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The effects of atomic-scale voids on the strength and mechanical behavior of aluminum at zero temperature
are investigated using the total-energy pseudopotential method. A series of calculations are performed in which
the defective system is extended by a small increment and then is relaxed to its ground state configuration. The
total energy and stress are determined at each level of strain. The "tensile test" of the defective system is
compared with the results of an experiment on a perfect system. These simulations employ a quantum me-
chanical scheme and show the processes of deformation around the defects including the initiation of disloca-
tions and slip. They can also be used as a database on which to test models based on simpler atomistic
potentials. We use them in that way to test a Sutton-Chen model tuned to our quantum mechanically simulated
system, and a pairwise model by way of contrast to metallic bonding. The Sutton-Chen model shows signifi-
cant void expansion at about 60% of the failure strain, an effect which is not seen in the ab initio calculations.
The ab initio calculations suggest how empirical models such as the Sutton-Chen scheme can probably be
improved to reflect better the nature of metallic bonding.

I. INTRODUCTION

An ideal crystal containing no defects can be extended
under uniaxial tensile strain until the applied stress reaches a
maximum, cr, at strain e „.This theoretical value is a
measure of the strength of the solid and marks the onset of
instability. Any additional strain will result in the failure of
the solid. In the case of brittle failure, the crystal breaks by
cleaving into two sections. In contrast, ductile failure in-
volves the material Bowing apart by shearing. '

To understand how solids fail, it is necessary to establish
a criterion for predicting the ductility or brittleness of mate-
rials. Kelly, Tyson, and Cottrell proposed that if the tensile
stress o. at the tip of an atomically sharp crack exceeds
rr before the shear stress 7 (along a particular slip plane)
exceeds 7. „,then the material is brittle. The material is
ductile if v. becomes larger than 7. , first. Their theory was
extended by Rice and Thomson who considered the condi-
tions for the nucleation of dislocations from atomically sharp
cracks. If a dislocation is emitted before cleavage occurs,
then the material is ductile. The descriptions of Kelly et al.
and of Rice and Thomson are equivalent as demonstrated by
Lin. Both theories conclude, for example, that copper is
ductile and that diamond is brittle, but neither approach can
predict the behavior of materials which can undergo a brittle-
ductile transition, such as iron.

Although the theories described above are important to
our understanding of the mechanical behavior of materials,
macroscopic behavior is in principle determined at the
atomic rather than at the mesoscopic level. For example,
cracks propagate via the breaking of interatomic bonds. Most

experimental samples contain impurity atoms, which can act
as sites of void nucleation. Hence, atomistic simulations, or
computer experiments as they are also known, can make sub-
stantial contributions to further elucidating the mechanical
properties of solids such as their strength. However, these
simulations are only as good as the model of the atomic
interactions which they employ. The interatomic bonding de-
termines all of the atomic positions and therefore defines the
behavior of the simulated solid as it deforms, for example,
under uniaxial tensile strain.

In the present work, the bonding in aluminum is repre-
sented by solving the nonrelativistic quantum mechanical
equations (Schrodinger s equations) for an interacting many-
electron system at every stage of the simulation. These quan-
tum mechanical calculations are performed within the total-
energy pseudopotential method, an "ab initio" scheme in
which the only required input is the atomic number of the
atoms. The only approximations used in this method are the
pseudopotential approximation to represent the valence
electron-ion core interactions and the local-density approxi-
mation (LDA) for determining the exchange and correlation
energy of the valence electrons. However, these approxima-
tions are known to be reasonable for well-bonded materials
such as aluminum.

The first goal of this investigation is to understand how a
sample of aluminum containing atomic-scale voids fails as it
is pulled apart at zero temperature (see Fig. 1).To be precise,
our system contains lines of vacancies on nearest-neighbor
sites forming thin pipes in the [110]direction. A series of ab
initio calculations are performed in which the simulated de-
fective solid is subjected to an increasing uniaxial tensile
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FIG. 1. Supercell used to model defects in

aluminum. The periodic repetition of the super-
cell generates lines of vacancies which can be
viewed as atomic-scale voids. The labels 1,
1n, . . . ,4 identify atoms of interest, The thin and

thick edged circles represent atoms in the planes
y=0 andy= z~a2~ which are referred to as planes
1 and 2, respectively. A supercell with the same
geometry as shown above, but without any re-
moved atoms, is employed for the simulation of
perfect aluminum. The coordinates x, y, and z
measure the distance along the directions [100],
[011],and [011].

[01&] (y)

strain. At each discrete level of extension, the self-consistent
total energy, stress, and equilibrium structure are determined,
with the dimensions of the supercell held fixed. Similar cal-
culations are performed for a perfect system containing no
defects. The stress-strain curves of the two systems are com-
pared in order to measure the effect of the defects on the
strength of the simulated aluminum.

The simulations are analyzed in terms of "local" quanti-
ties, namely, the atomic displacements and the strains of tet-
rahedra which link nearest-neighbor atoms. Since the forces
on the atoms in the perfect system are zero at each level of
global strain, there are no atomic relaxations and the ideal
solid extends uniformly. In the defective system, atoms 1, 2,
3, and 4 (see Fig. 1) initially relax towards the center of the
voids, but as the global strain increases, these atoms eventu-
ally move away from the defects. Large local strains develop
in the region close to the voids as a result of these outward
relaxations. The other atoms in the system remain near sites
of uniform extension.

The simulations are also described in terms of "global"
quantities, namely, the total energy and the average stress on
the periodically repeated supercell. For both the perfect and
defective systems, the stress in the direction of the applied
global strain begins at about zero, increases as a function of
the global strain, and reaches a maximum cr „at strain
e „.For strains greater than e „,the perfect system con-
tinues to extend uniformly. The atoms in the defective sys-
tem continue to move away from the defects. A global strain
is eventually reached where the stress and energy decrease
rapidly. The material shears along planes with normals at
about 45' to the axis of tensile strain. These processes are
similar to ductile phenomena which occur i.n real solids.

The representation of metallic bonding in these ab initio
calculations plays a crucial role in defining the atomistic pro-
cesses which lead to failure. One way of describing metallic
cohesion is in terms of the distribution of the atoms. The
atoms in a metal tend to spread themselves apart from one
another in order to establish a uniform distribution for a
given atomic density. The resistance to changes in uniformity
of the atomic configuration can be viewed as the reason why
the defective solid deforms by shearing rather than by cleav-
ing into two pieces.

The second purpose of this work is to use the ab initio

TABLE I. Ab initio calculations of the equilibrium lattice con-
stant ao, bulk modulus Bo, and elastic constants c», c &2, c«, and
c' using the supercell defining the test, perfect (Per), and defective
(Def) systems. The experimental (Expt) values are extrapolations to
zero temperature.

Test Per Def Expt

ao (A)

Bo (GPa)
c„(GPa)
c„(GPa)
c44 (GPa)

1

2(cled c12) (GPa)
B 3(c&j+2c&z) (GPa)

3.98~ 0.01'
81~3'
125~ 2
65+ 2
35~2
30~ 3
85+ 3

135~2 130~2
70~ 2 66~ 2
35~2
33~3
92~3

32+ 3
87~ 3

4.02'
79.4'
114.3'
61.9'
31.6'
26.2'
79.4'

'Determined from E„,vs lattice parameter a curve.
P.K. Lam and M.L. Cohen (Ref. 22).

'G.N. Kamm and G.A. Alers (Ref. 23).

calculations as a database for comparison with analogous
simulations based on simpler atomistic models. In particular,
we employ a Morse pair potential and a Sutton-Chen glue
scheme to describe the atomic interactions. Although pair-
potential models of solids have been used for many years, it
is known that pairwise interactions are inadequate for repre-
senting the bonding in metals. The Sutton-Chen glue
scheme is derived from the Finnis-Sinclair approach to in-
clude a basic aspect of metallic bonding. The Finnis-Sinclair
model, the embedded atom method of Daw and Baskes, '

and the effective medium theory" were designed to over-
come some of the problems inherent in the pair-potential
approach. However, these so-called "glue" methods have not
been extensively tested against more exact approaches.

As expected, the pairwise model generates completely
different failure processes from those observed in the quan-
tum mechanical results. The brittle behavior of the defective
solid in the pair-potential simulation emphasizes the role of
metallic bonding in defining the ductility observed in the ab
initio approach. However, for the glue model, where better
agreement with the ab initio method is expected, there are
nevertheless differences in basic quantities, such as the
atomic volumes, at global strains well below the strain at
which fracture takes place. The increased rate of outward
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FIG. 2. Total energy F„, as a function of
strain e, in the ab initio simulation for (a) the
perfect system and (b) the defective system,
where F.„, is the total energy per supercell
extrapolated to zero smearing and corrected for
the finite size of the plane wave basis set. The
state at F in (b) is the relaxed configuration
at e& = 0.28. The relaxed configuration at Fg&„, is
derived from the failed state which occurs in the
glue simulation. The dashed line is the energy-
strain path under uniaxial compression beginning
at Fgiue
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displacement of atoms away from the voids commences at
much lower global strains in the glue simulation than in the
ab initio simulation. It leads to a substantial and unphysical
expansion of the void in the Sutton-Chen potential model.

The above research goals are presented as follows. In Sec.
II, we outline our computer model. The ab initio computa-
tional approach is described in Sec. III. In Sec. IV, the results
of the ab initio simulations are discussed. The quantum me-
chanical, pair-potential, and Sutton-Chen glue simulations
are compared in Sec. V. The nature of metallic bonding and
potential models is considered in Sec. VI. Conclusions about
local deformations in the simulations are given in Sec. VII.

such as a crack with an atomically sharp tip, an elliptical
cavity or void possessing dimensions on the order of ang-
stroms can be studied using a periodically repeated supercell.
In addition, the stress concentration around voids and cracks
is qualitatively similar.

The supercell used to model a solid with atomic-scale
voids (referred to as the defective system) contains 63 alu-
minum atoms, which are initially in fcc lattice positions (Fig.
1). The basis vectors which define the supercell are

a, =4(1+ e&)&ox

II. THE COMPUTER MODEL
82 — a 0$

The simulation of a solid under uniaxial tensile strain be-
gins with the construction of a supercell containing atoms
arranged in a realistic structure. Voids play an important role
in the failure of ductile solids. Unlike other types of defects,

a3 =4 q2aoz

where x, y, and z are unit vectors in the directions [100],
[011], and [011] referred to conventional cubic axes. The
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FIG. 3. (a) Stress o, on the surface of the
supercell normal to the x direction as a function
of strain e& in the ab initio simulation. (b) Stress
0 3 on the surface of the supercell normal to
the z direction as a function of strain e&. The
open and filled circles are the calculated points
for the perfect and defective solids. The stresses
are corrected using the Pulay expression, but are
not extrapolated to zero smearing. The relaxed
configuration at e&=0.28 is labeled F. The re-
laxed state at Fg&„, is derived from the failed state
which occurs in the glue simulation. The dashed
line is the stress-strain path under uniaxial com-
pression beginning at Fg&„, .
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equilibrium lattice parameter ao = 3.98 A is determined using
the test system described below. The strain e& expands the
supercell in the [100]direction. Since the supercell has only
the thickness of one nearest-neighbor distance in the a2 di-
rection, the periodic repetition of the supercell generates thin

pipes on nearest-neighbor sites. These lines of vacancies can
be viewed as extended atomic-scale voids. Slip in fcc solids
takes place along {111)planes and in (110) directions. ' The
voids are oriented so that they run along the [011]direction,
which is contained in the (111) and (111) slip planes. In
order to compare directly the energies and stresses of the
defective system with the energies and stresses of a perfect
system, calculations are also performed using the above de-
scribed supercell, but without removing any atoms.

The process of pulling a solid apart at zero temperature is
simulated by increasing the uniaxial tensile strain e& in small
increments. The stress o and strain e (n=1, . . . ,6), are
measured with respect to the coordinate system defined by

the supercell basis vectors [Eq. (1)].For a given value of the
strain e&, the supercell dimensions are held fixed and the net
forces on the atoms are used to relax the configuration to its
ground state. The net forces on the atoms in the perfect sys-
tem are zero and so there are no atomic displacements in the
ideal crystal. The final total energy, stress, and atomic posi-
tions are recorded before expanding the supercell. The final
atomic positions are used as the initial configuration for the
next increment of strain.

III. AB INITIO COMPUTATIONAL METHOD

The calculations presented in this paper were performed
using the Cambridge Serial Total-Energy Package (cAsTEP),
which is based on density-functional theory (DFT) in the
local-density approximation. In this method, the scattering
properties of the ion cores (which will be referred to as at-
oms) are represented using nonlocal pseudopotentials in a
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reciprocal space, Kleinman-Bylander representation. ' Per-
dew and Zunger's' parametrization of the exchange-
correlation energy is used. The valence electron orbitals are
expanded in plane waves. The occupation of states is deter-
mined by the Gaussian-smearing method of Fu and Ho14 as
modified by Needs et aI. ' The conjugate-gradient method is
employed to relax the electrons to their minimum energy
configuration with the atoms held fixed. ' The force on an
atom due to the electrons in their ground state is determined
by taking the derivative of the total energy of the system
with respect to the position of the atom and using the
Hellmann-Feynman theorem. ' The Ewald summation
method' is used to calculate the Coulomb contribution to
the force on an atom due to the other atoms. Each atom is
displaced by a small amount in the direction of the applied
net force. The electronic system is relaxed to a new ground
state, again with the atoms kept stationary. The cycle of
atomic and electronic relaxations is continued until the net
force on each atom is below a specific value, taken as 0.05
eV/A. .

The total energy per supercell E„, is the central quantity
determined in these calculations since most of the physical
properties of solids can be related to changes in the total
energy. However, the derivatives of E„t also provide impor-
tant information, as illustrated above in connection with the
Hellmann-Feynman theorem. Another example is the aver-
age stress on the unit cell which can be calculated from
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FIG. 4. Relaxed atomic positions in the ab initio simulation at E1 = (a) 0.00, (b)

0.18, and (c) 0.26. The vectors indicate the positions to which the atoms relax when the

system is expanded by 5 E~ = (a) 0.00, (b) 0.02, and (c) 0.02. The atoms in planes 1

and 2 are represented by thin and thick edged circles. The ellipse delineating the defect

has major and minor axes defined by Eq. (8). In (c), shear deformations occur along the

sides of the wedge structures which are bounded by the dotted lines and contain atoms

2, 3, 3n, 4, and 4n.

where 0, is the volume of the supercell and e &
(u, P=1,2,3) is the strain tensor, or from explicit formulas
for the stress tensor based on DFT-LDA as given in Ref. 19.

The CASTEp program and the nonlocal aluminum pseudo-
potential were tested by determining the equilibrium lattice
constant a0, bulk modulus B0, and elastic constants c»,
c12, and c44. The supercell for these calculations contained
two atoms in a body-centered tetragonal cell which is re-
ferred to as the test system. The sampling of the Brillouin
zone was accomplished by an 8&&8&&8 Monkhorst-Pack
scheme. The energy cutoff for the plane wave basis set and
the Gaussian-smearing width were 150 and 0.2 eV, respec-
tively. The self-consistent calculations were performed until

E„,changed by less than 1 meV per iteration. The energies
were corrected for the finite size of the plane wave basis
set. ' The stress tensor was computed using the expressions
given in Ref. 19 and was corrected for the finite size of the
plane wave basis 'set (i.e., the Pulay stress ').

The equilibrium lattice constant and bulk modulus were
determined by calculating the total-energy per supercell as a
function of the lattice parameter a. The data points were
fitted by a quadratic polynomial using the least-squares
method. The minimum of the fitted total-energy curve gave
the theoretical equilibrium lattice constant a0 and the second
derivative at the minimum specified the equilibrium bulk
modulus B0.

The elastic constants c», c12, and c44 were determined
by applying small strains of order 0.004 to the test system.
The results of these computations are presented in Table I
and are in reasonable agreement with experiment. The result-
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FIG. 5. Displacement u3
—z of atom 1 and ujarel 4 unrel
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&

of atoms 2, 3, and 4x rel unrel

abas a function of strain e, in the a
initio simulation. The variables

arel (Xrel) n 4unrel Xunrel refer to
the g (x) coordinate of atom 1

(atoms 2—4) in the relaxed and
unrelaxed, uniformly strained
defective system, respectively. In-
creases in u& and u3 indicate dis-
placements away from the center
of the voids. The displacements of
atoms 1, 2, 3, and 4 are repre-
sented by squares, filled circles,
open circles, and triangles, respec-
tively.
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FIG. 6. Relaxed atomic positions at e&=0.28 in the ab initio
simulation. The lines HP represent the planes along which shears
take place.
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&

can be extrapolated to zero smearing and corrected for the
finite size of the plane wave basis set by obtaining numeri-
cally the derivative of the F„, vs e& graph with respect
to e, and employing Eq. (2). It was observed that up
to e&=0.20, the stresses from Ref. 19 and from the F.„,
vs e& graph were about the same. Beyond this level of strain,
these stress calculations differed due to the limited accuracy
of the numerical differentiation. Note that the zero of the
stress-strain curves (Fig. 3) and the minimum of the

E„,(e, ) curve [Fig. 2(a)] for the perfect system are shifted
slightly from e& =0. This is due to the use of the equilibrium
lattice parameter ao found for the test system, with a differ-
ent Brillouin zone sampling and Gaussian smearing. Since
the amount of shift was small and different for each of the
above relations, the figures were not adjusted to make the
zero of stress and the minimum of energy at zero strain.

The stress-strain relations in Fig. 3 can be used to calcu-
late the elastic constants c» and ci2 for both the perfect and
defective systems as demonstrated for the test system. The
slope of the stress-strain graphs at tr = 0 (cr = 1,3) gives the
elastic constants c» and c&2. The elastic constant c44 is de-
termined by applying small shear strains e6 with e =0
(u= 1, . . . ,5), and measuring the resulting stresses cr6.
These results are summarized in Table I, and agree with the
elastic constants of the test calculation sufficiently for our
purposes.

IV. DISCUSSION OF AB INITIO RESULTS

The tensile test experiments on the perfect and defective
systems (Sec. II) are performed using the ab initio approach
(Sec. III). To test convergence in atomic positions and strain
increment Ae&, detailed tests were made with the glue
model (see below) and less detailed (due to hmitations of
time) with the ab initio method. These showed that in the
region e&~ 0.16 for the glue model and e&~ 0.24 for the ab
initio, the system has a well-defined minimum for each e&,

FIG. 7. Local orthorhombic shear strains e&„os at e& =0.28 in
the ab initio simulation. The "+"("-")symbol represents a tensile
(compressive) strain. The size of the symbols is scaled with respect
to the largest orthorhombic shear strain which occurs in the entire
simulation. The tetrahedra linking nearest-neighbor atoms are pro-
jected onto the (011) plane.

which is found more or less independent of Ae& and the
cutoff on the forces (when the relaxation is stopped and the

supercell is expanded to the next value of e&). However,
beyond these e&, when the rapid outward displacement of
the central atoms occurs (see Fig. 5 and Fig. 15), the energy
landscape is extremely flat. There are large areas of configu-
rational space with very nearly the same energy. Here the
results of the calculations depend sensitively on 5 e& and the
cutoff on the forces. While the glue results (see below) are
fully converged in all senses, the ab initio ones are not. To
converge them would require several orders of magnitude
more computer time, and it is even then not certain that the
numerical accuracy would be sufficient. However, we be-
lieve the following conclusions remain qualitatively correct
because they are also seen to varying degree in the fully
converged glue results.

A measure of the strength of the perfect and defective
solids is given by the maxima of the tr, vs e, relations (Fig.
3). It is remarkable how little difference there is between the
maximum stress of the defective system [o. ,„(D)] and the
maximum stress of the perfect system [o. „(P)],contrary to
our expectation and contrary to the results with empirical
atomic bonding models (see below). The strain E,„at which
o. „occurs is rather more difficult to determine due to noise
in the calculated results and the fact that the maximum of the
tr&(e, ) curve is so flat. Taking the results in Fig. 3 at face
value, we would say cr,„(D)= 12 GPa and cr,„(P)= 13
GPa, but fitting a quartic curve to the energies E„,(e, ) and
differentiating this relation gives a lower value of about 11
GPa. This latter procedure indicates that e,„( )D= 108 and

e,„(P)=0.20.
A conventional theory based on a sinusoidal stress-strain

relation for a perfect crystal under uniaxial tensile stress
gives'
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FIG. 9. Stress o.

&
on the surface of the super-

cell normal to the x direction as a function of
strain eI in the pair-potential simulation. The
open and closed circles represent the stresses on
the perfect and defective systems calculated at
increasing levels of tensile strain. The maximum
tensile stresses on the perfect and defective sys-
tems occur at e,„(P)=0.210 and e,„(D)
=0.150, respectively. The defective system fails
at Fpp ( e=t0. 198). The stress-strain relation of
the fractured state under compression (beginning
at Fpp) is represented by the dashed line.
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in which the interatomic bonding is based on the empirical
glue scheme. The resulting ground state at the point Fg&„,
(e, =0.28) in Fig. 2(b) has a much lower energy than the
relaxed configuration at F. A series of calculations are per-
formed using the configuration at Fg&„, as the initial state.
The size of the system is decreased in strain increments of
0.02. At each level of compression, the supercell dimensions
are fixed and the energy, stress, and ground state structure are
determined. The stress and energy paths under compression
and tension are distinct. In particular, the energy-strain curve
under compression eventually intersects the original energy-
strain relation under tensile strain just before e (D)=0.18
[Fig. 2(b)]. These lower energy configurations demonstrate
that the states which are determined under tensile strain are
metastable for e& &0.18.

Relaxed atomic configurations at several levels of tensile
strain are visualized in Fig. 4. The individual motions of

atoms 1, 2, 3, and 4 are shown in Fig. 5, following the
atomic numbering given in Fig. 1. These figures are used to
characterize the atomistic processes which result in the fail-
ure of the simulated solid. Note that the displacements in the
[011] (y) direction are zero by symmetry apart from some
small numerical noise in the calculations.

At the microscopic level, the shape of a void is not
uniquely defined. However, as a visual aid to interpreting the
behavior of a simulated void, its shape can be described by
an elliptic cylinder whose intersection with the (011)plane is
an ellipse with major and minor axes

11—+ e 2 I
z center ~atam 1 I ~ + e 2 lx center x atom 21 . (8)

where (x„„„„y= O,z„„„,) is the center of a void (referred to
as V).

0
IJJ

C)

9 ltJ e

FIG. 10. Total energy E„, of the defective
system as a function of strain e& in the glue simu-
lation, The closed circles are the energies calcu-
lated at increasing levels of tensile strain. The
maximum tensile stress occurs at e (D)
=0.176. The system fails at Fs,„, (e, =0.288).
The energy-strain relation of the fractured state
under compression (beginning at F t„,) is repre-
sented by the dashed line. The dotted line indi-
cates the stress-strain path under compression be-
ginning with the relaxed state at e& =0.276.

C3

CU

l

0.05 0. 1 0.15 0.2 0.25 0.3



15 200 V. B. DEYIRMENJIAN et al. 52

e,„|',P) =.250

I

I

I

I

i

I

V
I

I I I I I I I I I I I I I I

.274

F
glue

(.288)

FIG. 11. Stress 6.
&

on the surface of the su-

percell normal to the x direction as a function of
strain e& in the glue simulation. The open and
closed circles represent the stresses on the perfect
and defective systems calculated at increasing
levels of tensile strain. The maximum tensile
stresses on the perfect and defective systems oc-
cur at e~ (P)=0.250 and E „(D)=0.176, re-

spectively. The defective system fails at Fg&„,
(e, = 0.288). The stress-strain relation of the frac-
tured state under compression (beginning at

Fs,„,) is represented by the dashed line. The dot-
ted line indicates the stress-strain path under
compression beginning with the relaxed state
at e& =0.276.
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Figure 4 reveals that the effects of the applied tensile
strain of the supercell are initially concentrated on the atoms
closest to the voids. For example, atom 1 relaxes towards V
for global strains up to et=0.12 (Fig. 5). This inward
displacement reduces the magnitude of the major axis a,
[Eq. (8)], which can be described as a lattice "healing"
process. Atom 2 initially relaxes towards V, but for
strains e,)0.01, it moves away from V (Fig. 5). This motion
causes atoms 3 and 4 also to relax away from V starting
at e, =0.04 (Fig. 5). The rate of outward displacements of
these atoms does not significantly increase until e&

=0.26 [Figs. 4(c) and 5]. To assist with the visualization of
the changes that occur between e& = 0.26 and e& = 0.28, at-
oms 2, 3, 3n, 4, and 4n are grouped into wedge structures
which are bounded by dotted lines in Fig. 4(c). The displace-
ments in Fig. 4(c) reveal shear deformations along the edges
of the wedge structures. The final atomic positions which
result from these displacements correspond to the state la-
beled F in Figs. 2(b) and 3(b). The solid lines HP in Fig. 6
indicate the planes along which the shears occur. The (100)
plane containing atom 1L is folded and the symmetry of the
solid is lowered, which establishes a trend towards fracture.

The atomic displacements can also be analyzed in terms
of the local strains which develop in the solid. A local strain
field on a discrete lattice can be defined by the deformations
of tetrahedra which join four nearest-neighbor atoms. The
deformations are given in terms of six coordinates Q;,
i=1, . . . ,6. These correspond to the six normal modes of
vibration of a tetrahedral molecule. Their symmetries

Ai(gi), E(Q2, Q3), and T(Q4, Q&, Q6) with respect to the
tetrahedral group allow them to be identified as the local
strains of each tetrahedron. The coordinates

Q i
= ei„,+ ei„2+ ei„s, volume strain ei„voL

Q2 = e&„,—ei„3, orthorhombic shear ei„os

for a given tetrahedron are determined by taking the x, y,
and z displacements of each of the four corner atoms and
projecting them onto the following vectors:

1
Qi'. (u, —u, u; —u, u, u;u, u, —u; —u, —u, —u)

ap

1
Q2. (u, u, O; —u, —u, 0;u, —u, O; —u, uO) . (10)

2ap

Since the displacements of the atoms in the y direction are
negligible, e&pg2 0.

The local strains e&„voL and e&„os vary linearly with e&

for small global strains and then become larger in the region
of the voids for et )0.24. At e, = 0.28, the local strains (see
Fig. 7) are magnified along the planes labelled HP in Fig. 6.
This is in agreement with the prediction that slip (shear de-
formation) in a lattice occurs along the dislocation glide
planes which have normals that are closest to 45 to the axis
of tensile strain. Although our simulated defect is not a
sharp crack, an analogy can be made with the mesoscopic
theories of Kelly et al. and Rice and Thompson because the
stress is focused locally around the defect in a similar way
(see Sec. I). The simulated material can be viewed as ductile
since the dissipation of the local strains away from the voids
is by shearing rather than by cleaving.

Underlying the behavior of the defective system is the
nature of the interatomic bonds. The bonds due to pairwise
interactions establish certain lengths, but not necessarily spe-
cific directions, between pairs of atoms. Metallic bonds are
strongly dependent on the volume which atoms occupy,
rather than the separations between pairs of atoms. It is im-
portant to quantify this idea about metallic cohesion and to
determine how metallic bonding defines the atomistic pro-
cesses observed in the simulation.

Metallic bonding in real materials can be thought of in
terms of the arrangement of the atoms. The spreading apart
of the atoms tends to establish a uniform distribution in
which each atom has a certain "ideal" volume and the near-
est neighbors are on average all the same distance away from
one another for the given atomic density in which the atoms
reside. One motivation for this concept comes from linear
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elasticity theory. When a uniaxial stress is applied to an iso-
tropic elastic material, the resulting volume change is'

AV=(1 —2v) e

10

z {A)

{b) ~ t r ~ s

20

Q3QQ

where v is the Poisson ratio and e is the strain in the direc-
tion of the applied stress. Metals tend to have large Poisson
ratios (e.g. , v) —,') and therefore do not demonstrate as great
an increase in V as other materials. The bonding which gen-
erates a large Poisson ratio for a metal also forces the atoms
to undergo only a small volume change under uniaxial load-
ing.

The above picture of metallic bonding can be tested by
measuring the volumes of the atoms in the relaxed configu-
rations. The local volume strains of the tetrahedra provide
one estimate of the atomic volumes. The relation in Fig. 8
shows that at low global strains the volume of tetrahedron T,
which links atoms 2, 2n, 1, and the periodic image of 1 in
the Y direction, increases linearly with respect to strain. A
more rapid increase in e&„voL for T does not occur until very
high global strains (e,)0.24). The volume of the remaining
tetrahedra in the system behaves similarly to that of T. These
observations demonstrate that the defective system exhibits a
resistance to changes in uniformity of the atomic distribu-
tion. This feature of metallic bonding delays the transition to
the fractured state until very high global strains and gives
rise to ductile atomistic processes. The solid deforms by
folding and shearing processes, rather than by separating
along a fracture surface.

'I0 15 20

V. COMPARISON OF PAIR-POTENTIAL, SUTTON-CHEN
GLUE, AND AB INITIO SIMULATIONS

O

{c)

z (A)

A A A A

10 15

Y Y r r r Y Y Y

The tensile test experiments on the perfect and defective
systems (Sec. II) are also performed using a Morse pair po-
tential and a Sutton-Chen glue scheme. In these simulations,
the defective solid is expanded in nominal strain increments
of 0.01 for low global strains, and then in increments of
0.002 for high global strains. The atoms in the defective
system are relaxed until the forces on all of the atoms are
smaller than 0.001 eV/A. The strain increment and tolerance
on the forces are larger in the ab initio calculations (Sec. IV).
However, a number of tests indicated that the use of smaller
increments and tolerances in the ab initio approach did not
produce significantly different results over the major portion
of the simulation.

In the simplest atomistic model of a solid, it is assumed
that the atoms only interact in a pairwise fashion. The pair
potential P(r, ,) describing these interactions depends on the
distance r = r; between pairs of atoms i and j. The present
work employs a Morse potential:

z {A)
rt, (r) =D(e 2u(r rol —2e u—(r rol)—(12)

FIG. 12. Relaxed atomic positions in the pair-potential simula-
tion at e& = (a) 0.000, (b) 0.196, and (c) 0.198. The vectors indicate
the positions to which the atoms relax when the system is expanded
by he, = (a) 0.000, (b) 0.002, and (c) 0.002. The atoms in planes 1

and 2 are represented by thin and thick edged circles (see Fig. 1).
The ellipse delineating the defect has major and minor axes defined

by Eq. (8).

The constants n, ro, and D are determined so that the re-
sulting potential describes the elastic properties of the quan-
tum mechanically simulated defective system as well as pos-
sible. The input values from the ab initio simulation include
the equilibrium lattice constant ao, elastic constant c», and
void formation energy E„;d. The elastic constant c» is im-
portant since it is the modulus relevant to the [100]direction
of deformation. The void formation energy is employed in
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FIG. 13. Displacement u z

~ rel 4 unrel of atom 1 and u

xrel +unrel of atoms 2, 3, and 4
as a function of strain e& in the
pair-potential simulation, The
variables z„& (x„,) and
x
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nate of atom 1 (atoms 2—4) in the
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circles, open circles, and triangles,
respectively.
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FIG. 14. Relaxed atomic positions in the glue simulation at e, = (a) 0.000, (b) 0.274, (c) 0.276, and (d) 0.286. The vectors indicate the
positions to which the atoms relax when the system is expanded by h, e& = (a) 0.000, (b) 0.002, (c) 0.002, and (d) 0.002. The atoms in planes
1 and 2 are represented by thin and thick edged circles. The ellipse delineating the defect has major and minor axes defined by Eq. (8). In
(c) and (d), shear deformations occur along the sides of the wedge structures which are bounded by the dotted lines and contain atoms 2, 2n,
3, 3n, 3nn, 4, 4n, and 4nn.

sustained by the defective solid is o. „(D)=8.29~ 0.05 GPa,
which is about 9% lower than o. (P)=9.15~0.05 GPa sus-
tained by the perfect solid (Fig. 11). These reductions in
o. „are larger than in the ab initio simulation and indicate
that the defects have a greater effect on the strength of the
empirically simulated metal.

The defective solid in the pairwise model suffers an
abrupt brittle fracture at e& =0.198 with the stress dropping
effectively to zero (Fig. 9). However, in general failure can
occur in a number of discrete steps, as observed in the glue
simulation (see below) and presumably in the ab initio simu-
lation, though the latter was not carried to that stage. Thus
one can ask whether the failure is abrupt from one configu-
ration to another, analogous to a first-order phase transition
with hysteresis, or whether it is a continuous gliding transi-

tion where some generalized coordinate goes through an in-

stability analogous to a second-order phase transition.
To demonstrate the hysteresis explicitly, we have run the
simulation backwards from the relaxed configuration for the
pair potential (PP) from Fpp (e& =0.198) to smaller values
of e& as shown in Fig. 9. The compression curve returns to
the extension curve for o &(et) at e~ =0.130 (Fig. 9).

At very high global strains, the defective system in the
glue simulation undergoes first-order structural transitions
at e& = 0.276 and e& =0.288. In both cases, the total energy
(Fig. 10) and the stress (Fig. 11) decrease discontinuously.
The energies of the configurations generated by the compres-
sion of the failed state at Fst„, (dashed line in Fig. 10), are
initially lower than the energies of the states determined
under tensile strain. These lower energy configurations



15 204 V. B. DEYIRMENJIAN et al.

I I I i 1 I I I
I

I I I

0

Ia

Atom
I I I I I I I I I I I t I

0

FIG. 15. Displacement u 3
= z„&—z„„„& of atom 1 and u

&

=x„~—x„„„&of atoms 2, 3, and 4
as a function of strain e

&
in the

glue simulation. The variables

z„& (x„,) and z„„„,(x„„„,) refer
to the z coordinate of atom 1 (at-
oms 2—4) in the relaxed and un-

relaxed, uniformly strained de-

fective system, respectively. In-

creases in u& and u3 indicate dis-
placements away from the center
of the voids. The displacements of
atoms 1, 2, 3, and 4 are repre-
sented by squares, filled circles,
open circles, and triangles, respec-
tively.
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confirm that the states determined under tensile strain are
metastable for e,) e. ,„(D) and that the transitions
at e&=0.276 and e&=0.288 are first order in nature. In ad-

dition, the compression curve beginning with the relaxed
state at e&=0.276 (dotted line in Fig. 10), intersects the

original tensile energy-strain curve at e& =0.140. Hence, the

states under increasing tensile strain for e& &0.140 are meta-
stable.

The relaxed configurations at several levels of tensile
strain are visualized in Fig. 12 (pairwise model) and Fig. 14
(glue model). The motions of atoms 1, 2, 3, and 4 are given
in Fig. 13 (pairwise model) and Fig. 15 (glue model), fol-
lowing the atom numbering of Fig. 1.At zero global strain in

the pair-potential and glue simulations [Figs. 12(a) and

14(a)], atom 1 relaxes slightly away from and atom 2 relaxes
slightly towards the center of the voids (referred to as V).
This is contrary to the behavior in the ab initio calculations
where atoms 1 and 2 both relax toward V [Fig. 4(a)]. Atoms
3 and 4 in the empirically based models also relax towards

U, but their motions are small. As the global strain increases,
atom 1 moves towards V and atoms 2, 3, 3n, 4, and 4n
move away from V. The motion of atom 1 in the empirically
based models causes the major axis of the ellipse represent-
ing the voids [Eq. (8)] to decrease, which can be viewed as a
lattice healing process. However, this trend reverses since
atom 1 relaxes away from V beginning at ei =0.100 in the
pairwise model (Fig. 13) and at et = 0.130 in the glue model
(Fig. 15). A similar lattice healing process occurs in the ab
initio simulation and it reverses at et =0.12 (Fig. 5).

The rate of outward displacement of atoms 1—4 increases
significantly for e&)0.140 in the pair-potential approach
(Fig. 13) and e,)0.170 in the glue approach (Fig. 15). These
outward movements mark a strong void expansion prior to
the failure at e&=0.198 in the pair-potential model and
ei =0.288 in the glue model. The void expansion in the ab
initio simulation occurs at a higher global strain since the

outward motions of atoms 1—4 do not increase dramatically
until e, )0.24 (Fig. 5), which is much closer to the failure
strain.

Before the failure of the defective solid in the pairwise
model, atoms 2, 3, 3n, 4, and 4n generally move away from
the voids. The remaining atoms in the system show little
displacement from their uniformly strained fcc sites. How-
ever, at the point of fracture, atoms 2, 3, 3n, 4, and 4n relax
very little [Fig. 12(b)]. The other atoms in the supercell un-

dergo large changes in position. These motions form a (100)
fracture surface [Fig. 12(c)], which breaks the symmetry of
the solid in the plane x=-,'~a&~. In contrast to this brittle
failure, the defective solid in the quantum mechanical simu-
lation will eventually fail by ductile processes, namely,
shearing and folding of planes of atoms (Fig. 6).

Prior to the first structural transition at e& =0.276 in the
glue simulation, atoms 2, 3, 3n, 4, and 4n generally move
away from the voids. The remaining atoms in the system
show little displacement from their uniformly strained fcc
sites. To help identify the changes in the atomic configura-
tion at ei =0.276, a dotted line is drawn around groups of
atoms in Figs. 14(b) and 14(c). These wedge structures in-

clude atoms 2, 2n, 3, 3n, 3nn, 4, 4n, and 4nn. At the
transition, atoms 2, 3, 3n, 4, and 4n relax very little, but
atoms 2n, 3nn, and 4nn move to the same position in the
x direction as atoms 2, 3n, and 4n, respectively [Fig. 14(b)].
This smooths the surfaces of the wedges, especially the sec-
tion containing atoms 2 and 2n, but it leaves atom 1 with
few nearest neighbors [Fig. 14(c)]. These processes can be
characterized as shear deformations along the sides of the
wedges. The planes on which these shears develop are also
identified as the lines QP in Fig. 16(a). Neither wedge struc-
tures nor shear planes are formed in the pair-potential simu-
lation.

The coordination number of atom 1 in the glue simulation
decreases following the shear deformation at ei=0.276.
However, the relaxations at e& = 0.288 break the symmetry of
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FIG. 16. (a) Relaxed atomic positions at e, =0.286 in the glue
simulation. Shear deformations at eI =0.276 occur along the planes
denoted by the lines QP (b) Relaxed atom. ic configuration at Fsi„,
(e, =0.288) in the glue simulation. In both figures, the lines con-
necting groups of atoms indicate how the atomic structure changes
following failure.

the system in the planes z=-,'~a3~ and x=-,'~at~ and send

atoms 1L and IR (i.e., atom 1 in the left and right halves
of the supercell) to sites of higher coordination number
[Fig. 14(d)]. The final relaxed positions at e, = 0.286
and e& = 0.288 are compared in Fig. 16. The solid lines con-
necting groups of atoms help identify the changes in struc-
ture. The box of atoms in the lower half of the supercell is
rotated from its original orientation and the box of atoms in
the upper half of the supercell is deformed. The (100) plane
of atoms containing atoms 1L and 1R is severely folded. The
original void is larger and secondary voids are nucleated at
the edges of the supercell. These processes resemble those
at e, =0.28 [Fig. 4(c)] in the ab initio simulation, since there
are shear events along the edges of wedge structures. How-

z (A)

10

ever, atoms 2n, 3nn, and 4nn are not contained within the
wedges in the ab initio method, whereas atoms 2n, 3nn, and
4nn are included inside the wedges in the glue simulation.
Atoms 1L and 1R are not as isolated in Fig. 6 as they are in
Fig. 14(c). The (100) plane containing atom 1L in Fig. 6 is
slightly folded. The folding of this plane does not occur in
the glue simulation until the critical failure strain is attained
[Fig. 16(b)].

The atomic displacements can also be analyzed in terms
of the local strains which were defined in Sec. IV. We are

FIG. 17. (a) Relaxed atomic positions at e, =0.286 in the glue
simulation. (b) Relaxed atomic configuration at Fsi„, (e, =0.288) in

the glue simulation. In both figures, the lines connecting groups of
atoms indicate how the atomic structure changes following failure.
The atoms are labeled by i-j for the jth atom in row i of the original
unstrained system.
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interested in the local volume strains for our discussion of
metallic bonding in Sec. VI and in the local shear strains for
our discussion of the mechanical behavior.

Although the local strains near the voids become magni-
fied as the failure strain is approached, the response of the
defective system in the pairwise model differs from that in
the ab initio calculations. The failure of the system in the
pairwise case is accompanied by a reduction of the local
strains within each of the separated sections to small values.
Extended local shear deformations, as observed in the quan-
tum mechanical simulation (Fig. 7), do not develop in the
pair-potential calculations. The absence of shear failure indi-
cates brittle behavior in the pairwise approach by analogy
with the mesoscopic theories discussed in Sec. I.

The first structural transition in the glue method
at @I=0.276 magnifies the local shear strains along the
planes QP shown in Fig. 16(a). These extended shear defor-
mations are in agreement with the prediction that slip in a
lattice occurs along the dislocation glide planes with normals
which are closest to 45 to the tensile axis. Since the local
strains in the vicinity of the voids are dissipated by shearing
rather than by cleavage, the simulated material can be clas-
sified as ductile by analogy with the mesoscopic theories
discussed in Sec. I. Similar shear processes were observed in
the ab initio simulation.

VI. CONCLUSIONS ABOUT POTENTIAL MODELS
AND FEATURES OF METALLIC BONDING

Underlying the behavior of the defective system in the
ab initio, pairwise, and glue simulations is the nature of
the interatomic bonds. As discussed in Sec. IV, a distinguish-
ing feature of metallic cohesion is the tendency of the atoms
in a metal to distribute themselves as uniformly as possible.
A measure of this uniformity are the local volume strains
of tetrahedra linking four nearest neighbors. In the pair-
potential simulation, the local volume strains increase at first
linearly with e& and then more rapidly from about e&

=0.100. In the glue simulation, they increase at first linearly
with e& and then more rapidly from about eI =0.170. This
greater rate of increase corresponds to an unphysical void
expansion at strains well before failure. For example, the
variation of the local volume strain of tetrahedron T linking
atoms 2, 2n, 1, and the periodic image of 1 in the y direction
is shown in Fig. 8. Note that e&„voL for T in the ab initio
simulation does not show a similar increase until a higher
global strain (e, =0.26) much nearer failure.

The observations described above demonstrate that the
defective system in the ab initio simulation exhibits the
greatest resistance to changes in the uniformity of the atomic
distribution. This feature of metallic bonding delays the tran-
sition to the fractured state until very high global strains and
gives rise to ductile atomistic processes. The pairwise simu-
lation gives a poorer representation of metallic bonding since
the atomic distributions deviate from uniformity at a much
lower strain than in the quantum mechanical simulation. The
solid in the pairwise model cleaves into two sections which
discontinuously reduces the uniformity of the whole system.
In contrast, the solid in the quantum mechanical simulation
responds to the applied strain by trying to maintain an even
distribution of atoms in all parts of the system. Hence, it

deforms by folding and shearing processes, rather than by
separating along a fracture surface. The behavior in the glue
and ab initio models is qualitatively similar, but the configu-
rations in the former case deviate from uniformity at a much
lower global strain of 0.17, compared to 0.26.

Structural changes are not so well described by the
Sutton-Chen potential, though this model is a step in the
right direction from the purely pairwise approach. In a
nearly-free-electron metal such as aluminum, the local elec-
tron density, or alternatively the local atomic density p; or its
inverse, the local atomic volume p, , is an important deter-
minant of the energy. This fact is reinforced by the very
smooth variation of e&„v&L in the ab initio calculations. The
Sutton-Chen glue model might reproduce the ab initio results
better if it was modified to improve the calculation of the
local atomic volume. Other glue schemes can also be tested
using the quantum mechanical results as a database.

VII. CONCLUSIONS ABOUT LOCAL DEFORMATIONS

The first significant characteristic of the local deforma-
tions is the rapid movement of the central atoms away from
the voids. As discussed in earlier sections, these displace-
ments correspond to the expansion of the voids. In the ab
initio simulation, the expansion does not occur until just be-
fore failure. In contrast, this behavior begins at strains of
about 60% of the failure strain in the pair and glue simula-
tions.

A second feature of the local atomic rearrangements are
the slip processes which occur following the failure of the
system in the glue simulation. The upper left corner of the
supercell is reproduced in Fig. 17. We specify the atoms by
i-j for the jth atom in row i of the original unstrained sys-
tem. The cell consisting of atoms 2-1, 4-1, 4-2, and 2-2 [Fig.
17(a)] reconfigures itself to include atoms 2-1, 4-1, 4-2, and
4-3 after failure [Fig. 17(b)]. Atom 4-3 takes the topological
place of atom 2-2, which is equivalent to slip along the line
labeled QP in Fig. 16(a). We see the gradual nucleation of a
dislocation in contrast with the sudden click events associ-
ated with grain boundary sliding in germanium. '

The above observations of the motions in the glue simu-
lation improve our understanding of the ab initio calcula-
tions. The geometry across the line HP in Fig. 6 is exactly
the same as across QP in Fig. 16(a). The same type of slip
would have occurred in the ab initio simulation if we had
been able to carry the computations further. To check this,
we took the coordinates from the final positions following
failure in the glue simulation and relaxed them to a ground
state configuration using the ab initio approach. The result-
ing structure was nearly the same as in Fig. 16(b).
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