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A recently proposed "fixed-node" quantum Monte Carlo scheme for lattice Hamiltonians is adopted to study

antiferromagnetic order of the Neel type in the ground state of the two-dimensional spin-~ antiferromagnetic
Heisenberg model on the triangular lattice. Fixed-node Green-function Monte Carlo simulations, based on an

antiferromagnetically correlated trial wave function, are performed on lattices of up to 324 sites. Extrapolation
of the results to the thermodynamic limit indicates that an ordered ground state may exist with a sublattice

magnetization of as much as —60% of the classical value; an upper bound of —0.5431~0.0001 J is found for
the ground-state energy per site.

I. INTRODUCTION

Quantum Monte Carlo (QMC) techniques have afforded
considerable progress in the investigation of the ground state
of low-dimensional quantum antiferromagnets. En particular,
for the spin--,' antiferromagnetic Heisenberg model (AFHM)
on the square lattice, which has received a lot of attention in
the context of high-T, superconductivity, QMC simulations
at zero temperature have yielded accurate estimates of key
quantities such as the energy, the sublattice magnetization,
the magnetic susceptibility, and the spin-wave velocity.
These results have provided robust quantitative support to
the hypothesis of an antiferromagnetically ordered ground
state of the Neel type, in which quantum ftuctuations reduce
the sublattice magnetization to about 60% of its classical
value. '

The situation is far less clear on two-dimensional (2D)
lattices with geometries other than the square, such as the
triangular and kagome lattices. One of the theoretical aims
motivating the study of the spin-2 AFHM on these lattices is
determining whether frustration, caused by their particular
geometries, may enhance the effect of quantum spin fiuctua-
tions to the point of causing the classical antiferromagnetic
order to vanish, giving rise to a disordered, or, possibly, to a
differently ordered ground state.

Due to the well-known sign problem, QMC methods have
not yet been adopted to investigate Heisenberg antiferromag-
nets on nonsquare lattices. On the square lattice, the sign
problem can be eliminated by means of a basis transforma-
tion that takes advantage of the bipartite character of the
lattice; however, there appears to be no analogous solution
for nonbipartite, frustrated lattices such as the triangular or
the kagome.

In this paper the attention is focused on the spin--,' AFHM
on the 2D triangular lattice (TAHFM); a number of
analytical and numerical " studies have attempted to
shed light on the physics of this model, but the fundamental
question of the existence of ground-state long-range order, of
the Neel or other types, is yet to be answered definitively.

Numerical results have been obtained exclusively by
means of the Lanczos algorithm. ' Though it provides exact
results, this technique is limited to lattices of relatively small
size (to date, 36 sites at the most) by computer memory

constraints. This renders the extrapolation of the estimates to
the infinite lattice rather problematic; for example, the same
Lanczos results have been interpreted by different authors as
evidence both against' and in favor" of the existence of
long-range order in the thermodynamic limit. Therefore, the
extension of the numerical investigation to lattices of suffi-
ciently large size, allowing an unambiguous extrapolation, is
a necessary step.

To this aim, QMC techniques appear as the only realistic
option, owing to the relatively favorable scaling of computer
resources required versus the size of the system; however,
something must be done to overcome, or at least alleviate,
the sign problem.

Recently, a viable option has been made available by the
introduction of a scheme, ' consisting of an extension to lat-
tice models of the well-known "fixed-node" ' method,
which effectively overcomes the sign problem in QMC simu-
lations of continuum many-particle systems. Fixed-node
QMC calculations have provided accurate results for a vari-

ety of fermion systems such as the one-component plasma, '

the electronic cloud in atoms and molecules, ' liquid He
(Ref. 16) and other systems plagued by the sign problem. As
its continuum counterpart, the lattice fixed-node (LFN)
scheme allows one to perform ground-state QMC simula-
tions with no sign problem; the accuracy of the ground-state
estimates depends on an input trial wave function for the
system under study. A variational property exists for the
fixed-node ground-state energy estimate, and this permits to
gain insight by comparing the results of different calcula-
tions, based on wave functions describing alternative physi-
cal pictures.

In this work, the LFN scheme is adopted to perform a
fixed-node Green-function Monte Carlo (FN-GFMC) study
of the spin--,' AFHM on the 2D triangular lattice. Besides the
physical motivation of exploring the yet elusive nature of the
ground state of a frustrated quantum antiferromagnet, there is
a methodological aspect to this work, namely assessing the
effectiveness of the LFN scheme on a frustrated spin system
for which no other QMC-based approach, such as a transient

' estimation, ' is feasible, due to the severity of the sign
problem. In a future publication, the application of this tech-
nique to a different type of frustrated quantum antiferromag-
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net, namely the Jl/J2 model on the square lattice, will be
presented. '

The calculation described in this paper is based on a trial
wave function incorporating antiferromagnetic 120' Neel
spin ordering and including long-range antiferromagnetic
spin-spin as well as three-spin correlations. This general type
of wave function was originally proposed, in the context of
the TAFHM, by Miyashita, ' and successively generalized
by Huse and Elser to include long-range spin-spin and three-
spin correlations; the wave function utilized in this work is
essentially the one of Ref. 8, although with a slightly differ-
ent long-range tail for the spin-spin correlation part.

FN-GFMC simulations have been performed on lattices
of several sizes, with up to 324 sites; extrapolation of the
results to the thermodynamic limit yields an upper bound for
the ground state energy per site e of —0.5431 ~ 0.0001 J,
i.e., rather close to the most recent estimate obtained by ex-
trapolating exact results on small clusters. "Results indicate
that an ordered ground state may exist with a value of the
sublattice magnetization as large as 62% of the classical
value, the same value found for the square lattice. In order to
consolidate this result, which would point to a considerable
physical analogy between the ground states for the two lat-
tices, other fixed-node calculations will have to be per-
formed, using disordered, or differently ordered, trial states;
to this aim, the results given in this paper should provide a
useful reference.

The remainder of this paper is organized as follows: in the
next section the model Hamiltonian of interest will be intro-
duced, and the notation set; in Sec. III the Green-function
Monte Carlo (GFMC) method and the lattice fixed-node pro-
cedure will be briefly outlined; in Sec. IV the variational
wave function used in this work will be introduced; finally,
in the last two sections the results and the conclusions will be
presented.

II. THE MODEL

The spin--, AFHM consists of the lattice Hamiltonian

m=JQ s,"s, ,
(V)

where the sum runs over all pairs of nearest-neighbor lattice
sites and s, is a spin--, operator associated with site t. On a
triangular lattice, the classical model orders
antiferromagnetically, with the spins arranged at 120 to
one another in the three sublattices A, B, and C (+3X +3
Neel ordering, Fig. 1); however, a disordered ground state
was proposed for the quantum system, quite some time
ago. '

In order to investigate the presence of an ordered ground
state of a given type, an appropriate order parameter must be
defined. For Neel-like antiferromagnetic order, it is the
square of the sublattice magnetization vector m~, defined as
follows:

8 C
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B

FIG. 1. Classical +3X Q3 Neel spin ordering on the triangular
lattice.

where MI = X;,I s;, is the magnetization of sublattice L, and

( ) indicates ground-state expectation value. It is a simple
matter to show' that, if N= 3P is the number of lattice sites,
then

mt =P s; sj+C9(P), as r; ~~, (3)

III. THE METHOD

where r;, is the distance between two sites i and j in the
same sublattice. The order parameter m~ saturates to the
value (PI2)(PI2+1) in the classical Neel state. In the re-
mainder of this paper, values of m~ and of m~, which is the
magnitude of the sublattice magnetization vector, will be
consistently given as fractions of their saturation values.

The theoretical problem is to determine whether or not the
ground state of (1) on the 2D triangular lattice is character-
ized by a nonzero value of m, i.e., if it features antiferro-
magnetic long-range order of the Neel type.

Analytical approaches such as linear spin-wave (LSW)
analysis and series expansion, yielding similar and rather
accurate results for the square lattice, ' appear less conclusive
and somewhat contradictory, particularly on the question of
long-range order, when applied to the TAFHM. In fact, while
LSW predicts a Neel-ordered ground state with a value of
m~ around 0.48 —0.50, series expansion predicts a value of
m~ very close to zero.

In variational calculations, trial states incorporating anti-
ferromagnetic long-range order ' have been found to yield
slightly lower ground-state energy estimates than other states
based on different physical scenarios, such as the one of a
spin liquid with chiral symmetry breaking. "' In fact, the low-
est variational estimate of the ground-state energy of the
TAFHM in the thermodynamic limit is given by the trial
wave function optimized by Huse and Elser, yielding a
value of m~ equal to 0.68 in the thermodynamic limit. How-
ever, it is worth mentioning that variational calculations
based on disordered trial states have been performed for
rather small clusters, and it is not obvious how representative
the results may be of the physics of the infinite lattice.

(2)
QMC methods at zero temperature consist of projecting

the ground state ~4), of a given Hamiltonian M, out of an
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initial trial state ~'P) not orthogonal to ~iI&), by repeated ap-

plications of a suitable projection operator G= G(A@. This
operation can be mathematically expressed as a path integral
over many-particle trajectories in configuration space, and
represented by a stochastic process, which is in turn simu-
lated on a computer by the random walks through the con-
figuration space of a sample of independent "walkers. "

Different names have been used for this type of proce-
dure: power method, projector Monte Carlo, Green-function
Monte Carlo and others; in this paper, the name Green-
function Monte Carlo (GFMC) will be used for definiteness,
without implying any substantial methodological difference.

This method and its application to lattice Hamiltonians
have been thoroughly described in many other
publications; ' therefore, the details will not be reviewed
here. Rather, the aim of this section will be to emphasize
those elements that differentiate the lattice fixed-node GFMC
method, which is used in this work, from standard GFMC.

Standard GFMC yields results which are, in principle, ex-
act in the sense that no approximations are involved and the
only errors are statistical; thus, they can be rendered arbi-
trarily small, given a sufficiently large statistical sample (i.e.,
CPU time). The main limitation to its applicability comes
from the well-known sign problem, which derives from
the positivity requirement

(4)

for any two configuration vectors jc), ~c'); W(c) is the wave
function of the initial trial state. The reason for (4) is that in
a scheme based on random walks, such as GFMC, w(c, c ')
is interpreted as the probability for a walker to make a
transition from the configuration ~c) to the configuration

~

c'), along a random walk. For the typical projection opera-
tors used in GFMC simulations, (4) implies the following
n eg ati v i ty requirement involving the Hamiltonian operator:

(5)

It is very difficult to fulfill (5) in general; for example, a
fermion system must have a wave function that changes sign
in different regions of the configuration space, and this nor-
mally prevents (5) from holding. Though, in principle, one
can allow ~ to be negative, use its modulus as probability,
and include the sign as an overall phase factor associated to
the random walk, this leads to numerical instability, as physi-
cal averages are obtained as ratios of differences of exponen-
tially large quantities. Therefore, in practice only a relatively
limited number of operations of G can be performed before
statistical errors grow exceedingly. Occasionally, it is pos-
sible to observe convergence of the estimates to their
ground-state values in a small number of iterations, particu-
larly if a sufficiently accurate trial wave function is
known, ' ' for a system for which the sign problem is not
too severe; however, this is not a generally applicable proce-
dure.

An effective scheme, enabling the application of GFMC
to any Hamiltonian affected by the sign problem, is the one
known as "fixed-node" or "restricted path-integral" method;

originally developed for continuum systems, it has been re-
cently extended to lattice models.

For a continuum many-particle Hamiltonian
M=MD+ V, where MD is a kinetic energy term and V a
position-dependent, local interaction potential, the fixed-
node approach consists of performing the random walk
through the configuration space based on the transition prob-
ability

p(c, c') ~O(w(c, c')), (6)

where O(x) =1 if x)0, 0 otherwise. This is equivalent to
solving by GFMC the modified Hamiltonian
= AY+ VzN where VI;N is an additional many-body potential:

VFN(c)=~ if Ij'(c)=0, 0 otherwise.

(4 ~~4i)
FN 0 (C iC)

the equality holding if the nodal surfaces of W(c) and
4(c) coincide. The usefulness of (8) lies in the possibility of
gaining insight in a physical system by studying the depen-
dence of the energy estimate on variations of the trial wave
function.

The lattice version of the fixed-node algorithm is also
based on a restriction of the random walks through configu-
ration space; unlike the continuum case, however, such a
restriction cannot be simply enforced through the nodal sur-
face of the trial wave function, because of the inherent diffi-
culty of defining nodal boundaries on a lattice. Alternatively,
this problem can be interpreted as due to the intrinsic nonlo-
cality of lattice Hamiltonians; in fact, even in QMC calcula-
tions of continuum systems the fixed-node algorithm must be
modified, if nonlocal interaction potentials are included.

The analogy between the continuum and the lattice algo-
rithms consists of the replacement of the original Hamil-
tonian with an effective one, for which no sign-changing

The effect of VzN is the confinement of the random walks to
regions of the configuration space in which the trial wave
function 'IJ(c) does not change sign. ' By avoiding sign-
changing transitions associated with negative values of
w(c, c ), the fixed-node prescription eliminates the sign
problem.

It can be shown'"' that the results of a fixed-node GFMC
calculation are exact, i.e., the ground state of the effective
Hamiltonian MFN co. incides with the ground state of the

original Hamiltonian ~, if the nodal surface of the trial
wave function 'P(c) [i.e., the set of configurations c„such
that Ij'(c„)=0] and the one of the true ground-state wave
function 4(c) of WW~ coincide, regardless of relative magni-
tudes and signs of the two functions where they differ from
zero.

In general a complete knowledge of the nodal su.face of
iIi(c) is not available; in this case, FN-GFMC calculations
based on the nodal surfaces of the trial wave function are
only approximate. However, a variational property can be
demostrated for the energy estimate EI;N obtained via FN-
GFMC (i.e., the lowest eigenvalue of MFN) namely
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transition occurs. The LFN effective Hamiltonian is defined
through its matrix elements between configuration vectors

ic), ic') as follows:

with

A(c) = —[~t (c)—~)"(c)], (13)
8"(c ')

(c'iM„Nic) =(c'i~c), if (c'i+c) + (0,

'P(c')
(c'iMFNic) =0 if (c'i~~c) )0,

W c

'P(c ')
(ciMFNic) =(c~~c)+g (c'i~c)

where the sum Z,f is extended to all configurations ic')
connected to ic) by M via a "sign-changing" transition, i.e.,

one for which (c'i~c)%"(c')/'P(c))0.
It is a simple matter to show that the effective Hamil-

tonian MFN, constructed from M using a particular trial
state i%'), fulfills the variational property (8), and that exact
ground-state estimates for ~ can be obtained using WE„N if
the trial state iW) satisfies the condition

'P(c) 4(c)
0'(c') 4(c') (10)

IV. THE TRIAL WAVE FUNCTION

Consider a 20 triangular lattice with N sites, and specify
a lattice spin configuration ic) by assigning the value of the
spin projection along a chosen direction of the spin space,
say z, at every lattice site, i.e., ic) =is', s2. . . siv).

A generic trial state can be written as

i%') = g 9'(c) ic),

where 8'(c) is the trial wave function.
In this work, a particular type of trial state is considered

for the Hamiltonian (1) on the 2D triangular lattice, namely
one that assumes the presence of underlying Neel-like anti-
ferromagnetic long-range order (Fig. 1).A simple wave func-
tion describing this type of spin ordering is

1
W(c) = exp[iA(c)]exp ——g u;Js', s,'

/J
(12)

for all pairs ic), ic') for which (c'~~c)'P(c')/'P(c))0.
Note also that WE„N—=A~ if M is unaffected by the sign prob-
lem. The proof of all of the above is given in Ref. 13 and will
not be repeated here.

As in the continuum fixed-node algorithm, the effective
Hamiltonian used to overcome the sign problem explicitly
contains the trial wave function W(c). In the LFN scheme,
however, a more stringent condition must be fulfilled, with
respect to the continuum case, in order to obtain exact re-
sults. In the continuum, the simple knowledge of the nodal
surface of the true ground-state wave function 4(c) guaran-
tees the exactness of the method. On a lattice, on the other
hand, a partial knowledge of the amplitude of the true
ground-state wave function where it differs from zero is re-
quired, as expressed by condition (10).

A(c)~A'(c)=A(c)+F g y;)ks', s,'s'„,
i(j (k

(14)

where I is a variational parameter, the sum includes all trip-
lets of lattice sites i,j,k, and y;Jk= ~1 if r;j 1 fjk 1 and

r;i, = Q3, zero otherwise. The sign of y;, k is determined by
assuming that the modified wave function retain all the rota-
tional and translational properties of the wave function (12),
i.e., of the classical Neel state. As a result, y;Jk does not
change sign under rigid translations or rotations in real space
by an angle 2m/3 of the triplet ijk, but changes sign under
rotations of ~/3 or ~. Upon choosing a particular triplet in
which, say, i and k belong to sublattice A and j to sublattice
8, and setting y;jk = 1 for such a triplet, the sign of y;J k for
all other triplets for which it is nonzero follow.

By taking u(r) =IF/r and using E,a. as variational pa-
rameters, Huse and Elser obtained an estimate of the ground-
state energy per site, in the thermodynamic limit, of
—0.5364 J, and of the sublattice magnetization of about
0.68, with K-0.625, cr-1.8 and F-0.3125.

The wave function 'Ij'(c) utilized in this work has the
functional form (12), with A'(c) given by (14), but with a
different long-range tail for the function u(r), with respect to
the wave function used in Ref. 8. The reason is that a varia-
tional state characterized by a wave function of the type (12)
assumes antiferromagnetic long-range order of the Neel type
for the ground state, and the function u describes quantum
fluctuations around the classical Neel state; if these are as-
sumed to be in the form of long-wavelength spin-wave exci-
tations, then they can be shown ' to feature a linear disper-

where ~i (c) is the number of sites in the sublattice L for
which s'= —1/2 in the configuration ic) and u, , is an anti-
ferromagnetic spin-spin correlation function, which in gen-
eral depends on the distance r;J between sites i and j, and is
aimed at describing quantum spin fluctuations around the
classical Neel state. If u is set equal to zero, the wave func-
tion (12) describes the classical Neel state with M~ pointing
in the x direction and with Mz and Mc lying in the xy plane
of the spin space.

The same type of wave function affords a rather accurate
quantitative description of the ground state of (1) on the
square lattice, on optimizing the function u, . ' In the con-
text of the TAFHM, the state (12) was proposed by
Miyashita, ' who took the function u;j to be equal to u for
nearest-neighbor i,j and zero otherwise, and treated u as a
variational parameter, obtaining a value for the ground-state
energy per site of about —0.507 J, to be compared with the
value —0.375 J given by the simple Neel state, and for m~ of
about 0.85.

The wave function (12) was later revisited by Huse and
Elser, who improved considerably the ground-state energy
estimate by (a) allowing u to be a long-range function of the
distance r between two lattice sites, and (b) including three-
spin correlations through the following modification of the
phase factor B(c) in (12):
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sion relation co(k), which translates into a long-range tail for
the function u(r)-1/r in two dimensions. '

Thus, in this work the function u(r) was taken to be equal
to K for r = 1, to K' for r= Q3 and to K"/r for r) Q3, with

K, K', and K" variational parameters. This modification of
the long-range tail of u is not expected to improve signifi-
cantly the ground state energy estimate, with respect to the
results of Ref. 8 as the energy is known not to be too sensi-
tive to the tail of u; however, it can affect other quantities
such as spin-spin correlations. Also, in this work I"(c) was
taken to be zero for all spin configurations for which
S'=X;s',. 40, i.e., the calculation was restricted to the sub-

space with S'=0; this is allowed since S' is a good quantum
number, and was found to improve slightly the variational
energy estimate. It can be shown that, with this choice, the
trial state still features antiferromagnetic order of the Neel
type in the xy plane of the spin space, but the sublattice
magnetization no longer has a well-defined direction.

Optimal values for the variational parameters were found
by minimizing the variance of the ground-state energy esti-
mate obtained on performing variational calculations with
the wave function 'Ij', using the Metropolis Monte Carlo
method. These optimal values are K=0.58, K'=0.2, and
K"=0.35; for the variational parameter F, associated with
the three-spin correlation term in II'(c), the same optimal
value proposed in Ref. 8 was found, namely F= 0.3125. The
optimal values were found on a 36-site lattice, and were
found not to change on larger lattices, within the statistical
errors of the variational calculation.

It should be noted that the trial state described by the
wave function (12) is not a spin singlet on any finite lattice
with an even number of sites; although there is no proof that
the ground state of (1) on nonbipartite lattices is a singlet,
this is the case for the finite clusters which have been diago-
nalized exactly. " However, a symmetry-breaking ground
state is possible in the thermodynamic limit; therefore, the
wave function (12) can be expected to yield increasingly
accurate results as the thermodynamic limit is approached.

V. RESULTS OF THE FN-GFMC CALCULATION

Using the wave function 'Il'(c) described in the previous
section, a fixed-node Green-function Monte Carlo study of
the ground state of the spin--,' AFHM was performed, on
triangular lattices of several sizes, with periodic boundary
conditions. As mentioned at the end of the previous section,
variational calculations were also performed, using the Me-
tropolis Monte Carlo method.

In principle, the introduction of the modified phase factor
A'(c) renders the wave function W(c) complex; although
complex wave functions can be utilized in GFMC-type
calculations, in this work the real part of 'P was actuall. y
used, as the quantities of interest here do not require retain-
ing the complex character of I".

Apart from the fixed-node prescription, the details of the
GFMC calculation are not different from standard GFMC
simulations of quantum Heisenberg Antiferromagnets. A
rather large (over 50 000) ensemble of walkers was utilized,
in order to reduce the bias due to the control of the popula-
tion size. A sufficient number of operations of G was per-
formed, until estimates were observed to stabilize around the

TABLE I. Ground-state energy per site, in units of J, computed
with a variational and a FN-GFMC calculation, both based on the
trial wave function 'I, introduced in Sec. IV. Statistical errors, in
parentheses, are the last digit. The column "exact" reports the re-
sults of Ref. 11.

36
144
324
Extrapolated

Variational

-0.5449(1)
-0.5382(1)
-0.5376(1)
-0.5373(1')

FN-GFMC

-0.5513(2)
-0.5441(1)
-0.5434(1)
-0.5431(1)

Exact

-0.5604

-0.5445

ground-state value; then, roughly ten times as many opera-
tions of G were performed to achieve the desired statistical
accuracy.

A

The projection operator used is G = F- MFN—, where F- is
a constant which must be «EM, the largest eigenvalue of
M~FN. While determining the largest eigenvalue 8'M of M is
trivial, MFN explicitly contains the trial wave function 'Il';

thus, its largest eigenvalue depends on the largest value that
~'P(c)/'P(c')

~

can assume for a pair of configurations c and
c' connected by a sign-changing transition (Sec. III), and is
not easily determined. A signature of the fact that the se-
lected value of E is not sufficiently large is the occasional
occurrence, along the random walks, of configurations for
which the diagonal matrix elements of G are negative,
whereas it should be always positive if E«EM .

A practical solution to this problem is to repeat the calcu-
lation for a few, increasing values of E, and study the depen-
dence of the results on the value chosen; for E sufficiently
large, the results of the calculations become independent of
E, and no configuration featuring a negative diagonal matrix
element of G is ever encountered. In this work, this was
found to be the case upon choosing F.~ 10J+ 8'M . Naturally,
if a different trial wave function is used, a different value of
E will be needed too, in general.

In Table I the results for the ground-state energy per site
e, obtained in the different calculations and for the various
lattices, are reported. For comparison purposes, the Lanczos
result is also reported for the only lattice size considered in
this work (36 sites) for which it is available. The last row of
Table I reports the results of the extrapolation of the esti-
mates to the thermodynamic limit; for FN-GFMC data, this
was carried out by assuming the functional scaling form for
the energy per site e(N) = e + nN ', from LSW
analysis; ' this is consistent with the form adopted for the
trial wave function. These results are also shown in Fig. 2.

The variational estimate in the thermodynamic limit is
—0.5373~0.0001 J, only slightly below that of Ref. 8, i.e.,—0.5364 J; this was expected, as explained in Sec. IV; the
extrapolated FN-GFMC estimate for the same quantity is
—0.5431~0.0001 J.

On the 36-site lattice, the FN-GFMC result does not com-
pare particularly well with the exact result; the FN-GFMC
algorithm can recover about 40% of the energy that is miss-
ing at the variational level, and this might appear somewhat
disappointing, if compared with 70—90% that can often be
recovered in fixed-node calculations for continuum
systems, ' ' even with a relatively simple choice of nodal



52 GROUND STATE OF A TRIANGULAR QUANTUM 15 309

-0.540-

I

Variational o
FN-GFMC a
Ref. [10]
Rer. [11]

TABLE II. Ground-state expectation values of the order param-
eter mt computed with variational and FN-GFMC calculations
based on the trial wave function %", introduced in Sec. IV. Statisti-
cal errors, in parentheses, are the last digit.

0
~ ~

-0.544

-0.548

36
144
324

Variational

0.1480(2)
0.1276(2)
0.1244(3)

0.1458(2)
0.1204(2)
0.1144(3)

-0.552
0

I

0.001

61
I I

0.003 0.0040.002
-3/2

0.005

FIG. 2. Variational (diamonds) and FN-GFMC (squares) esti-
mates of the ground-state energy per site for (1) on the 2d triangu-
lar lattice. Dashed lines represent extrapolations of the results to the
infinite lattice limit. The triangle and the star refer to extrapolations
to the thermodynamic limit of the exact diagonalization results of
Refs. 10 and 11.

surface for the trial wave function.
As explained in Sec. III, in order to obtain exact results,

within the LFN scheme, a considerably more detailed knowl-
edge is required of the true ground-state wave function
4(c), with respect to the continuum case, ' in which the
trial wave function enters in the effective Hamiltonian only
through its nodal surface. For example, for a one-
dimensional continuum many-body Hamiltonian, for which
the locations of the nodes of C&(c) are known (i.e., the coin-
cidence points), the FN-GFMC scheme will yield exact re-
sults, in principle, no matter how poor the trial wave func-
tion. On the other hand, for a one dimensional lattice
Hamiltonian, the knowledge of the sign of 4(c) everywhere
is not sufficient to ensure that exact results will be obtained.

Due to this somewhat stricter requirement, it is to be ex-
pected that the LFN scheme may not yield, in general, the
same quantitative improvements on the variational estimate
that its continuum counterpart often affords. In fact, the LFN
method may only produce a very small improvement on the
variational energy estimate, if the wave function used is
poor.

To illustrate this point more quantitatively, consider the
results of a separate FN-GFMC calculation performed in this
work, for the 36-site lattice, using the wave function (12) in
the simple form proposed by Miyashita, i.e., without the
three-spin term and with no long-range tail in the function u.
The variational energy estimate obtained was
—0.5182~0.0001 J, and the FN-GFMC algorithm lowered
it to —0.5240+. 0.0001 J, only recovering 14% of the miss-
ing energy.

As mentioned at the end of the previous section, the
symmetry-breaking trial wave function utilized in this work
is expected to afford an increasingly accurate description as
the thermodynamic limit is approached, i.e., on relatively
large lattices. An important indication that this is the case
comes from the fact that the extrapolated FN-GFMC value in
the thermodynamic limit compares quite well with the one
obtained in Ref. 11 by extrapolating results of exactly diag-

onalizable clusters (star in Fig. 2). Exact results were also
extrapolated to a different, somewhat lower value, in another
work' (triangle in Fig. 2), but even if that value were taken
as reference point, the above conclusion on the wave func-
tion would still hold.

It should also be noted that within the statistical errors of
this calculation, the FN-GFMC ground-state estimate on the
36-site lattice is below the exact energy of the first excited
state, " which is —0.5500 J, which indicates that the trial
wave function is not orthogonal to the true ground state.

To conclude on this point, note that another estimate of
e may be obtained in the thermodynamic limit by applying a
"rigid" shift 6'e to all the FN-GFMC estimates, with 6'e

given by the difference between the FN-GFMC and the exact
result on the 36-site lattice. This yields an estimate of about
—0.5522 J, which is presumably a lower bound on the true
value, since, as mentioned above, the difference between
FN-GFMC and exact results is expected to narrow down, in
the thermodynamic limit. The two values —0.5431 J and
—0.5522 J bracket the two estimates from Refs. 10 and 11.

The antiferromagnetic order parameter m~ was deter-
mined by taking advantage of (3), i.e. , by calculating the
ground-state expectation value (s;.s,) for two sites i and j
belonging to the same sublattice and spaced apart by the
largest distance r;, .

Because the quantity s;.s; is not diagonal in the represen-
tation (~c)), the commonly adopted "extrapolated" GFMC
estimator was utilized, as opposed to the potentially exact
one based on "forward walking"; though inherently bi-
ased, the extrapolated estimator is often rather reliable, par-
ticularly if a sufficiently accurate trial wave function is
used, ' so that the difference between the value computed
with the trial wave function and the exact one is small.

In Table II variational and extrapolated FN-GFMC results
are reported for the order parameter m~; in Fig. 3, FN-
GFMC results are shown, together with their extrapolation to
the infinite lattice limit performed by assuming the fUnc-

tional scaling form mt (N) =mt +PN
Extrapolation of the FN-GFMC results for m~ yields a

ground-state estimate equal to 0.098~0.002 in the thermo-
dynamic limit, i.e., a value for m~-0. 62. This value is the
same as the one found in GFMC calculations for the spin--,'

AFHM on the square lattice. While it is certainly possible
that the value of m~ might be overestimated in this calcula-
tion, due to the particular wave function utilized in the FN-
GFMC algorithm and the use of the extrapolated GFMC es-
timator, it seems reasonable to conclude that these results are
consistent with a nonzero value of m" in the thermodynamic
limit.
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FIG. 3. FN-GFMC estimates of the order parameter m~ in the

ground state of (1) on the 2d triangular lattice. The dashed line

represents the extrapolation of the results to the infinite lattice limit.

VI. CONCLUSIONS

In this work, a scheme' to perform QMC simulations at
zero temperature of lattice Hamiltonians, overcoming the
si gn problem and yielding variational energy estimates, was
adopted to study antiferromagnetic order of the Neel type in
the ground state on the spin--,' AFHM on the 2D triangular
lattice.

The calculation described in this work was based on a
trial wave function assuming the existence of Neel order in
the ground state; an upper bound of —0.5431~0.0002 J was
obtained for the ground-state energy per site, for the infinite
lattice, presently the lowest variational estimate for the
model under study, in good quantitative agreement with the
most recent extrapolation to the thermodynamic limit of ex-
act results on small lattices. "As for the existence of Neel
order in the ground state, the results of this calculation are
consistent with an antiferromagnetically ordered ground

state, with a value of the sublattice magnetization as large as
about 62% of the classical value. Although this result prob-
ably overestimates the value of m~, due to the particular trial
wave function used, which appears in the projection operator
used in the FN-GFMC calculation, it certainly points to the
existence of low-lying antiferromagnetically ordered states,
in interesting analogy with the physics of the same model on
the square lattice.

In order to make further progress toward establishing
whether the ground state is ordered, a necessary step will be
to perform other FN-GFMC calculations based on different
wave functions, such as resonating-valence bond describing
disordered spin liquids ' or differently ordered states and
compare the results with those presented in this paper.

The lattice fixed-node QMC method, recently introduced,
is effective in allowing QMC simulations of Hamiltonians
affected by the sign problem. As its continuum analog, it
always permits one to improve the variational energy esti-
mate given by an initial trial wave function; such an im-
provement depends considerably on the accuracy of the input
variational ansatz, probably more so than in the continuum,
at least according to the results found in this work; future
calculations, based on this method, for different lattice
Hamiltonians, will provide further clarifications on this
point. In any case, it appears rather likely that the LFN al-
gorithm will prove a very valuable tool in the investigation
of the physics of frustrated antiferromagnets.
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