMM with N=611, d=50
nm, d, =40 nm, and d2=20 nm for both positive and negative
wave vectors. "t" and "g" represent a top "isolated" branch and a
gap "isolated" branch, respectively.

1
((vg —~Q) g«xp[Q(x —xi)]

+( —vg~ ag)h, exp[ —Q(x —x,)]), (16b)

where the coefficients g& and h& can be calculated through
Eqs. (8) and (15a).

For numerical calculation, we select an Fe/Cu FMM and
take the magnetic parameters of bulk Fe given in the
literature: 4nM, = 21 000 6, y= 1.85X 10 sec, and
Hp=2000 G.

III. SPECTRA

Figure 2 shows the dispersion relations of a FMM with
N= 611, d = 50 nm, d& =40 nm, d2= 20 nm. From Fig. 2, it
can be seen that the spectrum consists of bandlike densed
branches and "isolated" branches. The frequency of top
"isolated" branch (see Fig. 2) does not depend on k while
the frequences of other "isolated" branches in gaps obvi-
ously are k dependent. Also, for a given in-plane wave vector
k, the distribution of frequencies exhibits the character of
subbands. For intermediate values of ~k~, subbands are most
obvious, and hence the effect of quasiperiodicity is strongest.
As ~k~ decreases, the band becomes relatively uniform and
the feature of quasiperiodicity is not obvious, since small

~k~ corresponds to small I For large ~k~, the fr.equencies
degenerate and the band becomes narrow, which reduces the
effect of I, thus the effect of quasiperiodicity is also not
obvious.

In order to understand frequency distribution of states in
details, we calculate eigenfrequencies of the system with

¹ 2585, d=50 nm, d&=40 nm, d2=20 nm for k=1.5X
10 cm '. Figure 3 shows the frequency distribution with
mode number. A hierarchy of gaps and many "isolated"
states in gaps can clearly be seen. The low-frequency regime
is self-similar, having a Cantor-set-like structure. There ev-
ery band has two gaps giving rise to three subbands, each
one of them having two gaps and so on. In the high-
frequency case, the number of gaps and their size tend to
zero. The characters of frequency spectra are consistent with
that described by the quanity I.

Figures 4 and 5 show the variations of reduced frequency
distributions with the ratio d/d& for given k=1.875X10
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FIG. 3. Frequency spectrum, reduced frequency A vs mode
number for a FMM with N= 2585, d=50 nm, d& =40 nm,
d2=20 nm, and 0=1.5X 10 cm '. The inset shows an enlarged
region.

cm ', di=40 nm, and d2=20 nm, and with the ratio
d2/d& for given k=1.5X10 cm ', d=50 nm, and d&=40
nm, respectively. The general feature is that the whole band
can be regarded as made up of two, three, or four mainbands,
which depends on the thicknesses of magnetic and nonmag-
netic layers, and each main band consists of three subbands.
As for "isolated" states, two important features should be
emphasized. First, their appearance is closely related to the
parameters d, d&, and d2. When these parameters vary,
some of "isolated" states can be transformed into subband
states. Second, the top "isolated" state behaves differently
from "isolated" states in gaps. When d~d&, d2, the top
"isolated" state appears and its frequency almost does not
vary with the above parameters, but the frequences of the
"isolated" states in gaps are obviously dependent on them.
This result indicates that the top mode is not sensitive to the
details of magnetic and nonmagnetic arrangements to which
"isolated" states in gaps are.

In fact, the present "isolated" states correspond to surface
states of the multilayer. Through decoupling analysis, we can
get more details about them. For example, an "isolated"
state labelled by "s" in Fig. 5 arises from the effect of ad-

FIG. 5. The variation of frequency distribution with the ratio

d2 /d] for given k = 1.5X 10 cm ', d = 50 nm, and d& = 40 nm.

ditional magnetic layer at the right boundary. When
d2 —+~, the system decouples into three kinds of configura-
tions [referring Fig. 1(a)]: degenerate magnetic trilayers
separated by two nonmagnetic layers, degenerate magnetic
bilayers separated by a nonmagnetic layer, and a nondegen-
erate single-magnetic layer located at right boundary. Thus in
the limit of d2~oo the frequency of additional magnetic
layer does not generate with frequencies of the other mag-
netic configurations. On the other hand, if d&~oo, the
multilayer decouples into two highly degenerate configura-
tions: magnetic bilayers and single layers, respectively. In
this case, the right magnetic layer together with its nearest
magnetic layer makes up magnetic bilayers, and their fre-
quencies degenerate with the ones of the magnetic bilayers
inside the multilayer (see inset in Fig. 5).

For a FMM, the arrangements of magnetic and nonmag-
netic layers on both right and left boundaries are asymmetric,
thus the frequencies of left and right surface modes are non-
degenerate except for top surface mode. Also, as described in
Sec. II, two different configurations exist at the right bound-
ary, depending on the odd or even generation number j of the
Fibonacci sequence. It leads to the frequencies of right sur-
face modes being sensitive only to the even or odd j to
which the frequencies of left surface modes are insensitive if
Fibonacci numbers F~ are adequately large. By using these
properties, we can distinguish right surface (RS) modes from
left ones (LS) except for top surface mode. These characters
are clearly illustrated in Fig. 6.
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FIG. 4. The variation of reduced frequency distributions with
the ratio did, for given k=1.875 10 cm ', d, =40 nm, and
d2=20 nm.

IV. PROPERTIES OF STATES

For showing the properties of the magnetostatic modes,
we take the precession amplitudes m and m~ to describe
magnetic states of a FMM and we find that the distributions
of m, and m~ are similar. For simplicity, we only give the
calculating results of m below. In general, there exist three
types of magnetostatic modes in a finite FMM: surface local-
ized, extended, and critical modes.

A. Surface modes

As mentioned in Sec. III, "isolated" modes are surface
ones. In the present finite FMM, we find two different kinds
of surface modes. The top "isolated" mode is a DE mode of
the multilayer with amplitudes exponentially decaying from
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of j are left surface (LS) modes except for the top "isolated" mode,
while the "isolated" states that appear only for even or odd j cor-
respond to the right surface modes (RS).

a surface, simliar to the DE surface mode of a single mag-
netic layer with thickness Nd . The precession is both circu-
lar and in phase throughout the multilayer. Thus its fre-
quency is almost independent of the thicknesses of magnetic
and nonmagnetic layers for d)d&, d2. Furthermore, this
mode is unreciprocal. The mode has its maximum ampli-
tudes at the right surface of multilayer for positive k and at
the opposite surface for negative k. The result is shown in
Fig. 7(a). However, the "isolated" states in gaps are the new
surface modes of the multilayer which are different from the
conventional DE surface mode of the periodic multilayers.
First, the amplitudes of new modes are oscillation damping
from the outermost magnetic layers ( in each layer their am-
plitudes still exponentially decaying) [see Fig. 7(b)]. The
precession is both elliptic and out of phase in adjacent mag-
netic layers. Therefore, the frequency of the precession is
sensitive to the configurations of the magnetic and nonmag-
netic layers at boundaries and depends on the thicknesses of
magnetic and nonmagnetic layers as well as the value of
in-plane wave vector. Another important difference is that
the new surface modes are still localized at the same sides of
the multilayer even though the in-plane wave vector is re-
versed.
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FIG. 7. m at midplane of each magnetic layer vs position la-
beled by l for two different kinds of surface- modes in a FMM with
N=2585, d=50 nm, d, =40 nm, and dz=20 nm: (a) DE surface
mode localized at right or left boundary with 0, =0.595 302 337 4
corresponds to k= ~1.5X10 cm ' and (b) the surface-mode lo-
calized at the same side of the FMM with 0=0.486782467 5
corresponds to k= ~ 1.5X 10 cm

B. Extended modes
I

1000 2000
(8)
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For the frequencies near the top edge of the band, the
corresponding states are extended due to the small constants
of motion and the long wavelengths. Figure 8 shows the
distributions of precession amplitudes in the midplane of
each magnetic layer with the position of magnetic layer l.
From Fig. 8, it can be seen that aperiodic amplitudes are
modulated by a sinelike wave. Thus, on the whole, the sys-
tem behaves mainly as for the ordinary periodic multilayers.
As frequency decreases from the top band edge, the modu-
lation wavelength descreases approximately following the
relation k~=2Dln (n= 1,2,3, . . . ) where D is the total
thickness of a FMM. This behavior is very similar to the case
of periodic magnetic multilayers. The effect of aperiodicity
can be further supressed if the frequency of the mode in the
top subband —+ BH+ 1/2, corresponding to I~0.
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X

E ~0
0 1000 2000 3000

FIG. 8. Extended states of a FMM for given N=2585, d=50
nm, d, =40 nm, d2=20 nm, and k=1.5X10 cm ': (a) and (b)
correspond to 0, = 0.587 098 268 1 (top hand edge) and
A = 0.587 094 108 5, respectively.



MAGNETOSTATIC MODES IN FIBONACCI MAGNETIC AND 15 317

1.0

0.5-

0.0
CO~ -0.5
X

-1.0

1.0
1000

il.gg' JL IL IL

2000
(a)

3000

0.5-

0.0

"-0.5-

-1.0
1000 2000

(b)
3000

FIG. 9. Critical states of a FMM with N=2585, d=50 nm,

d, =40 nm, dz=20 nm, and k=1.5&&10 cm '. (a) and (b) corre-
spond to 0=0.408 793 051 5 and 0=0.408758 142 6 (low band

edge), respectively. The distributions of m, indicate localization of
states, but m, is not exponentially decaying with l.

V. DISCUSSION AND CONCLUSION

We would like to discuss some experimental aspects
about FMM. The spin waves in periodic magnetic multilay-

C. Critical modes

The same as the electronic and phonon problems, we find
that in the case of magnetostatic modes most of the states are
critical, especially in the low-frequency region where triadic
subbands are most obvious. Figures 9(a) and 9(b) show the
distributions of the precession amplitude m at midplane of
each magnetic layer with the position of magnetic layer l. It
is noted that the distributions of magnetization are neither
sine extending nor exponentially decaying, but power-law
decaying over the length of the system (critical states).

ers have widely been studied with Brillouin light scattering
in various systems such as Ni/Mo, Co/Ni, Fe/Pd, and
Fe/W. ' The multilayer with the Fibonacci sequence con-
sidered here may be fabricated by molecular beam epitaxy
and sputtering techniques, and the spectra of spin waves can
also be studied with Brillouin light scattering. In order to
obtain the spectra showing the typical features of the Fi-
bonacci sequence by Brillouin light scattering most effec-
tively, choosing adequate thickness of magnetic and nonmag-
netic layers is crucially important, since in Brillouin light-
scattering experiments the values of k observed are on the
order of 10 cm '. From our calculation on Fe/Cu FMM, d
can be chosen according to the relation kd=0.4—1, since in
this wave vector range the triadic spectra are most obvious.
Moreover, two different kinds of surface modes can be dis-
tinguished through reversal of the external field or Stokes
and anti-Stokes scattering in Brillouin light-scattering ex-
periments.

In summary, we study some features of magnetostatic
modes in a FMM. It is found that the structure of a band is
strongly dependent on both in-plane wave vector and fre-
quency of the mode. For a given intermediate value of a
wave vector, the spectrum exhibits a triadic Cantor structure
with nonuniform scaling. In the low-frequency region, there
are large gaps and narrow bands in which the states are criti-
cal, whereas in the high-frequency region near the top band

edge, the spectrum and precession amplitude behave mainly
as for the ordinary periodic magnetic multilayers. Besides,
the existence of two different kinds of surface modes in a
finite FMM is predicated. The results presented here are ex-
pected to be observable experimentally and we hope this

paper will stimulate experimental studies on such a system.
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