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Microscopic theory of orientational disorder and lattice instability in solid C70
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We have developed a microscopic theory which describes the orientational dynamics of C70 molecules and
its coupling to lattice displacements in the face-centered-cubic phase of C70 fullerite. The single-molecule
orientational density distribution in the disordered phase is calculated. The ferroelastic transition to the rhom-
bohedral phase is investigated. The discontinuity of the orientational order parameter at the phase transition is
calculated. It is found that the transition leads to a stretching of the primitive unit cell along a [111]cubic
direction. A softening of the elastic constant c44 at the transition is predicted.

I. INTRODUCTION

Besides solid C60, which is the most prominent molecular
crystal of the fullerite series, solid C70 has become a subject
of intense research. ' In solid C6O the transition from the
orientationally disordered phase (space group Fm3m) to the
ordered phase (space group Pa3) is essentially an orienta-
tional phenomenon (see, e.g. , Refs. 4 and 5). The concomit-
tant contraction of the lattice is a secondary effect, which
does not affect the lattice symmetry.

In solid C70 the situation is different. Although in early
work' it was found that samples of solid C7O contain mix-
tures of hexagonal and face-centered-cubic (fcc) phases at
room temperature (T), it seems by now established that at
high T the stable structure has space group Fm3m with ori-
entationally disordered molecules. ' %ith decreasing T a
transition to a rhombohedral phase (space groups R3m) oc-
curs at T=340 K, followed by a transition to a monoclinic
phase ' ' at still lower T. Such a scenario has been predicted
earlier by molecular-dynamics simulations. In accordance
with experimenta1 observations, ' ' molecular dynamics
shows that in the rhombohedral phase the molecules are on
the average oriented along a [lllj direction of the former
cubic phase and that the unit cell is stretched. Recently the
orientational ordering in solid C70 has been studied in frame
of a Landau free energy, which includes a bilinear coupling
of orientational quadrupoles of the T2 symmetry to trigonal
shear strains. In particular a condensation of orientations
then entails a trigonal deformation of the lattice.

It has been noticed' that the sequence of structural phase
transitions in C7O is in many aspects similar to ferroelastic
phase transitions encountered in mixed crystals of alkali-
metal halides cyanides. " ' There the coupling of orienta-
tional modes of T2 symmetry to acoustic lattice
displacements' [called translation-rotation (T R) coupling]-
drives the transition (for a review see Ref. 10).There are two
major differences. There are no counterions in solid C7o, and
the molecule is nonlinear.

In the present paper we will give a microscopic theory of
the orientational dynamics of the C70 molecules and their
coupling to lattice vibrations. We wi11 derive the bilinear T-R
rotation coupling from an atomistic model of the intermo-
lecular potential. This coupling gives rise to an effective
lattice-mediated interaction between orientational Auctua-
tions of T2 symmetry, which drives the transition to the

rhombohedral phase. We study the orientational and the dis-
placive collective susceptibilities and predict a softening of
the elastic constants c«near the transition to the rhombohe-
dral phase. We calculate the orientational distribution func-
tion in the disordered phase. We determine the discontinuity
of the orientational order parameter at the first-order phase
transition and find that the trigonal deformation corresponds
to a stretching of the unit cell.

II. ORIENTATIONAL COORDINATES AND MOLECULAR
STRUCTURE

n() )

ct (k)= g I't [A'(v(k))]. (2.1)

A convenient way to treat orientation-dependent proper-
ties of nonlinear molecules in crystals is to use rotator func-
tions. These functions, introduced by James and Keenan'
for the description of solid CD4, are linear combinations of
Wigner's D matrices. The rotator functions take into account
the symmetry of the molecule and of the site. ' ' The C7O
molecule has symmetry D5&.

' It has been found by inelastic
neutron-scattering experiments ' that in the high-
temperature phase, the molecule performs fast rotations
about its long axis, and effectively behaves as a solid object
of D „symmetry. We will take advantage of this fact to
simplify considerably the mathematical description.

%e start with a molecule in its standard orientation with
respect to a rectangular Cartesian coordinate system. The
molecule is centered at the origin, its fivefold axis is taken as
z axis, the (x,y) plane is a symmetry plane. The Cartesian
coordinates of the molecule, taken as a rigid body, are speci-
fied in Ref. 18. It is convenient to classify the atoms (also
called C centers) of the molecule in (001) planes. We con-
sider five groups of atoms labeled by an index X: ten atoms
in the equatorial plane z()t.= 1)=0, ten atoms in each of the
planes ~z(P), X=2,3, and five atoms in each of the planes
~z(X), k=4,5. The atoms are labeled by indices v(X), where
v= 1—10 or 1—20. The position of atom v(X) is described by
the polar coordinates [d(k), A'(v(k))] where d measures the
distance from the origin to the atom and where II'=(8', @')
stands for the polar angles. In order to account for the mo-
lecular symmetry, we calculate the coefficients
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TABLE I. Structural data of model of C7o molecule. Coefficients c
& (k); rows k= l —5 refer to C centers, k=6,7 to D centers and k=8,9

to I centers. Heights of planes z(k) in units A; distances d(k) from center of mass of molecule to interaction center in plane z(X) in units

A; n(k) number of centers in group k, factors 2 denote that there are two planes for the given k. One has co(k) = (I//4m)n(X).

n(X)

—3.15
—4.29

1.25
2.95
5.47
4.39
0.74

—2.10
—5.77

3 ~ 17
0.41

—7.19
—1.89

5.00
1.40

—3.62
0.11
4.60

—3.18
3.70
1.80

—4.03
2.48

—2.84
0.61
1.97

—2.86

3.18
—6.28

6.44
—0.31
—0.92
—4.73

3.41
—3.17

0.79

0
1.197
2.449
3,235
3.983
3.609
2.449
1.197
0.599

3.565
3.663
3.876
4.029
4.172
4.043
3.816
3.593
3.544

10
10x2
10x2
5x2
5x2
5x2
5x2
5x2

10x2

Here n()i.) is the number of atoms in group X. We use the
definition of spherical harmonics of Bradley and Cracknell: '

((2I+ I)(I- ~m~)! &
"'

I'i (A)= PI ~(cos 0)e'
4m(l+ lm~)'

(2.2)

Symmetry of the molecule implies that the coefficients c I

are different from zero for ' m =0, ~5,10..., and l-m even.
Following the model of molecular-dynamics

calculations, we do not only consider the atoms as centers of
intermolecular interactions but also centers of "double
bonds" on the C60-like polar caps of the C70 molecule. There
are ten of these "D centers" on the short bonds with mid-
points in planes ~z(6), and ten on short bonds with mid-
points in planes + z(7). Finally we consider interaction cen-
ters located on intermediate bonds ("I centers"), five
centers in each of the planes ~z(8), and ten in each of the
planes ~z(9). The coordinates are given in Table I. The dis-
tribution of these centers also has symmetry D5&, and hence
the corresponding coefficients c i (X) have the same proper-
ties as those of the C centers. As we will show in the follow-
ing, we can restrict ourselves to orientational properties de-
scribed by functions 7& belonging to the manifolds l =2, 4,
6, and 8. We then have

spaces if I" occurs more than once for a given l, 6 labels the
components of I . The coefficients o.

&

' are tabulated in Ref.
21.

Symmetry implies that the transition from the cubic
phase to the rhombohedral phase with site symmetry D3d is
driven by fluctuations belonging to the irreducible represen-
tation I =T2 of 0„.The lowest allowed value of l is then 2,
and corresponds to orientational quadrupoles of T2
symmetry. Notice that this situation is also familiar from the
theoretical description of the phase transition
Fm3m~R3m in the mixed-alkali-metal halides cyanides
crystals. As we will see each C70 molecule in the cubic phase
experiences a static crystal field. The corresponding orienta-
tional fluctuations belong to the unit representation I =A]g
of Oh. In the following we will then restrict ourselves to
SAF's belonging to the manifolds l=4,6,8 for the Auctua-
tions of A i symmetry and to l =2 for those of T2 symme-
try. The corresponding functions are quoted in Appendix A.

We now want to relate the site symmetry to the molecular
symmetry. We consider interaction centers of plane(s) )i. and
define, for an arbitrary orientation of the molecule, the func-
tion

n{X)

X ~;[I~(.(~)))= X X ~;[I~(.(~)))
p(k) = 1 v(P ) I

ci (k)=c, (k)8 o. (2.3) —= U;(c0, )~. ).
The coefficients c

& ()~) are quoted in Table I. Since m =0, the
azimuthal angle P in Eq. (2.2) is irrelevant, the molecule is
spinning around its fivefold axis. When the molecule is tilted
away from its standard position, its orientation is then speci-
fied by the polar angles co—=(P,n) which determine the orien-
tation of the fivefold molecular axis in the crystal fixed
frame.

In order to describe orientation dependent properties in
the disordered phase, we use site symmetry adapted func-
tions (SAF's)

(2.4)

Here A(v(k)) stands for the polar angles of the center v()i.) if
the molecule is tilted away from its standard position by a
rotation R(co). Denoting again by 0'(v()i.)) the corresponding
polar coordinates if the molecule is in standard orientation,
we have A(v(X)) =R(co)A'(v(k)). The transformation law for
the spherical harmonics reads

I'i [A(v(X))) = g D~™(ni)I'", [II '(v(P ))], (2.6)

where D ", (to) are the Wigner matrices which depend on the
Euler angles n~. Inserting Eq. (2.6) into (2.5) and using Eq.
(2.3), we obtain the rotator function

Here 7=(I,p, 8), where I refers to the irreducible represen-
tations of the cubic site point group Oh, p labels the sub-

U,'( ru, X ) = c, (X )g D, ( co) a, ', (2 7)
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where

1t'2

DI (~)=( 1—) ' 1'I (P ~)*.
L, 2l+1 (2.8)

III. ORIENTATION AND TRANSLATION-DEPENDENT
INTERACTiONS

In this section we derive the interaction potential between
rotating molecules on a deformable lattice. Our calculation
will be microscopic in as far as it starts from the interactions
between centers on different molecules, ho~ever the form
and the strength of the interaction between centers is based
on phenomenological assumptions.

We consider a crystal of N molecules C7o in the cubic
phase. The center of mass positions of the molecules occupy
an fcc lattice. The lattice sites are labeled by an index n, the
center-of-mass positions in a deformable lattice are given by

We recall that P and u are the polar and azimuthal angles of
the fivefold axis. We see that the molecule effectively be-
haves as a dumbbell of symmetry D h. However we should
keep in mind that the molecule is a nonlinear object, and that
the three-dimensional shape of the molecule is accounted for
by the coefficients c I (k). They play a role of structure con-
stants of the molecule. This point will become more evident
in the next section where we study the intermolecular poten-
tial.

quadrupoles. We have also calculated the interaction of ori-
entational modes of T2g symmetry belonging to the manifold
l =4 (hexadecapoles) and found that it is more than one order
of magnitude smaller. Following the procedure of Ref. 17 for
each group of interaction centers X, we carry out a double
expansion of (3.3) in terms of rotator functions (2.7) and
obtain

RRV~~= —g M~~, (n n')—U2(n, k )U2P(n', X'). (3.6)
nn

Here we sum over repeated indices u, P, and X, X'. The
index n refers to the three components of T2 symmetry, we

have written U2 for U2'g' . We recall that the argument n

of UP(n, k) stands for co(n) which specifies the instanta-
neous orientation of the long axis of the molecule at site n.
The expansion coefficients are given by

f
M~~, (n —n') = dA„dA, f V(n, k, v;n', X', v')

J "J

(3.7)

Here Sz are site symmetry adapted functions belonging to
the irreducible representation T2 of Oh. Since the functions
U,'(n, X) occur always in conjunction with the molecular
structure coefficients c, (k) [see Eq. (2.7)], it is convenient
to consider rotator functions which are independent of the
interaction centers P and to define

R(n) =X(n)+s(n), (3.1)

where X(n) is the rigid-lattice position and s(n) the instan-
taneous lattice displacement. The position of the interaction
center v(X) in the nth molecule is then given by

R(n, X, v) =R(n) +d(v(n, X)). (3.2)

Here d(v(n, k)) has polar coordinates d(X),Q(v(n, k)) and de-

pends ori the molecular orientation at site n. The total inter-
molecular potential energy is written as a sum of potentials
between interaction centers belonging to different molecules

1
V= —g g g V(n, k, v;n', X', v').

nn' P X' VV'

(3.3)

The potential V(n, k, v;n', X', v') depends on the distance r
between the center v(k) on molecule n and the center v'(X')
on molecule n '. One has

r = iR(n, k, v) R(n ', k', v—') i. (3.4)

V VRR+ VR+ VTR+ VTT (3.5)

Here the superscript R refers to rotational coordinates and T
to displacements. In particular V is the direct orientation-
orientation interaction between pairs of molecules on a rigid
lattice. We restrict ourselves to interacting orientational
modes of T2g symmetry belonging to the manifold l =2, i.e.,

Additional details about the potential will be given in Sec. V
where we discuss numerical results. Here it is sufficient to
realize that r depends on the instantaneous center-of-mass
displacements and on the orientations of the molecules.

We expand the potential in terms of displacements and
subsequently in terms of rotator functions and obtain'

U,'( co) =g D
& ( cu) a P ', (3.8)

while the coefficients c, (X) are counted with the expansion
coefficients.

Explicit expressions of rotator functions are given in Ap-
pendix A. Defining the molecular interaction coefficient

1 P(n n') =g Pzz, (n ——n')c (2k)c (2X. '), (3.9a)

we obtain for the potential (3.6)

RRV =—g J ~(n —n') U2(n) U2~(n'). (3.9b)

V =g g w '"U, "(n)
n

(3.1O)

The form of expression (3.9a) is very suggestive. The factor
F ~„,(n —n ') accounts for the strength of the interaction be-
tween centers X and X' while c

& (X) and c, (X ') accounts for
the density of these centers.

The second term on the right-hand side of Eq. (3.5) is the
crystal field in a rigid lattice. This field is experienced by a
given molecule when its neighbors are taken in spherical
approximation. It can therefore be considered as a special
case of V where, in a cubic lattice, the central molecule is
described by rotator functions of A i symmetry belonging to
the manifold l =4,6,8..., while the surrounding molecules are
described by rotator functions with 1=0.From Eqs. (3.8) and

(2.8) it follows that U, "o= 1. We then obtain for the crystal

field
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Restricting ourselves to the 12 nearest neighbors in the fcc
lattice, we have Uu( ) N

—ll2+ Uu( ) ig x(n) (3.17)

w "=12+ co(k)c, (k')P, "(k,k') (3.11)
The direct orientation-orientation interaction potential V
now reads

with
RRV =—g J P(q)U2(q)U2P( —q),

q

(3.18)

1

$4~ ~
dA„dA, V(n, k, v;n', k', v')

where the quadrupole-quadrupole interaction matrix is given
by

xs", ~(A,). (3 12) J P(q) = g J P (n —n ') exp[ iq X(n ' —n) ]. (3.19)
n'

V = g F;(n ' —n) [s;(n) —s;(n ') ]U2 (n), (3.13)

where

with

W;(n n') = Q—c2(k)co(k') P";(n,k;n', k'),
Xk'

(3.14)

;(n, k;n', k') =
4m &

dA, dO, ,

x V;(n, k, v;n', k', v')Sz(O, „).

Here the lattice site n refers to a nearest-neighbor site of n.
Notice that Eq. (3.12) can be considered as a special case of
Eq. (3.6), where now the SAF at site n has A, symmetry
and belongs to the manifold I =4, 6 or 8, while the SAF at n'

is given by S& "o= 1//4m. We also see that expression (3.11)
is the crystal-field analogon of the R-R interaction (3.9a).
The translation-rotation coupling potential in Eq. (3.5) is
given by

We observe that here the word quadrupole refers to the fact
that we describe the orientations by SAF's belonging to the
manifold I =2, it is not restricted to the meaning of an elec-
tric quadrupole but also refers to the distribution of nuclear
masses. Symmetry implies that the quadrupolar interaction
becomes diagonal at the center of the Brillouin zone, where
we write J P(q=0)—=J&8 p. In Sec. V we will show that
J&)0, which means that the direct rotational potential is re-
pulsive at the I point. On the other hand, at the X point of
the Brillouin zone, the interaction is again diagonal but its
largest eigenvalue is negative: J"(q ) =Jx'(0, where

q~ =(0,2m/a, O). We conclude that the direct quadrupolar
interaction in solid C&0 favors an antiferrorotational order
with space group Pa3. The situation is analogous to solid
Na02. Ho~ever while in the latter system a phase change
FI3I~Pa3 takes place, this is not the case for solid
C70 Indeed we will see that translation-rotation coupling al-
ways leads to an effective quadrupole-quadrupole interaction
which is attractive at the I point. If this interaction is stron-
ger than the direct interaction at the X point, the phase tran-
sition will be driven by the condensation of a zone-center
mode, as is the case for Fm3m~R3rn.

The translation-rotation coupling is obtained as

(3.15) V"=X ~.;(q) U2( —q)s, (q). (3.20)

Here V, is the derivative of V(n, k, v;n', k', v') with respect
to X;(n') taken at s =0. Here again we restrict ourselves to
nearest neighbors. The matrix elements W;(n n') depen—d
on X(n') —X(n) and are discussed in Appendix B. V can
be considered as a special case of a crystal-held term in a
deformed lattice. Since the lattice is deformed, the central
molecule experiences no longer a cubic held but a deformed
field. The SAF of the centra1 molecule has then T2g symme-
try, while the surrounding molecules are still described by

S, 'go. For a review on T-R coupling we mention Ref. 10.
It is convenient to rewrite the interactions V and V in

Fourier space. %"e write for the displacements

In the limit of long wavelength, the coupling matrix reads

02iAa
W(q) = q,

In

qz qy
0 q

q 0
(3.21)

where a is the cubic lattice constant and A the T-R coupling
constant. In Appendix 8 we show that A is a sum of matrix
elements of type P;(n —n'), Eq. (3.14).

Finally we consider the elastic harmonic lattice potential

s(n) = (Nm) " g s(q) e'~ (3.16) (3.22)
1V"=2 —M;~(q) s;( q)sk(q)—

where m is the molecular mass. Similarly we have for the
orientational fluctuations

In the long-wavelength regime the dynamical matrix M(q) is
given by
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c 1lq~+ c44(qY+ q~)
0 2 0 2 2

M(q) = d q,q,I 0d qzqx

0
q&qY

C„q +C44(q, +q„)0 2 0 2 2

0d q~qY

0dqq,
0

qYq~
C 1 iq~ + C44(q + q )

0 2 0 2 2
(3.23)

with d =(c«+c,2), where c;, are the bare elastic con-0 0 0 0

stants.
The terms V and V give rise to an effective lattice-

mediated interaction VL . For a given configuration of ori-
entations (U2(q)) we minimize V with respect to s;(q),
eliminate the displacements and obtain

limiq1, s'(q) = gmNe1J .
q—+0

We then obtain for the Helmholz free energy

(4.2)

In the long-wavelength limit it is convenient to use homo-
geneous strains e which are defined by

where

1Vi'= —X 2
C ~(q)U2( —q)U~2(q).

q

C(q) = ~(q)Jtf '(q) ~(q)

(3.24)

(3.25)

F=F,+F"I y]+F"[q,~]+F"I~]. (4.3)

Here F0 is the single molecule free energy. It will be of no
relevance in the following.

The collective rotational free energy per molecule now
reads

represents the lattice-mediated orientational interaction. '

Notice that this interaction depends on the direction of q, in
agreement with general properties of soft modes in cubic
crystals. The largest eigenvalue of C(q) is given for
q = (0,0,q, ) by

FRR

N
=Py +Py +Cy, (4.4)

where the coefficients A, 8, and C are determined by the
orientation and translation dependent interactions. In particu-
lar we have

lim C''(q) = 16
qz

—+0
0

——CL.
aC44

(3.26)
~ = ~z I:(Xo) '+ Jr+ C']. (4.5)

where y0 is the single-particle orientational susceptibility

As is well known, T-R coupling gives also rise to a self-
interaction of each molecule with the deformed lattice. This
interaction leads to a modification of the crystal field, where
V is replaced by

~R VR+ Vs (3.27)

The quantity V' will be calculated in Appendix C.

IV. FREE ENERGY AND PHASE TRANSITION

A. Free energy

Starting from the orientation and translation-dependent in-
teraction potential V, Eq. (3.5), and using the method of Ref.
17 we have derived the free energy as a functional of the
instantaneous expectation values U2'(q) and s,'(q) of ori-
entational and displacive order parameter variables. The
phase transition from the cubic to the rhombohedral phase is
driven by the condensation of the three components U '(q)
of T2 symmetry at the center of the Brillouin zone. ' ' We
then write

yo =T 'Zo '
TrI(U (n)) exp( —W"IT)]. (4.6)

1C'1=—g C(q),N
(4.7)

where the matrix C(q) is defined by Eq. (3.25), while 1 is
the 3X3 unit matrix. For the coefficients 8 and C we have
obtained

Ty i23 ~

(3) (4.8)

Here the trace Tr stands for an integration over Euler angles,
T is the temperature measured in energy units (k11=1) and
W is the crystal-field potential (3.27).

Cubic symmetry implies that the matrix y0 is diagonal and
that the elements are equal. We write y0 for y0'. The same
property holds for the interaction matrix, and in Eq. (4.5) J&
stands for J" (q=0). The quantity C' in Eq. (4.5) denotes
the self-interaction correction to the rotational interaction. It
is given by

U2'(q)= +N17 8q o, (4.1)
T

C = —I:2y1122+71111].(4) (4)
8

(4.9)

where g is the order-parameter amplitude. There are four
domains of the rhombohedral structure, depending on the
alignment of the molecule along one of the four diagonals of
the cube. We choose the domain where the three compo-
nents y are equal, and write y =y, for a=1,2,3. Since the
product of the three T2 components of the order parameter
is a cubic invariant, the free energy contains a third-order
term and the phase transition will be of first order.

=4a A(eY, + e„+e Y) y, (4.10)

The quantities y$23 y»22 and y»«are crystal-field thermal(3) (4) (4)

averages of three- and four-point rotator functions of T2g
symmetry. Analytical expressions are given in the second
paper of Ref. 20.

The T-R coupling part of the free energy is given by

FTR
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a being the cubic lattice constant and where the coupling
constant A has been introduced already in Eq. (3.21). Finally
the elastic lattice energy in Eq. (4.3) is given by

X(q)—= (U2(q)U ( —q))IT

=Xo[1—Xo(c(q) —J(q) —1C')] ' (4.19)

FTT 3

8

(4.1 1)

The corresponding expression in the ordered phase is ob-
tained by replacing yo by yo (g IT). As a consequence of
bilinear T-R coupling, we get for the displacive
susceptibility'"

Minimizing F with respect to e; for fixed g, we obtain D '(q) —= (s(q) s( —q))I T

4A
xy Fyz 6zx 2 0a c44

(4.12)

Since the longitudinal strains do not couple to xg, we put
e, ; =0. Expression (4.12) will allow us to determine the mag-
nitude and the sign of the shear strains.

B. Phase transition

We first have to evaluate the order parameter y. Eliminat-
ing the shear strains by means of Eq. (4.12) we obtain

T—xt l(T)[c —1 —C']
T+xt l(T)[C'+ J ]

(4.21)

The increase of the orientational susceptibility near T& leads
to a softening of c44.

= M '(q) [1+W(q) g(q) W(q) M '(q)],
(4.20)

and therefrom we deduce the shear elastic constant

FTT+ FTR 3 C 2
L 7 (4.i3)

V. NUMERICAL RESULTS

where CL is the lattice-mediated interaction constant, given
by expression (3.26).

The bilinear coupling of elastic deformations to orienta-
tional order leads to a decrease of the free energy and hence
to the stabilization of an ordered structure with a deformed
unit cell. Combining Eqs. (4.13) and (4.4) we rewrite the free
energy (4.3) as a Landau expansion

where

F=FO+A' rg +By +Cr], (4.14)

[(A'o) +Jr+ c CI.]. (4.15)

(4.i6)

The transition temperature of the first-order ferroelastic
phase transition is given by

B (Ti)
T, =x"&(T,) C, C' Jr+——

1

(4.i7)

The discontinuity of the order parameter at the transition is
obtained as

—~(Ti)
2c(T, )

(4.18)

We will find B(Ti)(0, C(Ti))0 and hence rI)0.
Using methods of molecular field theory, we have calcu-

lated the collective orientational susceptibility in the disor-
dered phase'

As we have already seen in the last section, in absence of
translation-rotation coupling, or equivalently of the lattice-
mediated interaction, our model of solid C70 would lead to an
antiferrorotational Pa3 structure. In presence of T-R cou-
pling, a ferroelastic transition to a R3m structure occurs un-
der the condition that the lattice-mediated interaction is suf-
ficiently large:

In Sec. III we have shown how the intermolecular poten-
tial constants can be described on a microscopic scale by
interactions between atomic centers (C), double-bonds cen-
ters (D), and intermediate centers (I) on different molecules.
Since so far it is not possible to obtain these interactions
from ab initio electronic-structure calculations, one has to
resort to phenomenological considerations. As a guideline
one takes the interatomic potentials of graphite. For the case
of solid C60 this procedure has been taken as a starting point
of molecular-dynamics simulations. Interaction sites on
short C-C bonds (D centers) had to be taken into account
in order to reproduce the right low-temperature structure
(Pa3). The consideration of D centers is also justified by the
electronic structure of the molecule, since the ~-electron
clouds which contribute to the short C-C bonds extend radi-
ally outward from the bond. The calculations of Refs. 28
and 29 have been based on (12-6) Lennard-Jones (LJ) poten-
tials between these interaction centers. In addition Coulomb
charges of opposite sign were put on C centers and on D
centers, the total charge on the molecule being zero. These
concepts were applied and extended for molecular-dynamics
simulations on solid C70, where in addition to C and D cen-
ters, I centers on intermediate bonds were considered. In the
present paper we use the same configuration of centers, how-
ever the interactions between centers are described by a sum
of repulsive Born-Mayer (BM) potentials and attractive van
der Waals (W) potentials:

V(n, k, n'v, k', )=vczz, exp( —Cz„,r) —Bi,i, r
(5.1)

Here r is the distance between the centers v(k) and v(k')
belonging to different molecules n and n' [see Eq. (3.4)].
The choice of an (Exp-6) potential has been motivated by
our experience with the calculation of crystal-held coeffi-
cients w, " [see Eq. (3.10)] in solid C6o. ' ' On the other
hand, these coefficients have been deduced from single-
crystal synchrotron radiation and high-resolution neutron
powder-diffraction experiments. So a direct comparison be-
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TABLE II. Interaction potential parameters between centers belonging to different molecules. The label k
is only relevant in as far as its specifies the type of center. C~~, in units A '. C„„,=6.24X10 K,
B~~ =4.24X10 K A, irrespective of type.

Type

(2)

C, C

3.6

D,D

3.2

C,D

3.4

C,I

3.5

D,I

3.3

tween theory and experiment becomes possible for solid C60.
Theoretical calculations ' show that the true values of ~& "
are the result of a subtle interplay between contributions
from different types of centers. It is easier in our calculations
to achieve agreement with experiment by using (Exp-6)
potentials rather than by using (12-6) potentials. ' We have
attributed this to the comparatively slower decay of BM po-
tentials in comparison of repulsive (12) potentials with in-
creasing distance [see discussion following Eq. (3.16) of Ref.
32].

(Exp-6) potentials for C-C interactions in solid C7o have
been suggested in Ref. 35. For the present calculations we
have chosen the potential parameter values which are quoted
in Table II. Here Ctcc)=3.6 A ' is the value given in Refs.
35 and 36, while for CzD, due to the extension of the
m.-electron cloud, we have chosen 3.2 A. '. For the I centers

we have taken intermediate values. The constants C~~, and

B~~ were taken to be the same for all type of centers, how-
ever their values are smaller than for a molecule which
would only have C centers [a similar choice is also made for
the (12-6) potential in C7Q where the parameter e has a re-
duced value ]. In contradistinction to molecular dynamics,
we have not taken into account Coulomb charges. In solid

C60, the electric multipoles turned out to be smaller than
originally anticipated. An electrical quadrupole moment
would have inhuence on the transition temperature, since it
contributes to the direct orientational interaction. It increases
the value of Jr (repulsive at the Brillouin-zone center) and
the absolute value of J», which favors a Pa3 structure [see
condition (4.16)]. In other words, while in solid C6o electro-
static interactions were found to increase the transition
temperature, they disfavor the ferroelastic transition in
solid C70. This may be the reason why, at short distances
between C centers (say 2.5 A), we can choose a BM poten-
tial that is weaker by a factor 0.37 in comparison with the
repulsive part of the LJ potential of Ref. 2. A further reason
why we favor smaller values for the repulsive potential at
short distances is the fact that we have to calculate the con-

volution integrals (3.7), (3.12), and (3.15) on a rigid lattice at
zero center-of-mass displacements, while in molecular-
dynamics simulations the center-of-mass positions adjust
themselves to the molecular orientations.

Starting from the potential (5.1) with parameters from
Table II, using the molecular parameters from Table I and
taking a cubic lattice constant a =15 A, we have calculated

by numerical integrations the coefficients P ~~, (n —n ), Eq.
(3.7). With the molecular structure coefficients cI (A.) from
Table I we then obtain the direct quadrupolar interaction
J ~(n —n'), Eq. (3.9a), and its Fourier transform J(q), Eq.
(3.19). In Table III we have quoted the contributions to
Jr ——J"(q=0) and J»' —=J''(q~) due to the different types
of interaction centers X, X'. As we have anticipated in the
previous section, we see from the last row in Table III
("sum") Jr)0 and J» (0, which shows that the direct
quadrupole-quadrupole interaction is antiferrorotational. The
main contributions are due to C and D centers, while I cen-
ters, which are of minor importance, oppose the effect of C
and D centers (different sign). In other words the contribu-
tions from I centers, which are attractive at the I point favor
a ferrorotational phase transition. Within our calculations this
effect can be understood as follows. I centers are on the
average at shorter distance from the molecular center of mass
(see Table I, column 7) of the molecule to which they belong.
Hence their distances to I, C or D centers of a neighboring
molecule are relatively large, and consequently the attractive
van der Waals part of the potential (5.1) becomes comparable
or even more important than the repulsive Born-Mayer part.
On the other hand, for interactions where only C and D
centers are involved, the repulsive BM part of the potential is
dominant.

Further we have calculated numerically the coefficients
W, (n, X;n', k'), Eq. (3.15), of the T Rcoupling interac--

tion. Using Eq. (B7), we find the coupling constant A. In the
fourth column of Table III we have quoted the contributions
of different types of interaction centers to A. Notice that here
again the major contributions are due to interactions involv-

TABLE III. Contributions from various centers to molecular interactions. Orientational interaction constants in units K. T-R coupling
A in units K/A.

W4 W8

C, C
C,D
D,D
I,I
I, C
I,D
Sum

—2269.5
—4255.6
—2147.8

162.6
557.9
759.3

—7193.0

2115.7
3924.9
1957.1
—75.3

—647.9
—807.9
6466.6

—1006.3
—1603.0
—641.2

10.6
—70.8
—39.3

—3350.0

—305.4
—152.3

68.9
11.3

—75.5
—81.2

—535.4

—353.6
1075.5
849.1

2.2
—37.4
258.9

1794.6

67.1
—620.4
—380.2
—12.3
—42.9

—364.9
—1353.7
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ing only C and D centers, while I centers act in the opposite
sense. In order to calculate the lattice-mediated orienta-
tional interaction Cz, Eq. (3.26), and the self-interaction C',
Eq. (4.7), we need the bare elastic constants c;,. These are
virtual quantities which refer to the crystal in absence of T-R
coupling. In principle, it should be possible to calculate their
values by using the methods of Sec. III. In a first attempt we
did start from our intermolecular potentials with the nearest-
neighbor interactions, calculated the second derivatives with
respect to the displacements, and averaged over the orienta-
tions. Using these second-order lattice coupling constants,
we have calculated the cubic elastic constants. We obtained
values that are too small by one order of magnitude, the
value of the lattice-mediated interaction CL is then exces-
sively large as is also the case for the transition temperature.
We conclude that our calculation is oversimplified. Probably
two extensions are necessary. First one should take into ac-
count further neighbor molecules, and secondly lattice anhar-
monicities are likely to be important. Such a calculation
along the lines of a renormalized harmonic approximation is
beyond the scope of the present work. Adopting a more prag-
matic approach here, we assume that in absence of T-R cou-
pling, solid C7p becomes similar to solid C6p. We then take as
values of the elastic constants c»=2235, c,2=950, and
c44=875, in units K/A, close to the elastic constants of solid
C6O. With A= —3350.2 K/A. from Table III, we calculate
the lattice-mediated orientational interaction by means of Eq.
(3.26) and obtain CL = 13 678 K. With the values 1&=6466 K
and Jx'= —7193 K, we see that condition (4.16) for the oc-
currence of a ferroelastic interaction is realized. It also fol-
lows from Table III that C,D and D,D interactions, since
their negative contributions to Jz' are large, favor an anti-
ferrorotational Pa3 structure. In this respect we recall that in
solid C6p, as has been shown by molecular-dynamics
simulations, D centers are indeed necessary for the stabili-
zation of the Pa3 structure. In solid C7p, the large value of
the lattice-mediated interaction CL is ultimately responsible
for the transition to the R3m structure. Notice however that
without interactions involving D centers, it would be much
easier to satisfy condition (4.16). Our expression (3.26) of
CL shows that it is advantageous for the occurrence of a
ferroelastic transition that c44 is small. However from Eq.
(4.17) we also see that a large value of C~ leads to a large
value of the transition temperature T, . The used values of the
elastic constants allow us to satisfy two opposing require-
ments: condition (4.16) on one hand, and a sufficiently low
value of T, on the other hand.

The self-interaction C' is obtained from Eq. (4.7), where
we calculate numerically the integral over the Brillouin zone.
We obtain C'=5350 K for the case of T2 symmetry and
C'=507 K for the case of F symmetry.

Next we turn to the evaluation of the crystal field, Eq.
(3.27), where V is the crystal field in the rigid lattice and
where V' is due to the self-interaction in the deformable
lattice. The coefficients w&

g in expression (3.10) are calcu-
lated by means of Eqs. (3.11) and (3.12). The results are
quoted in Table III, where we have again shown the contri-
butions from various types of interaction centers. Inspection
of the results show that, even within a same manifold l,
contributions from C, C, C,D, and D,D interactions have
not the same sign. This subtle fact is due to the linear de-

pendence of w, ", Eq. (3.11), on the structure constants

c, (X), l 40. The sign of these structure constants (see Table
I) is specific for the location of a center on the molecule. In
other words the crystal-field coefficients reAect in a rather
direct way the electronic structure of the molecule. This fact
has been discussed before ' in the case of solid C6p. There it
has also been shown that the crystal-field coefficients can be
obtained from diffraction experiments. ' For the case of
C7p we see from Table III that the presence of double-bond
interaction centers is responsible for the large positive value

of w6". In particular we find that the matrix elements

F, "(k,P, ') where D centers are involved are negative, while
from Table I we see that C6(6)= —2.84. Using expression
(3.11) and observing that co(k))0, we obtain the positive
contributions from C,D and D,D interactions to w6". No-
tice that, since c6(7)=0.61, the D centers with label k=7
yield negative contributions to w6 ', however since d(7)
(d(6), the matrix elements are smaller than those of centers
with label X=6.

The self-interaction V' leads to a replacement of ~4'~=
—534.4 K by ~& 'g = 1354.4 K, as is shown in Appendix C.
The crystal held 8" now reads

W =g [w "U4 "(n)+w6 "U "(n)+its "Us "(n)].

(5 2)

This expression is used for the calculation of single-particle
thermal averages ()„ in the quantities yo, B, and C of Sec.
IV. The integrations over Euler angles are done numerically.
At the end of this section we will show how the crystal-field
coefficients affect the orientational density distribution.

Starting from the results of Sec. IV and using the numeri-
cal information from Table III, we have calculated various
physical quantities. From Eq. (4.17) we find that our model
of solid C7p exhibits a first-order phase transition at T&=462
K, and that the virtual second-order transition is at T,=457
K. The discontinuity of the order parameter at T, is obtained
from Eq. (4.28) and we find F7=0.08. Since we obtain g)0,
and since A(0, it follows from Eq. (4.12) that the shears e;,
are positive. The positive values of the shears corresponds to
a stretching of the unit cell along the former cubic direction
[111],as is experimentally observed ' ' and obtained from
molecular-dynamics simulations.

Next we have calculated the collective orientational sus-
ceptibility y(q) given by Eq. (4.19).The temperature evolu-
tion of y"{q) for q= (0,0,q, ) is shown in Fig. 1. The tem-
perature dependence of the shear elastic constant c44,
calculated from Eq. (4.21), is shown in Fig. 2. The softening
of the elastic constant c44 at the phase transition is a conse-
quence of T Rcoupling (see Ref-. 10 for a review). So far we
know only about measurements of elastic constants in hex-
agonal crystals, where anomalies are found at successive
phase transitions. We encourage and look forward to experi-
ments in fcc crystals.

Knowledge of the crystal field allows us to determine the
orientational density distribution of a molecule in the dis-
ordered phase. We will restrict us to the ten nuclei located on
the two pentagons on the outer caps of the molecule. These



52 MICROSCOPIC THEORY OF ORIENTATIONAL DISORDER AND. . . 15 287

& [OOl]

0.03

0.01

I

iE

&50

I

500 550

FIG. 1. Collective orientational susceptibility, units K . Arrow
indicates transition temperature. The dashed line indicates disconti-
nuity at the first-order phase transition.

nuclei belong to the group of centers X.=S. Proceeding as in
Ref. 41, we obtain for the orientational density distribution

f(&)= X v, "&,"(&) (5.3)

Here EI 'g —=S, 'g are the cubic harmonics of symmetry Oh,
A) Ai

and the coefficients yI
" are thermal averages over the ori-

entational motion

(5 4)

15

0 l

a&0 C, 80
l

520

FIG. 2. Temperature evolution of elastic constant c44, units

K/4 . Arrow indicates the transition temperature.

The functions U&
" are defined by Eq. (A10), and the coef-

ficients c, (5) are quoted in Table I. We observe that for l =0,
co(5) = 10//4m. . We have calculated numerically the ther-

mal averages (U, ")z, using the crystal field W . Taking

T=SOO K, we obtain y "=—0.8S9, —0.8S6, and —0.1936,
for l =4, 6, and 8, respectively. In Fig. 3 we present a plot of
f(A) in a (110) plane in the disordered phase. The distribu-
tion exhibits sharp maxima in (110) directions. These

FIG. 3, Orientational distribution function of long molecular
axis in (110)plane, disordered phase. Numbers within square brack-
ets indicate directions in cubic crystal,

maxima are a consequence of the large positive value of the
crystal-field coefficients. In particular a positive value of
w " pushes the molecule away from (100) and a positive

value of w6" is strongly repulsive for (111).The preferential
orientation of the molecule along (110) is in agreement with
molecular-dynamics simulations and with NMR line-shape
data. Our calculations show that the large positive value of
w6" is a consequence of the double bond (D) interaction

centers. Without D centers, w6'g would be negative and fa-
vor an orientation along (111)in the disordered phase. Simi-
lar conclusions have been reached by molecular dynamics.
We see that the orientational distribution of the molecule in
the disordered phase rejects the electronic structure of the
molecule.

VI. CONCLUMNG REMARKS

Starting from a phenomenological model of the intermo-
lecular potential, which is based on interactions between
atomic (C), double bond (D), and intermediate (I) centers
of neighboring molecules, we have developed a theory of the
orientational phase transition Fm3I~R3m in solid C70.
We have shown that the bilinear T-R coupling leads to a
lattice-mediated orientational interaction which is maximum
and attractive at the center of the Brillouin zone. We have
carried out quantitative calculations and found that the
lattice-mediated interaction overcomes the infiuence of the
direct orientational interaction, which would favor an antifer-
rorotational order of symmetry Pa3, as is the case for solid
C6O. We have calculated the discontinuity of the orientational
order parameter at the ferroelastic phase transition and find
that the concomitant lattice shears are positive, which corre-
sponds to a stretching of the primitive unit cell along a cubic
[111]direction. We have also studied the temperature evolu-
tion of the collective orientational susceptibility and the re-
lated softening of the elastic constant c«near the phase tran-
sition. Finally we have investigated the orientational
distribution function of a C70 molecule in the orientationally
disordered phase. We find that (110) are directions of prefer-
ential orientations. We have shown that the orientational dis-
tribution rejects the electronic structure of the molecule, in
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APPENDIX A

Here we give explicitly the relevant site symmetry
adapted functions S,'(~ ) and the corresponding rotator func-l(Oh)

tions. Following Ref, 21, we define

Y =(Y, + Y™)/W2, (Al)

Yt '= —i(Yi —Yi )/v2. (A2)

For the manifold 1=2, we have only one representation
V=T2 . The corresponding three basis functions which we
denote by S2 are given by

'

particular the importance of the double bonds. The important
achievement is that the theory describes a range of expen-
mental facts in a qualitative correct way. In order to gain
additional information about the intermolecular potential in
solid C7p it would be very useful to perform diffraction ex-
periments, similar to those which have been camed out
in solid C6p.

The ferroelastic phase transitions in solid C7o are to a
large extent similar to those encountered in the alkalicya-
nides or mixed alkalicyanides halides. " Hence it is not
surprising that solid C7O exhibits pronounced thermal hyster-
esis effects. '

Here dry=du dy sin PdP, with 0(n(2m, 0(+27r,
0(P~~.

Finally we quote the site symmetry adapted functions for
F symmetry. There are two functions belonging to the
manifold l =2. From Ref. 21 we have

=1,E yp.
2 2&

Su=2, E y2, c
2 2 (A12)

and for the rotator functions we get

U2
' (to) = $4vr/5Y2(P, n),

U2 ' (co) = /4m/5Yz'(p, u).

(A13)

(A14)

APPENDIX 8

Here we will give additional details on the T-R coupling.
The Fourier transformed interaction is defined as

g",(q) =g F;(n —n')e xp[iq X(n' —n)]. (Bl)
n'

%'e will restrict ourselves to the 12 nearest neighbors n of n
on the fcc lattice and write W;(ic) for g „,(n n), —with
~=1—12. In order to study the structure of this interaction in
real space, we consider first the situation where the central
molecule at n is surrounded by the four molecules in the
(001) plane, i.e., with neighbors at points (~ a/2, ~ a/2, 0)
relative to (0,0,0). Taking into account Eqs. (3.15) and
(3.13), we calculate the matrix elements W;( lc), for i~= 1—4,
where ic=l refers to n' at (a/2, a/2, 0), etc. We obtain

SQ= 1 y1,$
2 2

SA'=2 yl, c . SA'=3 y2$
2 2 & 2 2

Here Y i stands for Y P(A). Defining x = sin 0 cos P,
y=sin Osin @, z=cos 0, and making use of Eq. (2.2), we
find that the functions S2 are equal to yz, zx, xy for 0.=1,2,3,
respectively. Using Eqs. (2.8) and (3.8), we obtain the rotator
functions

jO 0 A~I
[W';(1)]=

(a, h, 0)
For i'd=2, n' at ( —a/2, a/2, 0), we get

(B2)

U2 '(co) = $4 sr/5 Y"(p, u),

U2 (co) = —$4~/5 Y~"(P, n),

(A4)

(A5)

(0 0
1= 0 0

I, a, —a,
—A2, (B3)

S4"= 0.7638 Y4+ 0.6455 F4',

S "—0 3536K —0 9354K '

(A7)

Ss"=0.7181Ys+0.38188Ys'+0.5818Ys'. (A9)

The corresponding rotator functions (3.8) are then given by

U2 (tu) = —v4~/5Y2'(P, a). (A6)

The functions of A1g symmetry are also tabulated in Ref. 21.
They belong to the manifolds l =4,6,8,... . Explicitly

For 1~=3, n' at ( —a/2, —a/2, 0), we get

f ~.;(3)]= —[~.,(1)].
and for i'd=4, n' at (a/2, —a/2, 0), we find

[P;(4)]= —[W,(2)]. (B5)

Similar relations hold for the molecules i~=5 —8 in the (100)
plane and ~=9—12 in the (010) plane. The corresponding
matrices are easily obtained by symmetry considerations
from expressions (B2)—(B5). Defining X(ir) =X(n ) —X(n),
and using symmetry relations we rewrite expression (Bl) as

Ui '&(cu) = $4vr/(21+ I)$i 'g(p, n).
12

W.,(q) =i+ W.,(~)sin[q X(~)]. (B6)
We observe that these rotator functions are normalized such
that In the long-wavelength limit, expression (B6) reduces to Eq.

(3.20), where

d co U,'( co) U, ,
'

( o) ) = 8'„8„.2l+1 (Al 1)
A =A2+82. (B7)
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With the potential parameters of Table II, we find A= —3350
KIA.

We have also calculated the T-R coupling for the case of
orientational fluctuations of F. symmetry belonging to the
manifold I =2. The coupling matrix is given by

2)A~.a

~m

9'x 9'y

-v3q, v3q

We have evaluated A s with the potential parameters of
Table II and obtain A g = 867 KlA. Consequently the lattice-
mediated interaction for F. fluctuations is an order of mag-
nitude smaller than for T2 fluctuations. For the correspond-
ing self-interaction we calculate the value C' g=507 K.

(Cl)

APPENDIX C

Here we study the effect of the self-interaction on the
crystal field. It has been shown previously' ' that the con-
tribution V' in Eq. (3.27) is given by

3 2

(S ' '&) = g (S ' ') = g3/7rrS " (C2)
Cl'= 1 Cl= 1

Using the relations between the rotator functions and the
surface harmonics, Eqs. (A4) —(A6), Eqs. (A13), (A14), and

(A10), we rewrite expression (Cl) as

V'=tz„"g U "(n), (C3)

where

a4't=0. 39(C'"' —C' )

With the values C' 2g=C'=535Q K, C' g=5Q7 K, we

obtain u4"= 1889 K, and consequently, since ~4"=A) AI

—534.4 K,

I =T2s and F. , and u labels the components 1—3 and 1,2,
respectively. As a consequence of the generalized Unsold
theorem we have

Here we restrict ourselves to contributions belonging to the
manifold l=2, the index r=(l, n) labels the representations is equal to 1354.4 K.

' +A'-A A A

4 4 4 (C5)
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