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Long-range electron-phonon correlation and Peierls dimerization
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Xin Wang* and H. Zheng
Department ofApplied Physics, Shanghai Jiao Tong University, Shanghai 200030, People s Republic of China

(Received 5 December 1994; revised manuscript received 2 May 1995)

In this paper, we reexamine the effect of quantum lattice fluctuations in a half-filled quasi-one-
dimensional electron-phonon coupling system by considering long-range electron-phonon correlation
more precisely. Our results coincide with previous papers in the co=0 (adiabatic) and co= ~ cases. We
note that the off-site electron-phonon correlation plays an important role in the order-disorder transition
of the spinless case. But in the spin-2 case, the Peierls dirnerization always exists. The effect of the off-

site electron-phonon correlation is slight. Our results are in good agreement with Monte Carlo simula-
tions, and the small squeezed-polaron approach is the special case of our method.

I. INTRODUCTION

Studies of lattice instabilities in quasi-one-dimensional
electron-phonon systems have a long history' since
Peierls' pioneering work, and in recent years the ques-
tion of whether the Peierls dimerization can survive the
quantum lattice fluctuations if the ionic mass is lower
than some critical value has been of wide interest among
theorists and experimentalists. In theoretical studies,
particular attention has been paid to the Holstein mod-
el, because it is perhaps the simplest model for an
electron-phonon system but contains the main physics.
In the adiabatic limit (phonon frequency co =0) the
ground-state properties of the model are easily obtained
in mean-field theory by freezing out the lattice distortion
and determining it self-consistently from the minimiza-
tion of the total elastic plus electronic energy. ' In con-
trast, the Lang-Firsov transformation followed by an
average over the phonon vacuum state can be used in the
co= ~ limit, where the Peierls dirnerization disappears.
The difficulty is how to treat the intermediate region
where Ace is of the same order of magnitude as the elec-
tronic bandwidth W =4t and the nonadiabaticity plays
an important role. Several papers have studied this
difficulty: Hirsch and Fradkin's strong-coupling expan-
sion and Monte Carlo simulations in the general case,
Bourbonnais and Caron's' functional intergral approach
coupled to a renormalization-group procedure, Hirsch's"
one-dimensional molecular-crystal model with Coulomb
interaction, Takahashi's' adiabatic quantum Monte Car-
lo method, Z. B. Su and Yu's' consideration of the tran-
sition between multielectron states under the theory of
relaxation and multiphonon processes, Z. B. Su, Wang,
and Yu's' Green's function technique, W. P. Su's'
Monte Carlo method, and Schmeltzer's renormalization
group in the 1/X expansion.

Zheng, Feinberg, and Avignon proposed a small
squeezed-polaron ' approach to investigate the efFect of
quantum lattice fluctuations on the Peierls dimerization
in a half-filled one-dimensional Holstein model. The
nonadiabatic effects due to finite phonon frequency co&0

are treated through a variational polaron wave function,
in which only the on-site electron-phonon correlation is
taken into account. Thus we shall call this approach the
small squeezed-polaron (SSP) one.

In this paper, we reconsider the SSP approach and take
into account both the on-site and the off-site electron-
phonon correlations. We shall show by our results that
the long-range electron-phonon correlation cannot be
neglected in the intermediate region where A'co is of the
same order of magnitude as 8'=4t.

This paper is organized as follows. In Sec. II, we give
the theoretical analysis of the Holstein model in the spin-
less and spin- —, cases. Section III contains the definitions
of some interesting quantities and the numerical calcula-
tion of these quantities in the limits (to=0, oo ) and the
general case. The discussion of our results is in Sec. IV,
which gives some comparisons with other papers. Some
details of theoretical derivations are in the Appendix.

II. THEORETICAL ANALYSIS

A. Spinless case

Our starting Hamiltonian is the one-dimensional
molecular-crystal model (Holstein model):

H=g(bt bi+ —,')irido —g A&AI2Mto(bt +bt)(nt —
—,')

I I

t g (CI ci+ ) +ci+ )ct )

where to=&K/M, K is the elastic constant, M is the
mass, I, is the electron-phonon coupling, t is the hopping
integral, ch and c& are the creation and annihilation
operators of an electron at site I, nI =cI c& is the number
operator of the electron, and bI and bI are the creation
and annihilation operators of a localized phonon at site 1.
The total number of electrons is X/2 in the case of half
filling, where X is the number of sites.

In the following text, three unitary transformations are
used. The first unitary transformation is a modified
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Si = —g g 5i i (bi bi—)(ni —
—,
' }

1, 1'

ql(b t1

q
—

q l
1iq

(2)

Lang-Firsov transformation, which introduces the q-
dependent function 5 . q is the wave vector.

Here 51 1. clearly represents the electron-phonon correla-
tion between sites l and l', and 5» is the Fourier transfor-
mation to 5i i .. 5»=(1/N)gi

&
e 'q" '

'5& i.. Thus
5 describes both the on-site and the off-site electron-
phonon correlation, 5

q
=5 . b and bq are in the

momentum representation, g =e /irico, and e~ =A. /2K.
e is the polaron binding energy. Thus

H, =exp(S, }Hexp( —S, )

=g (bqb»+ —,')iri~ — g A+6/2Mcoe 'q'(1 —5 )(bt +b )(iii —
—,')

+—g gX&A/2M')e 'qi i(5 —25 )(ni —,')(ni, —'
)

1, 1', q
r

—gg5»e"'(b, b, )—exp gg5, e'»"+"(b, b, —) +&I.c
1

(3)

In order to increase the possibility of polaron tunneling and offset the polaronic narrowing effect on the bandwidt
which is produced by Lang-Firsov transformation and energetically unfavorable to many-polaron system, we introduce
the second unitary transformation, the squeezing transformation, '

Sz= —ga (b b bb q)—,

where la» I is a q-dependent function.
Thus

H, =exp(S, )H, exp( —S, )

=Ho+H' .

k2
g(v +r )(b b + —,') — (50—250)N 2pt gckck cos—k,

(5)

H
(H gq )(b b q+bqb q) — g A A/2M'(1 5 )v' (ckck b +ckck qbq)

+ ~lV v'fi/2M~(1 —5o)ro (ho+ho)+ —g (5» —25»)ck+qckck qc„
—1 f 1 ~ 2

2 , 2K

1——g t e'" " "e '" ckck ~ exp gg5 q. e'q'(b b)—»» q

Xexp —g g5 r e'»"+"(bt b) —p +—H. c.q» q»

where ck and ck are the electron operators in the momen-
tum representation. q. =exp( —2a ), the second q-
dependent function, is in the range of 0 & v. & 1.

1p=exp ——g 2g 5 r sin
2

q

is the narrowing factor to bandwidth 8'=4t, 0&p&1.
When 5 = 1 and ~ =1 for any q,

1p=po=exp ——+2g sin

which is the Holstein narrowing factor.

The ground state
~
G ) of Ho is the direct product of a

Fermi sea ~FS) and a phonon vacuum state ~ph, O),
~
G ) = ~FS ) ~ph, O).

H' is considered as the perturbation to Ho and the
first-order perturbation (6~H'~G ) is zero. We note that
the first term in H' is the two-phonon one, which gen-
erates a different type of coherent lattice state, the two-
phonon state. '

In our method, I 5 J and [r I are two q-dependent
functions and how to determine them is the central prob-
lem of this paper. In Eq. (5) Hi is separated into Ho and
H', which is considered as a perturbation to Ho ~ We
choose I 5» I and I r» I to inake the matrix elements of H'
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between the ground state and lowest-lying excited states
of Hp be zero or minimized.

The lowest-lying excited states of Hp are

~2& =c„+,ckb", ~G &,

&GIH I»=0,
&GiH i2&=0. (10)

We obtain the following equations:

where ~k+q~)n. /2 and ~k~ (qr/2. I5 I and Ir I are
determined to let

5 = 1

1+4(t/A'co)rqp~sin(k+q/2)~ ~sinq/2~

4
q

1+16(t/Ac@)g 5qp(1/N)g & FS~ckck ~FS)cosk sin q/2
k

We note that in the one-electron situation the electron
is at the bottom of conduction band and then k =0 in the
excited state ~2). Thus we obtain the functional form of

5 = 1

1+4( t /Ac@ )p sin q /2

with ~ =1, which is the same as that of Wagner and
Kongeter.

But we consider the many-electron situation in this pa-
per. Note that 5 is a function of q only and cannot satis-
fy Eq. (10) for any k. So we have to replace
rqp~sin(k+q/2)~ with a parameter 1/N, which is deter-
mined to minimize the energy of the ground state. Thus
we have

15—
1+4(t/A'co@) ~sinq/2~

1

1+16(t/%co)(1/m)g 5qp sin q/2
4
q

(12)

p=exp —— dq 2g 5 r sinz z z

7T 0

It is apparent that 50= 1,~p = 1, and 5,~ are monotoni-
cally decreasing functions of q.

We believe that I5 I and Ir I, determined by the
above method, can describe the long-range electron-
phonon correlation in the one-dimensional molecular-
crystal model better.

The third unitary transformation is

S3 = —Q (
—1)'mov'Mco/2A(bit bi ) . —

I

Hz =exp(S3)Hz exp( —S3)

(13)

g (qq+r )(blab + —,') —(~ gq.
q )(b bt —+b b )+—moN

A,
2

SK
(5o 25O) —moA(1——5 )g ckck +moficoV Mco/2%v N r '(b„+b„)

A/2M'(1 —
5q )Tq (ckck qb q+ckck qbq )

N qk

+—v'N v'g/2M~(1 —5O)ro '(bo+bo)+ —g (5q —25q)ck+qckck qck2 , 2K

1 eiik —k')ie —ik'ctc exp
1, k, k'

gg5 q. e"'(b, bq)—
q

XexP g g5rqe'q" "(b, bq) +H c. —
N

where the parameter nzp measures the phonon staggered ordering. This transformation changes the original point of
the localized phonon mode to ( —1) mo. In other words, the system is in a phonon-staggered-ordering state (dimeriza-
tion state) as long as moAO. When 5 =1 for all q, mo approaches zero. That is, the polaronic effect suppresses the
phonon staggered ordering. In the general case 0 & 5q & 1, we expect that there will be a nonzero dimerization, but re-
duced by the polaron effect, that is, by the quantum fluctuations of phonons.
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Our method with two q-dependent functions [5 ] and [r ] is different from the SSP approach of Ref. 8. In the SSP
approach, the squeezed polaron is treated as an absolutely small one, which means that the lattice motion is influenced
by the on-site electron-phonon correlation only and has nothing to do with the electrons at other sites. In fact, the vi-
brations of all lattice sites are correlated by the tunneling of the electrons and an electron will influence the motion of
the lattice at neighboring sites. Thus we think that our method, taking into account the long-range electron-phonon
correlation by q-dependent 5 and q, is reasonable. In this paper, we also calculate the "size" of the polaron.

At this point, we average H3 over the vacuum state lph, O) of the transformed phonon subsystem. The effective
Hamiltonian for the electron subsystem.

H,s=(ph OIH3lph, o)
2

A.
2(' g(r +q- ~)+—m~+ (25o —5O)N — g(25 —5 ) —mok(1 —5 )gc~tcg

q q k

—2pt g c~cI, cosk —g 5q
—25q ——g (5q —25q ) cI, +qcl, c„ qc„

k

If we set 5 =5 and r =7 for every q, H, tt becomes

A,
2

H, tt= (r +r )N+ mo—N (25—5)—N moA(1——5)g ci, cz 2pt g ci,—ci, cosk,
k k

which is the same as the SSP approach. This means that the SSP approach is just a special case of ours.
The effective Hamiltonian Eq. (15) is more difficult to solve because of the four-fermion term. We use the self-

consistent-field approximation, decoupling the four-fermion term, and the Bogoliubov transformation, diagonalizing the
other terms. The details are listed in the Appendix. The ground-state energy is

A.
2

A,
2

Es(5q rq)/N= f dq(Hq+r )+ Vo+ (1+Vo)m
4 q q 8g

A,
2——f dk 4p t cos k+ (1+Vo) m,

7T 0 K

2 '1/2

where

A,
2

q f dk' f dk(51, I
—25I, g+5g +g —251,.+I, )4E 4~2 o o

2pt cosk'

+4p t cos k'+[(1+ Vo)(A/IC)m, ],

2pt cosk

"(/4p t cos k+[(1+Vo)(A, /E)m, ]

Vo= —f dq(5 —25 ) .

(1+Vo)(A, /E)m,
m, =—g( —1) (n&)= —f dk

1 ~y2

't/4p t cos k+[(1+Vo)(iL /II )m, ]

where ( . . . ) means the averaging over the ground state of H, tt; and

A(1 —5 )

m„ the charge-density-wave (CDW) ordering parameter, is determined self-consistently by

(18)

(19)

B. Spin-~ case

In the spin- —,
' case, the total number of electrons is N in the case of half filling. The Hamiltonian is

H=g (bI b(+ ,' )%co t g (c—( c(+—, +ci+ ) c( ) —g A,&A/2M'(bi +bi )(n( —
—,
' ), (20)

in which the phonon creation and annihilation operators have been used and o. is the spin index.
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Three unitary transformations, which are similar to those in the spinless case, are used.

H3 =exp(S3 )exp(Sz )exp(S, )H exp( —S, )exp( —S2 )exp( —S3 )

A,
2

g (9+q- )(blab + —,')— (50—250)N —moi(1 —5„)g ck ckzx

+ moN g (Hq qq )(bqb q+bqb q)+moAco&Mco!2fi~N q. (bt +b )

fi/2M'(1 —5 )qq '(ck ck q
b q+ck ck q bq )

+— fi/2M' N (1—5&)zo (bat+ho)+ —g (5q —25q ) g ck+q ck ck q ck

I k, k', o
age'q'5 q. (bt b)—

N

Xexp age'q"+"5qq- (b b)—+H. c.
N

(21)

Two q-dependent functions [5q I and Irq ), which are determined by the same method as in the spinless case, satisfy
the following equations:

1

1+4(&/&~@ ) ~
sinq /2~

4 1

1+32(t / ciori)(1/ )qgr5qP sin q/2
(22)

1p=exp ——+2g 5 2 sin
q

From averaging H& over the vacuum state ~ph, o) of the transformed phonon subsystem, we obtain an efFective Hami1-

tonian for the electron subsystem,

H„= (ph, oiH, iph, o)
X2 A,

2

g (Hq+q )+—moN — (50—250)N+ g (5 —25 )

q

1—IOA( —5 )g ck c„+—g (5 —25 )n, tni i 2pt g c„ck cosk-
k, o

+— g 5q
—25q ——g (5q. —25q ) ck q ck ck.+q ck

1

q, k, k', cr, o''
(23)

The sixth term is decoupled as Zheng, Feinberg, and Avignon have done:

ci tci tci ici i ci tci t(ci ici i)+ (ci tci t )ci ici i (ci tci t )(ci ici i )

(c,.c,.) = —+( —1)( Plq

(24)

(25)

m, =—g( —1) (cia c& ),1

l, o
(26)

where m, is the charge-density-wave ordering parameter. Using the same method as in the spinless case, we get the re-
sult
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A.
2

E (5,r )/N= f dq(r +r )+ [Vo+(2+ Vo)m, j
4m o

dk 4p t cos k+m/2, 2 2 2

7T 0

Vo1+ m,
2

2 '1/2

A,
2

q f dk' f dk(5k k 25—k. k+5k k 25—k,
2K 4~2 o o

2pt cosk'

1/4p t cosk'+[(1+ Vo/2)(A, /K)m, ]

2pt cosk

+4p t cos k+[(1+Vo/2)(A, /K)m, ]
(27)

where

Vo= —f dq(5 —25 ),
n/2 (1+Vo/2)(A. /K)m,

m, =— dk
4pt cosk+ 1+V 2 A, K m

(28)

(29)

electrons move, we use I 5~ ) to define the size of the pola-
ron R, using the anti-Fourier transformation to I 5 I,

5i =—f dq e'~'5

which represents the displacement of the lattice at site I,
when an electron is at the origin. Thus, the "size" of a
polaron R is defined as

We also get

A(1 —5 )
m, . (30)

5ii =5o/10 .

m=0 limit

(35)

We find the result of the SSP approach is a special case
of our result, just as in the spinless case. But in this pa-
per we do not consider the superconducting singlet pair-
ing parameter.

III. NUMERICAL CALCULATIONS

In the co=0 limit, we find that 5~ =0 (qAO), 5o= 1,
and r =1 for both spinless (n =1) and spin- —,

' (n =2)
cases. So in this limit

E /N= —mo ——f (4t cos k+mP, )' dk, (36)
2 '

m o

First, we define some interesting quantities. The
phonon-staggered ordering parameter m is

1= (4t cos k+m A, )
' dk,A, n

~E o
(37)

mz =—g( —1)'(qi ),1

l

where qI is the position operator of the lattice

m =mo+ —5~,

(31)
which is the same as that of the SSP approach and mean-
field theory. The ~=0 limit is the adiabatic limit at
which Eqs. (1) and (20) can be solved exactly, and the
solution is Eqs. (36) and (37). In this limit, the system is
dimerized for arbitrary electron-phonon coupling con-
stant A, .

=—m
EC

for the spinless case and

m =mo+ —5~,

(32)

(33)

m= 00 limit

When co= 00,p=1 for both spinless and spin- —,
' case.

Thus we find 5 =1,~ =1 for every q. In other words,
there is no squeezing effect and dimerization for any A, .
Our results in this limit become those of the SSP ap-
proach.

General co case

for the spin- —,
' case. The contribution of the polaron

effect is included in m, apart from the static staggered
ordering parameter m o.

We also consider the "size" of the polaron R. As we
have said, the polaron in our approach is not an absolute-
ly small one as in the SSP approach. Because I5
represents the dynamical distortion of the lattice when

Equations (1) and (20), as far as the ground-state prop-
erties are concerned, are defined by two parameters, the
phonon frequency co and electron-phonon coup1ing con-
stant A, (or J=A. /2Kt), which are chosen as the same
values as in previous papers for comparison with them.
The transfer intergal t of the electron can be set to equal
1 by redefining the overall energy scale. The force con-
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line represents the result of the SSP approach, and the re-
sult of Monte Carlo simulations is also plotted. m is
smaller than the SSP approach. The difference is smaller,
compared with the spinless case, because there always ex-
ists a CDW state in the spin- —,

' case. Our result is in good
agreement with Monte Carlo simulations.

Figure 7(a) shows 5» as a function of mode q in the
case of J=0.81 and Ace=0. 1,0.5, 1.5, 2.0, respectively.
We also note that the polaronic effect increased with in-
crease of co. Compared with the spinless case, 5 is small-
er, which corresponds to a slight polaronic effect.

Figure 7(b) shows r as a function of mode q in the
case of J=0.81 and A'co=0. 1,0.5, 1.5, 2.0, respectively.
We also note that r decreased at first and then increased
with increase of co.

Figure 8 shows the CDW ordering parameter m, and
narrowing parameter p versus Ace relations in the case of
J =2. The dimerization ordering m, falls slowly and is
slightly smaller than that of the SSP approach shown as
the short-dashed line. There is no order-disorder transi-
tion. p is the same as in the SSP approach.

We plot the dimerization parameter m and narrowing
paramarameter p as functions of the electron-phonon coupling
constant A, in the case of Aco=2. 0 in Fig. 9. The short-
dashed and dot-dashed lines are the results of the SSP ap-
proach. Our result is in good agreement with that of the
SSP approach, except that there is a slight difference in
the intermediate region.

Figure 10 is the polaronic "size" R as a function of A'co

in the case of J=O. 81 and 2.0, respectively. The features
of the polaronic "size" are similar to those in the spin ess
case.

IV. SUMMARY AND DISCUSSION

We have studied the properties of quasi-one-
dimensional half-611ed electron-phonon couphng systems

0
0.0 0.5

I

1.0
0

1.5

FIG. 9. m~ (1) and p (2) vs A, relations in the spin- —case and

Boo=2.0. Short-dashed and dot-dashed lines represent the re-
sults of the SSP approach (Ref. 8) for m~ and p, respectively.
Error bar, Monte Carlo simulations (Ref. 9).

in the ground state by reconsidering the SSP approach.
Two q-dependent functions 5 and r are introduced to
take into account both the on site and the off site

1 t - honon correlations, because the lattice motion
is influenced by not only the on-site electron but also t e
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and previous wor s, wd

'
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' ~

tails can be seen in Sec. II) is effective. As we have sai,
t eh SSP approach is actually a special case of our
method. Thus these two methods become the sameme at
co=0 and ao (the details can be seen in Sec. III). In t e

general case, a difference occurs, especially in the inter-
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'
d here %co is of the same order of magni-

tude as the electronic bandwidth S'=4t. Our results are

(2)
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25—

0
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0
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}FIG. 8. m, (1) and p (2) vs Ace relations in the spin-2 case and

J=2.0. Short-dashed lines represent the results of the SSP ap-
proach (Ref. 8).

FICi. 10. Curves (1) and (2) represent the relations between R
an co in t e spin-2 cad A

'
th in-2 case and J =0.81 and 2.0, respectively.
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in good agreement with those of Monte Carlo simulations
and renormalization-group analysis. In this paper, we
also estimate the "size" of a polaron, which represents
the range of the dynamical distortion of the lattice.

In the spinless case, there is an order-disorder transi-
tion depending on the value of co. After considering the
long-range electron-phonon correlation carefully, the di-
merization is reduced by a larger amount comparted with
that of the SSP approach, especially in the intermediate
region, and the transition point is changed to smaller m

or larger J. These features mean that the role of long-
range electron-phonon correlation, which is almost
neglected in the SSP approach, becomes important in the
intermediate region.

In the spin- —,
' case, the long-range order dominates, for

arbitrary co. There is no order-disorder transition. The
order parameter is slightly reduced by the quantum lat-
tice fluctuations. The difference between the SSP ap-
proach and ours can be neglected, though the order pa-
rameter is a little bit smaller.

In the calculation, we find that the ground-state ener-
I

gy, not plotted in this paper, is almost the same as in the
SSP approach. We note that the of-site electron-phonon
correlation is important to the order-disorder transition
in the spinless case. In contrast, the role of the of-site
electron-phonon correlation is slight in the spin- —, case,
because there exists dimerization for arbitrary co and no
obvious competition between the phonon staggered or-
dering and the polaronic effect.
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APPENDIX

In the Appendix, we give the details of the decoupling
four-fermion term in Eq. (15). Because we only take in-
terest in the properties of the CDW case, the last term in
Eq. (15) is zero, except for q =0, m. , and k' —k.

Thus H,~ becomes

A,
2

H,~= g (r +r )+ m(jV— g—(25 —5 ) mo—A(1 —5, )g cktck 2pt g ck—tck cosk
q k k

5~—25~——g (5~.—25~, ) c„~ckc„~ck

A,
2

5k k 25k k
——g (5—q,

—25q ) ckckCk ck
Nkk, 2E N

(A 1)

The last two terms are decoupled as follows:

Ck mCkCk ~Ck—~ (Ck ~Ck )Ck ~Ck +Ck ~Ck( Ck ~Ck ) ( Ck ~Ck ) ( Ck ~Ck )

CkCkCk Ck ( CkCk / ( Ck Ck )
(A2)

where ( ) means the averaging over the ground state of H, fr, which should be determined self-consistently. We
note that the charge-density-wave ordering parameter m, is

e= QCk n.Ck
k

Now, introducing the Bogoliubov transformation for k )0,

Plk XkCk+3 kCk-

P2k 3 kck XkCk-

xk+yk 1 .

After letting the nondiagonal terms plk p2k and p2kp, k disappear, we get

xk =cosOk

(A3)

(A4)

moA(1 —5„)—(A, /K)[5 —25„—(1/N)g (5& —25& )]m,
tan28k =—

Here, we define the energy gap

2pt cosk
q'

(A5)



52 LONG-RANGE ELECTRON-PHONON CORRELATION AND. . . 15 271

b, =moA, (1—5 )
— 5 —25 ——g (5q —25q ) m, .

q'

Then
r

1 2pt cosk
't/4p t cos k+5

1 m/2
m, =— dk

P4p t cos k+6
Thus H,& becomes

A,
2

Hs= N g (r +r ) —N 5 —25 ——g (5q —25 . ) m,

(A6)

—g 't/4p2t2cos2k+6 (ptk13, k
—p2tkp2k)+ g (5 —25 )+—moN

k)0 q

1 2pt cosk
(A8)

Therefore, the ground state ~g & of H, tt should satisfy

Kk ~g & =P2k ~g & =0 .

mo can easily be derived for the ground state,

A(1 —5 )
mo — me

(A9)

(A 10)

So we obtain the ground-state energy

A,
2

A,
2

E (5,q )/N= —f dq(r +q )+ V&+ (1+Vo)m,
r

A2——f dk 4p't'cos'k+ (1+V, ) m,
7T 0 E

2 1/2

where

A,
2

2 f dk f dk(5k' —k 25k' —k+5k'+k 25k'+k )4E 4~2 o o

2pt cosk'

+4p~t2 cos~k'+ [(1+Vo)(A, /K)m, ]

2pt cosk

"t/4p t cos k+[(1+Vo)(A, /K)m, ]
(Al 1)

1Vo= —f dq(5 —25 ) .
o
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