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In this paper, we reexamine the effect of quantum lattice fluctuations in a half-filled quasi-one-
dimensional electron-phonon coupling system by considering long-range electron-phonon correlation
more precisely. Our results coincide with previous papers in the @ =0 (adiabatic) and o= « cases. We
note that the off-site electron-phonon correlation plays an important role in the order-disorder transition
of the spinless case. But in the spin-4 case, the Peierls dimerization always exists. The effect of the off-

site electron-phonon correlation is slight. Our results are in good agreement with Monte Carlo simula-
tions, and the small squeezed-polaron approach is the special case of our method.

I. INTRODUCTION

Studies of lattice instabilities in quasi-one-dimensional
electron-phonon systems have a long history! ™’ since
Peierls’ pioneering work,® and in recent years the ques-
tion of whether the Peierls dimerization can survive the
quantum lattice fluctuations if the ionic mass is lower
than some critical value has been of wide interest among
theorists and experimentalists. In theoretical studies,®~%°
particular attention has been paid to the Holstein?} mod-
el, because it is perhaps the simplest model for an
electron-phonon system but contains the main physics.
In the adiabatic limit (phonon frequency w=0) the
ground-state properties of the model are easily obtained
in mean-field theory by freezing out the lattice distortion
and determining it self-consistently from the minimiza-
tion of the total elastic plus electronic energy.®’ In con-
trast, the Lang-Firsov transformation?* followed by an
average over the phonon vacuum state can be used in the
o= co limit, where the Peierls dimerization disappears.
The difficulty is how to treat the intermediate region
where #iw is of the same order of magnitude as the elec-
tronic bandwidth W =4t and the nonadiabaticity plays
an important role. Several papers have studied this
difficulty: Hirsch and Fradkin’s” strong-coupling expan-
sion and Monte Carlo simulations in the general case,
Bourbonnais and Caron’s'® functional intergral approach
coupled to a renormalization-group procedure, Hirsch’s!!
one-dimensional molecular-crystal model with Coulomb
interaction, Takahashi’s'? adiabatic quantum Monte Car-
lo method, Z. B. Su and Yu’s!? consideration of the tran-
sition between multielectron states under the theory of
relaxation and multiphonon processes, Z. B. Su, Wang,
and Yu’s!* Green’s function technique, W. P. Sus'®
Monte Carlo method, and Schmeltzer’s?® renormalization
group in the 1/N expansion.

Zheng, Feinberg, and Avignon® proposed a small
squeezed-polaron?!:?? approach to investigate the effect of
quantum lattice fluctuations on the Peierls dimerization
in a half-filled one-dimensional Holstein model. The
nonadiabatic effects due to finite phonon frequency w0
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are treated through a variational polaron wave function,
in which only the on-site electron-phonon correlation is
taken into account. Thus we shall call this approach the
small squeezed-polaron (SSP) one.

In this paper, we reconsider the SSP approach and take
into account both the on-site and the off-site electron-
phonon correlations. We shall show by our results that
the long-range electron-phonon correlation cannot be
neglected in the intermediate region where #iw is of the
same order of magnitude as W =4t.

This paper is organized as follows. In Sec. II, we give
the theoretical analysis of the Holstein model in the spin-
less and spin-1 cases. Section III contains the definitions
of some interesting quantities and the numerical calcula-
tion of these quantities in the limits (w=0, o) and the
general case. The discussion of our results is in Sec. IV,
which gives some comparisons with other papers. Some
details of theoretical derivations are in the Appendix.

II. THEORETICAL ANALYSIS

A. Spinless case

Our starting Hamiltonian is the one-dimensional
molecular-crystal model® (Holstein model):

H=3(b/b,+1Yio— 3 A\WAH/2Ma(b] +b,)(n,— 1)
1 !

—t 3 (cfejiitef e, (1
1

where o=V K /M, K is the elastic constant, M is the
mass, A is the electron-phonon coupling, ¢ is the hopping
integral, ¢; and ¢; are the creation and annihilation
operators of an electron at site /, n,=c,Tc, is the number
operator of the electron, and b;' and b, are the creation
and annihilation operators of a localized phonon at site /.
The total number of electrons is N /2 in the case of half

filling, where N is the number of sites.
In the following text, three unitary transformations are
used. The first unitary transformation is a modified
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Lang-Firsov transformation, which introduces the g-
dependent function §,. g is the wave vector.

S1=—388,_p(b}l —by)n—1)
LI
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Here §, | clearly represents the electron-phonon correla-
tion between sites / and /', and § q 18 the Fourier transfor-
mation to §;,_;: 8,=(1/N)3, e 4U=1%, ... Thus
8 describes both the on-site and the off-s1te electron-

) phonon correlation, &_,=8,. b, and b are in the
. 2
=———3¢g5 edbT—b_ Yn,—1). (2) ~mMomentum representatlon, g =¢€, /fw, and €, =A°/2K.
VN % ! 7 e €, is the polaron binding energy. of-2s Thus
J
H,=exp(S,)H exp(—S,)
=3 (bjb, +‘)ﬁw—ﬁlzm/h/sze—"q’u—aq)(bT +b, ) — 1)
q q
+%”2’ gAVE/ZMwe 10~ 1(82 —28, )(n, — L)(ny— 1)
i ’q
1 i 1 i
—fEI [CITC:HCXP —WZgSqeg’(b;—b_q) exp | 3 88, 9U+D(pr—p_,) |+H.c. ] , 3)
q q

In order to increase the possibility of polaron tunneling and offset the polaronic narrowing effect?> on the bandwidth
which is produced by Lang-Firsov transformation and energetically unfavorable to many-polaron system, we introduce
the second unitary transformation, the squeezing transformation,?!"??

S,=—3a, bl —bb_,),
q

where {a,} is a g-dependent function.

Thus
H,=exp(S,)H, exp(—S,)
=H,+H'.
H ——2(72+T—2><b*b -2
r— — Tyt _
H —__4—2(772; 7y “NbgbL,+bgb )
q

7172;( MWETIMa(1—8,)m7 Ncfer _ b1
9

4

(5)

2
3K (83—28,)N —2pt S cicy cosk ,
k

q +C;Ck_qbq)

+%\/_17\/ﬁ/2Mw(1—80)751(b3+b0)+—1— s 2K(82_26 ek +qChCiie g

Nq,k,k

et(k k)l cIIck [exp

Nl,k,k'

Xexp

where c,:r and ¢, are the electron operators in the momen-
tum representation. 7,=exp(—2a,), the second g¢-
dependent function, is in the range of 0 <7, <1.

_ 1 .
p=exp | — F% 2828272 smz—% (7)

is the narrowing factor to bandwidth W =4¢, 0<p<1.
When §,=1 and 7, =1 for any g,
p=po=exp | — i,—}q: 2g%sin’ 2 |

which is the Holstein narrowing factor.?

1 i t
qu; 88,7, e (b —b_,)

1 .
Vo % gSqqu“’I(b;r——b_q ) ]

) (6)

—-pJ+H.c.

—

The ground state |G ) of H, is the direct product of a
Fermi sea |FS) and a phonon vacuum state |ph,0),
|G )=|FS)|ph,0).

H' is considered as the perturbation to H, and the
first-order perturbation (G|H'|G ) is zero. We note that
the first term in H' is the two-phonon one, which gen-
erates a different type of coherent lattice state, the two-
phonon state.?!?2

In our method, {§,} and {7,} are two g-dependent
functions and how to determine them is the central prob-
lem of this paper. In Eq. (5) H, is separated into H, and
H'’, which is considered as a perturbation to H,. We
choose {8,} and {7,} to make the matrix elements of H'
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where |k +q|>m/2 and |k|<w/2. {8,} and {7,} are
determined to let

(G|H'|1)=0, (9)
(G|H'|2)=0. (10)

between the ground state and lowest-lying excited states
of H be zero or minimized.
The lowest-lying excited states of H, are

1) =b/b",1G),

(8)
|2>=C;+qckb1-_q|G> >

We obtain the following equations:

5,= ! e
1+4(t /#%iw)72plsin(k +q /2)||sing /2|

= 1 : (11

q
1416(1 /#0)g*62p(1/N)3, {FS|c/c, |FS )cosk sin’q /2
k

We note that in the one-electron situation the electron 5 = 1
is at the bottom of conduction band and then k =0 in the 7 1+4(t /%w®)|sing /2| ’
excited state |2). Thus we obtain the functional form of . 1
: A= , (12)
% . 1+16(z /#iw)(1/m)g 82 p sin’q /2
1)

q = ) T
1+4(t /fiw)p sin“g /2 p=exp __l_fo dg 2878272 sinz—g— )
T
with 'r; =1, which is the same as that of Wagner and
Kongeter.’
But we consider the many-electron situation in this pa-
per. Note that 8, is a function of g only and cannot satis-

fy Eq. (10) for any k. So we have to replace

It is apparent that 8,=1,7,=1, and 8,7, are monotoni-
cally decreasing functions of g.
We believe that {8,} and {7,}, determined by the

above method, can describe the long-range electron-

q

2plsin(k +¢/2)| with a parameter 1/®, which is deter-
mined to minimize the energy of the ground state. Thus

we have
J

phonon correlation in the one-dimensional molecular-
crystal model better.
The third unitary transformation is

S;=—3 (—1)'moVMw/2% b} —b,) . (13)
1

H,=exp(S;)H, exp(—S;)

fiw - #iw - K
=2+, 2)(b;rbq+%)——4—2 (r2—7, (b6  +b,b_ )+ S mN
q q

2 —
- &(83—280)—%)« 1=8,)F cfeq o+ motioV Ma /28N 7 (b1 +b,)
k

1 YTV I _
—quk AV H/2Mo(1-8,)1, l(c,fck_qbtq-Fc,Ick_qbq)

A —_— _ 1 A2
+ VN VE/2Mo(1—8))7; 1(b£+b0)+—]\7 %k,'z—f(sz_%q el b geich g
a.k,
_ 1 ¢ lgite=knt, =ik’ . 1 1 5 gt —p )
lezkl e e Ci Cir€XPp TN >g 7T g —q
s Ky q

Xexp , (14)

VN

L5 g8, 7,0 Vb —b_,) ] +H.c.
q9

where the parameter m, measures the phonon staggered ordering.® This transformation changes the original point of
the localized phonon mode to (—1)’m,. In other words, the system is in a phonon-staggered-ordering state (dimeriza-
tion state) as long as my70. When §,=1 for all g, m, approaches zero. That is, the polaronic effect suppresses the
phonon staggered ordering. In the general case 0 <8, <1, we expect that there will be a nonzero dimerization, but re-
duced by the polaron effect, that is, by the quantum fluctuations of phonons.
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Our method with two g-dependent functions {§,} and {7,]} is different from the SSP approach of Ref. 8. In the SSP
approach, the squeezed polaron is treated as an absolutely small one, which means that the lattice motion is influenced
by the on-site electron-phonon correlation only and has nothing to do with the electrons at other sites. In fact, the vi-
brations of all lattice sites are correlated by the tunneling of the electrons and an electron will influence the motion of
the lattice at neighboring sites. Thus we think that our method, taking into account the long-range electron-phonon
correlation by g-dependent 6, and 1'2 is reasonable. In this paper, we also calculate the “size” of the polaron.

At this point, we average H 3 over the vacuum state |ph,0) of the transformed phonon subsystem. The effective
Hamiltonian for the electron subsystem.

=(ph,0|H3|Ph,0>
2
2(72+ T+ miN - (250 Bé)N—%{E(28q—8‘21)——m07»(1—8,,)2c,Ick_,,
q k

—2pt2ckckcosk+—— A 1225, — 2(62—28 ) ed v gciet—ger - (15)
N &, 2K N

If we set 8, =& and 7, = for every g, H 4 becomes
2
Heﬁz’?T“’(fZ+T—2)N+ gméN—(%—Sz):—KN—mOK(I—S)Z clee_n—2pt S cley cosk (16)
k k

which is the same as the SSP approach. This means that the SSP approach is just a special case of ours.

The effective Hamiltonian Eq. (15) is more difficult to solve because of the four-fermion term. We use the self-
consistent-field approximation, decoupling the four-fermion term, and the Bogoliubov transformation, diagonalizing the
other terms. The details are listed in the Appendix. The ground-state energy is

_ A2
bl 2 AN AN 2
Ey(8,,7,)/N=" f dg(r2+1, )+ 2 TR V0 (14 Vom
1 1 }\,2 231172
—;fo dk |4pt? cos?k + (1+VO)—K—me] ]

_TEZ—ZI dk’ f dk (8% ) =284 + 8% 41 —28;4y)

2pt cosk’

\/4p2t cos’k’ +[(1+ VA /K)m, ?
2pt cosk

\/4p2t cos’k +[(1+ Vo)A /K )m, ]

(17)

where
1 T
Vo=—[da(8;—25,) .

m,, the charge-density-wave® (CDW) ordering parameter, is determined self-consistently by

™ (1+V)A/K )m
m ——~§;(—1)'<n,>——f "k 0 : : (18)
0 V 4p%? cos?k +[(1+ V(A2 /K )m, ?
where { - - - ) means the averaging over the ground state of H 4; and
A(1—5,)
M= M- (19)

B. Spin-1 case

In the spin-1 case, the total number of electrons is N in the case of half filling. The Hamiltonian® is

H=§ (b/b,+Lfio—tS, (cl*,,,c,+1,(,+c,*+wc,,,,)—lz MA2Mo(b]+b))(n, ,— 1), (20)

Lo

in which the phonon creation and annihilation operators have been used and o is the spin index.
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Three unitary transformations, which are similar to those in the spinless case, are used.

H;=exp(S;)exp(S,)exp(S;)H exp(—S,)exp(—S,)exp(—S3;)

) (2+772)bb +‘)—£—(82~28 N —moA(1—8 !
- 2 E e T Tq 9%q ' 7 2K 0 0) my ( w)’cz Ck,0Ck—mo
q N4

+§m51v—i4“’—z (=170} +b,b_ )+ mtioV Mo /25N 17 (b1 +b,)
q

—%N S AWVEZMo(1-8,)7; (6} otk bl g FCk otk —goba)

g,k,o

R _ 1o A2
+5VA/2MoV'N (1=80)7 1(b:§+bo)+wzﬁ(8§—28q) S g oChoCh—g.0Ch o
q

k,o,k',0’

1 e
_“ﬁzt[ I itk ‘kcg,acki,aexp
I (kKo

1 )
—77% ge'qlaq’rq(b;—"b_q)]

Xexp

%Nzge""”“)ﬁqv'q(b;—b_q)]+H.c. ] : (21)
q9

Two g-dependent functions {§,] and {7,}, which are determined by the same method as in the spinless case, satisfy
the following equations:

_ 1
97 1+4(t /fiwd)|sing /2| ’

1
1432(t /70)(1/m)g*82psin’g /2

6

= (22)

= _1 262 2 29
p=exp N%Zg 8272 sin 53|

From averaging H, over the vacuum state [ph,0) of the transformed phonon subsystem, we obtain an effective Hamil-
tonian for the electron subsystem,

Heﬁ'= <Ph,0|H3 lphyo)

) oy Kooy Ao A a2
4§(T§+Tq )+ moN — (85 280)N+2K§q:(8q 28,)

2
—moA(1—5,)3 c;r,ack_ma-i»—]lvz %(63 —28,)n; 1y, —2pt Y, cz,ack,ocosk
k,o q,! k,o
1 A? 1
+—1\—’_ X kz 2K 82 ._—28‘1‘_?2, (83'—28‘1') Cl—q,ock,a";’+q,a’ck’,a' . (23)
g,k k0,0 q

The sixth term is decoupled as Zheng, Feinberg, and Avignon8 have done:

CITTCI,TCITlcl,lzCZTcl,T<chcl,i>+<CITTC1,T>C1Tlcl,l—<c11:Tcl,T><clTlc1,l) , (24)
1 m
(al‘f,,c,,a>=5+(—1)1—2—e , (25)
1
me=ﬁz(—1)’(c,‘t,,cl,a) , (26)
l,o

where m, is the charge-density-wave ordering parameter. Using the same method as in the spinless case, we get the re-
sult
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fiw — A?
Ey(8,,7)/N="" [ "dg(r;+1, )+ 1= Vot 2+ Vom?]

. v,
—2 (g l4p2t2 costk + | |14+ ==
TYo 2
A1

2K 47

" 27172
K™

2 foﬂdk’foﬂdk(Si._k —28p ¢ +8i'+k — 28y 14)

2pt cosk’

X
\/4p2t2 cosk’

+[(1+Vy/2)A2/K)m, *

2pt cosk

(27)

X
V 4p*? cos’k

where
Vo= i fo”dq(ag —28,), (28)
_ 21 (1+Vy/2)A%*/K)m,
e ’Tf" V 4p 2 cosk + [(1+ Vo /2) (A2 /K )m, >
(29)
We also get
M1-8,)
mo=—p M - (30)

We find the result of the SSP approach is a special case
of our result, just as in the spinless case. But in this pa-
per we do not consider the superconducting singlet pair-
ing parameter.

III. NUMERICAL CALCULATIONS

First, we define some interesting quantities. The
phonon-staggered ordering parameter m,, is
_1 !
mp—ﬁg(—l)(q,) , (31)
where g, is the position operator of the lattice
m,=mg+ —}3-8
P 0 K ‘ﬂme
A
= X m, (32)
for the spinless case and
m,=mg,+ A8
P 0 K w’"e
= K Me (33)

for the spin-1 case. The contribution of the polaron
effect is included in m,, apart from the static staggered
ordering parameter m.

We also consider the “size” of the polaron R. As we
have said, the polaron in our approach is not an absolute-
ly small one as in the SSP approach. Because {§,}
represents the dynamical distortion of the lattice when

1+ Ve /2 A2 /K)m, 2

r

electrons move, we use {§,] to define the size of the pola-

ron R, using the anti-Fourier transformation to {§,},
1 pr ial

8, =— | dqe'?s (34)
o f 0¥ 9

which represents the displacement of the lattice at site /,

when an electron is at the origin. Thus, the “size” of a
polaron R is defined as

8r =8,/10 . (35)

®=0 limit

In the ®=0 limit, we find that §,=0 (g#0), 8,=1,
and 7.=1 for both spinless (n =1) and spin-1 (n =2)
cases. So in this limit

_K ,_n
Eg/N—7m0—‘;

ST @t otk +mEAn) dk - (36)
_AMn pan

1
7K Yo

(4t%cos’k +m3A1) "V 2dk 37
which is the same as that of the SSP approach and mean-
field theory.” The w=0 limit is the adiabatic limit at
which Egs. (1) and (20) can be solved exactly, and the
solution is Egs. (36) and (37). In this limit, the system is
dimerized for arbitrary electron-phonon coupling con-
stant A.

= oo limit

When o= o,p=1 for both spinless and spin-] case.
Thus we find §,=1,7,=1 for every ¢g. In other words,
there is no squeezing effect and dimerization for any A.
Our results in this limit become those of the SSP ap-
proach.

General o case

Equations (1) and (20), as far as the ground-state prop-
erties are concerned, are defined by two parameters, the
phonon frequency w and electron-phonon coupling con-
stant A (or J=A2?/2Kt), which are chosen as the same
values as in previous papers for comparison with them.
The transfer intergal ¢ of the electron can be set to equal
1 by redefining the overall energy scale.” The force con-
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FIG. 1. m, vs fio relation in the spinless case and J=1.62.
The short-dashed line represents m,, for the SSP approach (Ref.
8); dot-dashed line, result of Bourbonnais and Caron (Ref. 10);
error bar, Monte Carlo simulations (Ref. 9). See text for details.

1

S
@
(1)
o "
0 i1
q
1 +
@)
@
© (@)
(1)
(b)
0
0 T
q

FIG. 2. (a) 8, vs g relations in the spinless case and J=1.62,
#iw=0.1 (1), 0.5 (2), 1.5 (3), and 2.0 (4), respectively. (b) 7'2 Vs q
relations in the spinless case and J=1.62, fio=0.1 (1), 0.5 (2),
1.5 (3), and 2.0 (4), respectively.
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stant K is chosen to be 0.25 throughout this paper for
comparison with previous work.

1. Spinless case

In Fig. 1, we plot the phonon staggered ordering pa-
rameter m, as a function of fiw in the case of J=1.62.
For comparison, the results by other methods are plotted.
All curves coincide at =0, where Eq. (1) can be solved
exactly. In the intermediate case, our result is much
smaller than that of the SSP approach. This means that
the polaronic effect is strong in that case, after consider-
ing the off-site effect more precisely. Our result is in good
agreement with Monte Carlo simulations® and the results
of Bourbonnais and Caron'® using a functional integral
approach coupled to a renormalization-group procedure.
When w becomes larger, these results become the same.

In Fig. 2(a), as an example, we plot 5, versus g rela-
tions in the case of J=1.62 and #i»v=0.1,0.5,1.5,2.0, re-
spectively. All of them are monotonically decreasing
functions of g. On the other hand, with increase of w, the
polaronic effect increased.

In Fig. 2(b), as an example, we plot 7'3 versus q rela-
tions in the case of J=1.62 and #©=0.1,0.5,1.5,2.0, re-
spectively. All of them are monotonically decreasing
functions of g. On the other hand, with the increase of w,
72 decreased at first and then increased.

Figure 3 shows the dimerization ordering parameter
m, and narrowing factor p versus #iw relations in the case
of J=4. For comparison, the short-dashed and dot-
dashed lines represent those of the SSP approach. The
narrowing factor p becomes larger in our method. The
critical @ of the order-disorder transition, in which m,
decreases sharply, is at a smaller value. m, is smaller,
which is the same as Fig. 1.

In Fig. 4, we plot the functional dependence of the
phonon staggered ordering m, and narrowing factor p on
A in the case of iw=2. Also, as a comparison, the result

FIG. 3. m, (1) and p (2) vs fiw relations in the spinless case
and J=4.0. Short-dashed and dot-dashed lines represent the
results of the SSP approach (Ref. 8) for m, and p, respectively.
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FIG. 4. m, (1) and p (2) vs A relations in the spinless case and
#iw=2.0. Short-dashed lines represent the results of the SSP ap-
proach (Ref. 8). Error bar, Monte Carlo simulations (Ref. 9).

of the SSP approach is plotted. The results of these two
methods are the same at large and small A. The
difference is in the intermediate region, in which m, is
much smaller and increases more rapidly at larger A.
This means that the role of off-site effects cannot be
neglected in this region. Our result is in agreement with
Monte Carlo simulations.

Figure 5 shows the “size” of the polaron R as a func-
tion of #iw in the case of j =4.0,1.62,1.0, respectively. R
becomes infinity in the @ =0 limit, which means there is
no polaronic effect because dimerization suppresses the
polaronic effect completely. With increase of @, the role
of the polaronic effect gets stronger rapidly, which results
in a sharp decrease of the polaronic ‘“size’” R. We also
find that the electron-phonon coupling constant J, the
weaker the polaronic effect.

2. Spin-1 case

In Fig. 6, the relation between m, and i is plotted in
the case of J=0.81. For comparison, the short-dashed

50 ,

(3)

(2)

)

0 ‘ 1 i 2
fw
FIG. 5. Curves (1), (2), and (3) represent relations between R

and #iw in the spinless case and J =1.0, 1.62, and 4.0, respective-
ly.
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1.5 , . .

Me/f2”

0.0 : L .
0 1 2
ho
FIG. 6. m,/V2 vs #iw relation in the spin-1 case for J=0.81.
Short-dashed line, the SSP approach (Ref. 8); error bar, Monte
Carlo simulations (Ref. 9).

84

(4)
(3
(2)
(1)

T

0 I 4
q
FIG. 7. (a) 8, vs g relations in the spin-4 case and J=0.81,

#iw=0.1 (1), 0.5 (2), 1.5 (3), and 2.0 (4), respectively. (b) Tg vs g
relations in the spin-% care and J=0.81, #iw=0.1 (1), 0.5 (2), 1.5

(3), and 2.0 (4), respectively.
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line represents the result of the SSP approach, and the re-
sult of Monte Carlo simulations is also plotted. m, is
smaller than the SSP approach. The difference is smaller,
compared with the spinless case, because there always ex-
ists a CDW state in the spin-+ case. Our result is in good
agreement with Monte Carlo simulations.

Figure 7(a) shows 8, as a function of mode g in the
case of J=0.81 and #%©»=0.1,0.5,1.5,2.0, respectively.
We also note that the polaronic effect increased with in-
crease of @. Compared with the spinless case, 8, is small-
er, which corresponds to a slight polaronic effect.

Figure 7(b) shows 1"2] as a function of mode g in the
case of J=0.81 and #®»=0.1,0.5,1.5,2.0, respectively.
We also note that 72 decreased at first and then increased
with increase of .

Figure 8 shows the CDW ordering parameter m, and
narrowing parameter p versus fiw relations in the case of
J =2. The dimerization ordering m, falls slowly and is
slightly smaller than that of the SSP approach shown as
the short-dashed line. There is no order-disorder transi-
tion. p is the same as in the SSP approach.

We plot the dimerization parameter m, and narrowing
parameter p as functions of the electron-phonon coupling
constant A in the case of #iw=2.0 in Fig. 9. The short-
dashed and dot-dashed lines are the results of the SSP ap-
proach. Our result is in good agreement with that of the
SSP approach, except that there is a slight difference in
the intermediate region.

Figure 10 is the polaronic “size” R as a function of #iw
in the case of J=0.81 and 2.0, respectively. The features
of the polaronic ‘“‘size” are similar to those in the spinless
case.

IV. SUMMARY AND DISCUSSION

We have studied the properties of quasi-one-
dimensional half-filled electron-phonon coupling systems

)T

0 2 4
fiw
FIG. 8. m, (1) and p (2) vs #iw relations in the spin-1 case and

J =2.0. Short-dashed lines represent the results of the SSP ap-
proach (Ref. 8).
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FIG. 9. m, (1) and p (2) vs A relations in the spin-1 case and
#w=2.0. Short-dashed and dot-dashed lines represent the re-
sults of the SSP approach (Ref. 8) for m, and p, respectively.
Error bar, Monte Carlo simulations (Ref. 9).

in the ground state by reconsidering the SSP approach.
Two g-dependent functions §, and 7, are introduced to
take into account both the on-site and the off-site
electron-phonon correlations, because the lattice motion
is influenced by not only the on-site electron but also the
off-site ones due to the tunneling of electrons. How to
determine the functional forms of 8, and 7, is the central
problem of this paper. By comparison between our result
and previous works,® ' we note that our method (the de-
tails can be seen in Sec. II) is effective. As we have said,
the SSP approach is actually a special case of our
method. Thus these two methods become the same at
©=0 and o« (the details can be seen in Sec. III). In the
general case, a difference occurs, especially in the inter-
mediate range where fiw is of the same order of magni-
tude as the electronic bandwidth W =4¢. Our results are

50 . - —
@
o~ 25+ -
(1)
0 " 1
0 1 2
ho

FIG. 10. Curves (1) and (2) represent the relations between R
and fiw in the spin-% case and J =0.81 and 2.0, respectively.
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in good agreement with those of Monte Carlo simulations
and renormalization-group analysis. In this paper, we
also estimate the “size” of a polaron, which represents
the range of the dynamical distortion of the lattice.

In the spinless case, there is an order-disorder transi-
tion depending on the value of w. After considering the
long-range electron-phonon correlation carefully, the di-
merization is reduced by a larger amount comparted with
that of the SSP approach, especially in the intermediate
region, and the transition point is changed to smaller w
or larger J. These features mean that the role of long-
range electron-phonon correlation, which is almost
neglected in the SSP approach, becomes important in the
intermediate region.

In the spin-1 case, the long-range order dominates, for
arbitrary w. There is no order-disorder transition. The
order parameter is slightly reduced by the quantum lat-
tice fluctuations. The difference between the SSP ap-
proach and ours can be neglected, though the order pa-
rameter is a little bit smaller.

In the calculation, we find that the ground-state ener-
J

Hetf=éTw2(T§+Tq_2)+§
q
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gy, not plotted in this paper, is almost the same as in the
SSP approach. We note that the off-site electron-phonon
correlation is important to the order-disorder transition
in the spinless case. In contrast, the role of the off-site
electron-phonon correlation is slight in the spin-J case,
because there exists dimerization for arbitrary @ and no
obvious competition between the phonon staggered or-
dering and the polaronic effect.
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APPENDIX

In the Appendix, we give the details of the decoupling
four-fermion term in Eq. (15). Because we only take in-
terest in the properties of the CDW case, the last term in
Eq. (15) is zero, except for ¢ =0, 7, and k' —k.

Thus H 4 becomes

2
maN — ‘:EE (28, —82)—moA(1—8,)3 cfc,—,—2pt 3 cfc, cosk
q k k

| e P 1 2 t t
+ ‘Nk’k, EE 8.".'_28.",_ F? (8q1—25q:) Cp—nCkCr —nCi’
1 A | 1 2 to ot
_.ﬁk,k, —2; Sk_k:—ZSk_k'—-ﬁg (Sq,——28qr) CrCrCrCpr « (A1)
The last two terms are decoupled as follows:
Clz—frckclj'~ Cr' = <clf—wck )CII’~ Ck'+c11—7rck ( C/I'— ) — <6'1:r—ﬂck MCII'—ka') )
(A2)
clzckclf'ck'z (C;Ck ) <CZ'Ck' ),
where { - - ) means the averaging over the ground state of H,., which should be determined self-consistently. We
note that the charge-density-wave ordering parameter m, is
m,= —1—2 ef_cn . (A3)
e N e k—7tk
Now, introducing the Bogoliubov transformation for £ >0,
Bix=xicx tyicr—r
Bok =YrCr —XxCr—r » (A4)
xE+yi=1.
After letting the nondiagonal terms Blrk B, and BZkB, x disappear, we get
X =cosf ,
Y, =sinf; ,
moM1—8,)—(A*/K)[82—28,—(1/N)3, (82, —28,)]m,
tan20, = — A
Ak 2pt cosk (A3

Here, we define the energy gap
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A=moh(1—8,)— 2= |52—25 — L 5 (52.—25,)
mg T K T T Nz, q' q’ m,
q
Then
1 2pt cosk
(cle)== |1+ £ (A6)
KT V' 4p?t? cos’k + A?
1 pnr2 A
=— dk .
e fO 4p°t? cos’k + A? (A7
Thus H 4 becomes
Hg= ﬁ“’Nz (247 *2)~——N 81-26,— 3, (8 —25,) |m}
q
A2 o2k - AX gt t A? K
- 2 ‘/4p2t2 0082k +A2(Blkﬂlk _B2kB2k )+ —2 (8; —28q )+ - m (Z)N
k>0 8K 4 2
At 2pt cosk’ 2pt cosk
(83 =284 +8% e — 28404 ) — : (A8)
TN 2,2 Kk T 4t T cosTk' + A Vap¥tZ cosk + A2
Therefore, the ground state |g ) of H .4 should satisfy
B¥k lg)=Bylg)=0. (A9)
m can easily be derived for the ground state,
A(1—8,)
mgp= —K‘—me . (A10)
So we obtain the ground-state energy
2
Ey(8,,7,)/N=221 [ "aq(r2 472+ ;‘K Vot 5}3—(1+ VoIm?
21172
1 p=n 2 2
— dk |4p*t? cos’k + (1+V0)
_Z?Ff dk’ f Ak (82, — 284 +8% 1 — 28,041
2pt cosk’
\/4p2t cos?k’+[(1+ Vo (A2 /K )m, ?
2pt cosk (A11)
\/4 2t2cos’k +[(1+ Vo) (A2 /K )m, |
P 0
where

_1pn
VO———;fo dq(82—28,) .
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