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A classical bond-order interatomic potential function developed by Tersoff has been applied to study the
structural, mechanical, thermal, vibrational, and surface properties of P-SiC. The potential has been modified
to eliminate the unphysical effects associated with large volumetric deformation. Fundamental bulk properties,
e.g. , phonon dispersion curves, thermal expansion coefficient, equation of state, elastic constants, as well as
surface relaxation and reconstruction have been studied. Comparisons with available literature data indicate
that the modified Tersoff potential gives a reasonably good description of the interatomic forces in P-siC,
including angle-dependent interactions, provided only nearest-neighbor interactions are allowed.

I. INTRODUCTION

In recent years, computer simulations have become an
increasingly powerful tool for studying materials properties
and behavior. While first-principles quantum mechanical
methods generally give the most accurate results, they cannot
be applied to problems such as melting at a grain boundary, '

brittle-ductile transitions in crack tip extension, and disloca-
tion mobility which require much larger system sizes or
longer simulations. For these investigations, empirical many-
body potentials can be used to provide useful first results, if
only for scoping purposes.

Among covalent materials, Si has been studied most ex-
tensively because of its technological importance. A recent
review considering the six most frequently used empirical
potentials of Si concluded that none of these potentials are
totally accurate and transferrable. On the other hand, valu-
able insights into various physical properties can be gained
using these potentials if proper interpretations are made
which take into account the strength and weakness of each
potential mode1. Thus the use of empirical potential models
can give a first look at properties and behavior which are
otherwise impossible to study by experiments or first-
principles calculations.

SiC is another covalent material with atomic-level and
electronic properties well suited for high power, high fre-
quency, and high temperature applications. In recent years,
the properties of SiC which have been studied in simulations
include amorphous structure, ' grain boundaries, structure
and mechanical behavior, ' and radiation damage. " In con-
trast to elemental systems like Si and C, an additional inter-
action between Si and C needs to be taken into account.
Three empirical potentials have been developed for SiC.'

Tersoff developed a many-body bond-order type of potential
for Si (Ref. 15) and C.' Later, the same formalism was
adapted for SiC.' Pearson and co-workers developed a
model consisting of two-body and three-body interactions'
and Baskes developed a modified embedded-atom model
(EAM) type of potential. ' Some applications have been
made already using these empirical potentials. "' How-
ever, little can be said about the accuracy and transferability
of these models. In particular, the applicability of using these
potentials to study the mechanical behavior of P-SiC under
large deformation has not been investigated.

In this paper, we present a study of bulk and surface prop-
erties of P-SiC using a modified form of the Tersoff poten-
tial. For surface relaxation and reconstruction, the results ob-
tained using the Pear son potential are also given for
comparison. We first describe the Tersoff potential and dis-
cuss its modification in Sec. II. The results for bulk and
surface properties, namely, phonon dispersion curves, equa-
tion of state, thermal expansion coefficient, elastic constants,
and surface relaxation and reconstruction are presented in
Sec. III. Except for calculations at 0 K, all results are ob-
tained by molecular dynamics simulations. For bulk proper-
ties, we use 216 atoms arranged in a cubic simulation cell
with periodic boundary conditions. The time step we use is
1.45' 10 ps. Typical calculations run for 30 000 steps ex-
cept those for elastic constants calculations which run for
about 100 000 to 300 000 steps. For constant pressure simu-
lations, we use the method of Parrinello and Rahman. ' '
Discussion and conclusion are given in Sec. IV.

II. TERSOFF POTENTIAL

A. Bond order

The Tersoff potential is based on the bond-order
concept. ' The interatomic potential energy between two
neighboring atoms i and j is written as'

V; =f,(r; )[Aexp( —h. r; ) —JtBb;J exp( —pr, )] (1)

where b;, is the many-body bond-order parameter describing
how the bond-formation energy (the attractive part of V;,) is
affected by local atomic arrangement due to the presence of
other neighboring atoms —the k atoms. It is a many-body
function of the positions of atoms i, j, and k. It has the
form'

b, =(1+j~,)
—1/2",

where g;, is called the effective coordination number and

g(9;/k) is a function of the angle between r;~ and r;k which
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FIG. 1. (a) Angular function g(8;,„) and (b)
bond-order parameter b; in Tersoff potential.
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has been fitted to stabilize the tetrahedral structure. The
larger the b;, the stronger is the bond, and the more attrac-
tive is the interaction between atoms i and j. In this descrip-
tion the bond strength between atoms i and j is determined
not only by the distance r;J but also by the competition from
interactions between atoms i and k through b; .

The binding between i and k atoms affects the binding
strength of V;~ in three ways. First, the larger the distance

r;I„ the smaller is the competition from atom k. This dis-
tance dependence is described by a quasi-step-function (the
same as the cutoff function f,) in the Tersoff potential. Sec-
ondly, the angle 0;~1, between r;I, and r;j has a particular
effect on strengthening the bond between i and j. If we take
a three-atom triplet as an example, the angular function

g(0;, t,) and the angular dependence of b,, are shown in Fig.
1 for r;, =r;t, =1.87 A (1.87 A is the equilibrium nearest-

0.9$

neighborbond length in P-SiC). The solid lines are obtained
when the center atom i is C and the two j atoms are Si; the
dashed lines are obtained when the center atom i is Si and
the two j atoms are C. One sees that at small angles the
angular functions are large and the corresponding bond-order
parameter is small. This means that two adjacent bonds with
a small enclosed angle are weakened more significantly by
bond ordering than the bonds with large angles enclosed.
Thirdly, given the same distance and angle, the more neigh-
boring k atoms, the weaker is the binding between i and j.
The coordination number dependence of b;, is shown in Fig.
2 given all r;, = r;t, = 1.87 A. and all 8;,t,

= 109.47' (the tetra-
hedral angle).

Using the Tersoff potential, we first calculate the equilib-
rium properties of P-SiC at 0 K. The results are shown in
Table I along with the results obtained from the Pearson
potential, the modified EAM potential, a tight-binding
model, and experimental data. The methods of elastic con-
stants calculation will be discussed later in Sec. III. The com-
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0.94

TABLE I. Comparison of P-SiC properties obtained from the
Tersoff potential (TP), Pearson potential (PP), modified EAM po-
tential (MEAM), tight-binding method (TBA), and experiment
(Expt.). r is the lattice parameter; F. is the cohesive energy; and B is
the bulk modulus.
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FIG. 2. Coordination number dependence of bond-order param-
eter b, .

'A. R. Verma and R. Krishna, Polymorphism and Polytypism in
Crystals (Wiley, New York, 1966), pp. 103.

"Reference 35.
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FIG. 3. Comparison of (a) cohesive energy
(eV/atom) and (b) pressure of P-SiC under defor-
mation at 0 K obtained by ab initio calculation
(solid line), universal binding curve (dashed line),
original Tersoff potential (circles, chained line is
to guide the eyes), and modified Tersoff potential
(crosses).
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parisons show that the Tersoff potential describes the equi-
librium properties such as cohesive energy and elastic
constants of P-SiC quite well. (Note that, except for the co-
hesive energy, none of the properties are directly fitted in
developing the potential. ) Importantly, the Tersoff potential
predicts accurately the shear elastic constant C44, suggesting
that the angular forces are satisfactorily described by the
model.

B. Cutoff and modification

The Tersoff potential was developed using a fixed short-
ranged cutoff which allows only the nearest neighbors to
interact at zero pressure equilibrium condition. One obvious
drawback of this cutoff is that it cannot describe the energy
difference between P-SiC and its polytypisms such as
u-SiC since they differ only in long-range stacking se-
quence. In addition, we have found unphysical effects due to
the short-ranged cutoff at large volumetric deformation under
pressure. The effects are clearly seen in Figs. 3(a) and 3(b),
which compare the cohesive energy and pressure curves ob-
tained from the Tersoff potential, the universal binding
curve, ' first-principles energy calculation, and the modi-
fied Tersoff potential (to be discussed later). The arrows in
Fig. 3(a) indicate the deformed states beyond which the Ter-
soff potential begins to deviate significantly from the first-
principles calculation results and the universal binding curve.
(Corresponding unphysical behavior also show up in the
pressure curve. ) In the region in between, the agreement with
both first-principles calculation and the universal binding
curve is good.

At the right arrow, the cutoff function f, ceases to be
unity and begins to take the cosine form (see Ref. 12 for the
expression of f,). This occurs at a state of r/ra= 1.18 which
is beyond the critical value of r/ro= 1.158 predicted by elas-
tic instability analysis. ' This means that the unphysical ef-
fect on the right is irrelevant as far as volumetric deformation
under tension is concerned.

At the left arrow, an abrupt kink appears at r/r0=0. 984
which is not far from the zero pressure equilibrium configu-
ration. The abrupt jurnp in the cohesive energy at the left
arrow is caused by the sudden inclusion of the second-
nearest-neighbor Si-Si interactions. At small deformation,
r/ro)0. 984, each atom interacts with four nearest neigh-
bors. Under large deformation, second nearest neighbors be-
tween Si-Si begin to interact with each other. Thus each Si
atom interacts with four C atoms and 12 Si atoms, while
each C still interacts with four Si atoms (the C-C cutoff is
smaller).

To see how the second-nearest-neighbor interactions be-
tween Si-Si cause the abrupt increase of cohesive energy, we
show in Fig. 4 the variation of the effective coordination
number s;, , the bond-order parameter b;, , the interatomic
binding energies V;, and the atomic potential energies U;.
The atomic potential energies are defined as Us' XjVs' j
and UC=XjVC j The cohesive energy of the system can
then be written as Eco„=(I/2)(Us;+ Uc). Figure 4(a) dem-
onstrates that the abrupt increase of the cohesive energy
comes from Us;, not from Uc. This is because for the entire
range studied each C always interacts with four neighbors
whereas the number of neighbors of Si changes from 4 to 12
at r/r0=0. 984. For Us;, the contributions from both Vs;s;
and Vs; c are shown in Fig. 4(b). When r/ro) 0.984,
Vs; s;=0 and Vs; c varies smoothly with compression. Com-
paring Figs. 4(a) and 4(b), one clearly sees that the abrupt
energy increase is due to the first-nearest-neighbor interac-
tion Vs; c, instead of the second-nearest-neighbor interaction
Vs; s;. The contribution from the latter is actually very small.
Ho~ever, though the interaction between Si-Si is relatively
weak, it has a significant effect on the first-nearest-neighbor
Si-C interaction. The sharp energy increase means a strong
weakening of the Si-C bond due to the formation of the 12
Si-Si bonds. ("Bond" here is simply defined by the inter-
atomic distance; if the separation is less than the cutoff, a
bond is formed. The stronger the bond, the lower is the en-
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ergy. ) As shown in Figs. 4(c) and 4(d), the weakening effect
enters through the dramatic decrease of bs; c due to an in-
crease of ss; c.

Further examination has shown that the extent to which
the 12 Si-Si bonds weaken the Si-C bond depends on the
angles they form with the Si-C bond. Among the 12 angles,
three have a value of 35.26, another three at 125.26', and
six at 90'. Because the angular functions shown in Fig. 1

favor small angles, the dominant contribution to the increase
of gs; c comes from those Si-Si bonds with angles of
35.26 . Geometrically, the local interatomic configuration in
the zinc-blende structure is a tetrahedron shown in Fig. 5,
where the angles between the Si-C bond (thick solid line)
and the three Si-Si bonds (thin solid line) are 35.26 . There-
fore, under volumetric deformation with r/ro(0. 984, the ad-
ditional interactions of the Si-Si bonds in the same tetrahe-
dron cause significant weakening of the Si-C bond. The Si-C
bond becomes much more repulsive when the Si-Si interac-
tions are considered.

Si-Si interaction in the zinc-blende structure arises in a
direct way when deformation under compression is consid-
ered. Since the Si-Si cutoff is held fixed, at a certain point
during compression, Si-Si interaction will come into play
and cause an abrupt change of the cohesive energy, pressure,
and elastic constants. Another way that Si-Si can interact is
at finite temperatures. Since the Si-Si cutoff (3.0 A) is very
close to the Si-Si distance (3.05 A) under zero pressure at 0
K, thermal fluctuations can bring the atoms to within the
interaction range. When one takes time averaged quantities
as calculated properties, the effect of Si-Si interaction is in-
cluded. This effect is most clearly seen in the strange behav-
ior of elastic constants at finite temperatures, shown by the
crosses in Fig. 10 below.

To eliminate the problem caused by the inclusion of the
Si-Si interactions, one could in principle incorporate all three
types of interactions, Si-C, Si-Si, and C-C, even at the zero
pressure configuration and refit the Tersoff potential for

P-SiC. Here, we propose a simple, intuitive modification in-

volving using variable cutoffs. The idea is to restrict the in-
teractions to only nearest neighbor as long as the system has
the zinc-blende structure. This is reasonable for covalent ma-
terials since the binding is formed by sp hybridized orbitals
of nearest neighbors. We therefore scale the cutoffs with the
system volume

(4)

where Ro and Vo are the cutoff and system volume at zero
pressure at 0 K; R and V are the rescaled cutoff and system
volume in a deformed state. The same rescaling rule applies
to all the cutoff distances involved in the Tersoff potential.
Interestingly, the cohesive energy and the pressure curves
obtained using this modified Tersoff potential agree very
well with the first-principles calculations and the universal
binding curve, as shown in Fig. 3.

Our rescaling does not eliminate the problem of Si-Si in-
teraction caused by thermal fIuctuations because the Si-Si

Si

Si

Si
Si

FIG. 5. Local atomic tetrahedron with a C atom at the center.
The angles between the Si-C bond (thick solid line) and the three
Si-Si bonds (thin solid line) are 35.26'.
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TABLE II. Cutoff values (in units of A) for P-SiC at zero pres-
sure and at 0 K.
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cutoff is too close to the Si-Si separation in the p-SiC struc-
ture. Furthermore, since the cutoffs in the Tersoff potential
are not systematically fitted, by using the rescaling rule, one
has some freedom to choose the cutoffs under zero pressure
and at 0 K. We have chosen a set of cutoffs with the rescaling
rule by fitting the melting temperature of our model to be
around 5000 K, suggested by a Car-Parrinello molecular dy-
namics (MD) study. The combination of Eq. (4) and the new
cutoffs, listed in Table II, constitutes our modification of the
Tersoff potential. In the following sections, we will present
results of bulk and surface properties of p-SiC studied using
this modified Tersoff potential.

10

FIG. 6. Phonon dispersion curves of p-SiC at 0 K and under
zero pressure obtained from tight-binding calculation (solid line),
Tersoff potential (dashed line), and experimental data (circles).

III. RESULTS AND DISCUSSION

A. Phonon dispersion curves

Phonon dispersion curves of p-SiC at 0 K are obtained by
evaluating the force constants &Ulnar; Br~&, where U is the
total potential energy of the system and i,j=1,2, . . . ,N,
n, p=x, y, z. The present results are compared with values
obtained from a tight-binding calculation as shown in Table
III. Diagonalization of the dynamical matrix yields the dis-
persion curves given in Fig. 6 along with the tight-binding
result and experimental data. We see that the acoustic
modes are very well described by the Tersoff potential. How-
ever, the optic modes are underestimated and the order of
transverse and longitudinal modes is reversed for the Tersoff
potential. Also, the optic modes at the I point are degener-
ate, in contrast to a pronounced splitting clearly seen in the
experimental data and the tight-binding calculation, caused
by the electric field induced by ionicity in SiC. Since the
Tersoff potential treats p-SiC as a fully covalent material, it
is intrinsically unable to describe the splitting of the optic
modes at I . Therefore the Tersoff potential gives a satisfac-
tory description of the acoustic phonon dispersion curves,
but the optic modes are not correctly described.

B. Equation of state

In this section, we present equation of state results for
p-SiC under hydrostatic compression at room temperature
(300 K). Corresponding results for hydrostatic tension have

been published elsewhere. Figure 7 shows the pressure-
volume (P-V) curve compared with two sets of experimental
data obtained by Bassett et al. and Yoshida et al. , respec-
tively. The lines in the figure are fitted functions from the
data using the Birch-Murnaghan equation of state

P=-', k [(Vo/V) —(V /V) ]
X [I—

—,'(4 —k')((Vo/V) ' —I )]

where Vo and V are the volumes at zero pressure and under
deformation, respectively, ko is the isothermal compressibil-
ity, and k' is the pressure derivative of ko. Note that a sim-
pler Murnaghan equation of state,

P = ko Ik(')[(ro lr) 0 I], —
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TABLE III. Elements of force constant matrix (in units of
eV/4 ) between nearest neighbors in P-SiC. D stands for D„„,
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FIG. 7. Pressure-volume curves for P-SiC under compression.
Circles and dashes line are data and fitted function obtained by
Yoshida et al. (Ref. 28); stars and chained line are data and fitted
function obtained by Bassett et al. (Ref. 27); crosses and solid line
are data and fitted function from the modified Tersoff potential.
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Coord. no.
C
Si

Bulk

4
0.8663
0.9368

Shuffle (111)
[or (110)]

3
0.8917
0.9475

(100) Glide (111)

2
0.9234
0.9599

1
0.9776
0.9776

TABLE VI. Comparison of bond-order parameter b;, as a func-
tion of local coordination number for i=C (first row) and i=Si
(second row).

TP PP TB ab initio

TABLE VIII. Summary of energy decrease and vertical layer
displacements due to surface relaxation of P-SiC. dE is the energy
decrease per atom; dH„ is the averaged atomic displacement from
its bulk position in the nth layer; and dO is the change in per-
centage of interlayer spacing between nth and mth layers compared
to their bulk spacing. Negative (or positive) sign represents inward

(or outward) movement toward (or away from) the bulk.

TABLE VII. Unrelaxed surface energies of P-SiC calculated us-

ing the modified Tersoff potential.

Planes

shuffle (111)
(110)
(100)
glide (111)

Energy (erg/cm )

2525
3093
4618
8219

in the bottom layer unit are Axed in order to model a bulk
material with one free surface at the top. The structures thus
constructed are found to be thick enough since the results
show that almost all the surface relaxation and reconstruction
involve only atoms in the top two layers. All relaxation and
reconstruction studies are performed by molecular dynamics
simulations at 10 K.

The surface energy is defined as y, =(E, Eb)/A, —where
E, and Eb denote potential energy per atom in the bulk and
at the surface, respectively; A is the exposed surface area per
atom. Physically, y, is the energy increase due to dangling
bonds. For an unrelaxed surface, y, is simply determined by
the negative binding energy of the dangling bonds for pair
potentials. However, for the many-body Tersoff potential, the
situation is different. As atoms lose bonds at the surface, the
remaining bonds automatically strengthen themselves even
without relaxation of atomic positions. This is due to the
many-body nature of the potential, where the strength of
each bond is determined by the local atomic configuration
and the bond-order parameter b; is a function of local coor-
dination number. A summary of b; at different surfaces is
shown in Table VI, where one clearly sees that the remaining
bonds strengthen themselves as b;~ increases when the coor-
dination number decreases at different surfaces. The results
of unrelaxed surface energies of P-SiC are given in Table
VII. The shuffle-(111) surface has the lowest surface energy.
This is to be expected since the shuffie-(111) surface has the
lowest density of bonds. The only experimental value of sur-
face energy reported in the literature to our knowledge is
2180 erg/cm by Oshcherin, which agrees with our result
of 2525 erg/cm very well.

Since atoms at the surfaces that are ideally truncated are
undercoordinated, they will experience nonzero net forces
and will relax to new equilibrium positions. This is the pro-
cess of surface relaxation. We find that relaxation of (100)
and (111) surfaces only involves vertical displacements of
atoms, whereas both vertical and lateral displacements are
involved for (110) surface. In Table VIII, results of energy
decrease and vertical displacement of atoms during surface
relaxation are summarized. Also shown in the table are re-

C (100) relaxation

dE (ev/atom)

dH, (A)
dD, 2 (%)
dH2 (A)

0.49
—0.17

—23.0
0.04

0.25
—0.15

—14.0
—0.01

0.34
—0.17

—22.0
0.07

Si (100) relaxation

dE (eV)
dH, (A)
dD, 2 (%)
dH2 (/%1)

C (111) relaxation

dE (eV)
dH1 (A)
dD12 (%)
dH2 (A)

Si (111) relaxation

dE (eV)
dH, (A)
dD, 2 (%)
dH2 (A)

0.09
—0.04
—6.2

0.03

0.83
—0.27

—51.2
0.05

0.11
—0.04

—11.8
0.03

0.18
—0.07
—8.4
—0.02

0.62
—0.30

—61.2
0.08

0.31
—0.06

—20.5
0.06

0.02
—0.04
—4.6

0.01

0.43
—0.21

—52.4
0.12

0.03
—0.05

—11.1
0.02

(110) relaxation

dE (eV)
dH, (/I1)

dD, p (%)
dH, (A)

0.29
—0.17

—23.0
0.04

0.41
—0.15

—14.0
—0.01

—0.17
—22.0

0.07

0.21

suits obtained using the Pearson potential, tight-binding
calculation, and ab initio calculation. The vertical dis-
placements given in this table are averaged over all atoms in
the layer. For the energy decrease dF. , the Tersoff potential
gives better results for Si (100), Si (111),and (110) surfaces,
while the Pearson potential gives better results for C (100)
and C (111).We believe that this is because the latter has
incorporated some C cluster information in the fitting proce-
dures. For the displacements of dH&, dD&2 and dH2, the
Tersoff potential consistently gives better results than the
Pearson potential. Also, dH& and dD jz from the Tersoff po-
tential are in excellent agreement with the tight-binding cal-
culations. For the (100) and (111) surface relaxation, the C
surfaces exhibit larger inward displacements and gain more
energy than the Si surfaces. For all surfaces, contraction of
the top two layers during relaxation is observed.

For the (110) surface, there are both Si and C atoms in the
top layer and they move differently in the relaxation process.
Though the averaged displacement shows inward relaxation,
the actual displacements of Si and C atoms are different.
Relaxation of the (110) surface is more complicated than that
of (100) and (111) surfaces because it involves atomic dis-
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TABLE IX. Relaxation and buckling of the (110) surface of P-SiC. dX is the vertical displace-
ment of the top layer atoms and d Y and dZ are the lateral displacements of the top layer atoms. dF.
is the average energy gain per atom.

TP PP TB ab initio

dF (eV) 0.29 0.41 0.21

dX (A)
dY (A)
dZ (A)

—0.22
0.00

—0.18

Si
0.03
0.00
0.01

C
—0.27

0.00
0.21

Si
—0.01

0.00
0.02

—0.12
Si

—0.21
C

—0.05
0.00
0.02

Si
—0.17

0.00
—0.14

placements in the lateral directions. In Table Ix, the results
of relaxation of the (110) surface are summarized and com-
pared with the tight-binding calculation and ab initio
calculation. The calculated energy gain from the Tersoff
potential is in close agreement with the ab initio calculation.
However, the Tersoff potential predicts inward relaxation of
C atoms, and slight outward relaxation of Si atoms, which
are different from the predictions of tight-binding and ab
initio calculations. The latter two methods predict inward
relaxation of both C and Si atoms with larger displacement
for Si atoms. This relaxation process requires proper treat-
ment of electron transfer and charge effects ' which are
absent in the Tersoff potential. Thus its failure to predict the
correct buckling behavior of the (110) surface is understand-
able. Note that, though the Pearson potential predicts inward
relaxation for both C and Si atoms, the relative amount of
displacement is not correct compared with the tight-binding
and ab initio results.

Another important aspect of surface relaxation involves a
symmetry change in the surface layer relative to the bulk
structure. This is the process of surface veconstrucrion. Sur-
face reconstruction of (100) surfaces of P-SiC has been stud-
ied by scanning tunneling microscopy (STM) and low-
energy electron diffraction ' (LEED) experiments. Several
reconstruction patterns have been observed. Two typical ones
are the 2X 1 and 2 X 2 reconstructions. We have studied the
(100) surface of P-SiC using the Tersoff potential and the
Pearson potential. We first intentionally move the atoms to-
wards the expected reconstruction sites to help the system to
overcome the energy barrier and also make simulations more
efficient at low temperature. Then we allow atoms to relax to
new equilibrium positions by MD simulations. If no recon-
struction is energetically favored, we find atoms move back
to their initial equilibrium positions. In this way we have
observed 2X 1 and 2X2 dimer formation on both C (100)
and Si (100) surfaces using the Tersoff potential. For the
Pearson potential, no 2X1 dimers are observed on the Si
(100) surface. In Table X, we summarize the results from the
Tersoff potential, the Pearson potential, and the tight-binding
calculation. From the bond lengths and energy gain, we
find that the 2X1 reconstruction is favored over the 2X2
reconstruction, which is in agreement with the tight-binding
calculation. However, from the tight-binding calculations,
the bond length of Si dimers (2.16 A) is smaller than the
bond length in diamond cubic Si (2.35 A), and the bond
length of C dimers (1.74 A) is larger than that in diamond C
(1.54 A.). For the Tersoff potential, the opposite situation is
obtained. Though the Tersoff potential is able to predict the

low energy 2 X 1 reconstruction successfully, the quantitative
results are not satisfactory. It appears that surface reconstruc-
tion involves significant electronic structure effects, which
cannot be described properly by any empirical potentials.

IV. DISCUSSIONS

Based on the various bulk and surface properties of
P-SiC presented in this paper, we demonstrate that the bond-
order potential developed by Tersoff is able to describe the
angle-dependent forces reasonably well, provided that only
the nearest-neighbor interactions between Si and C are taken
into account. The modified Tersoff potential gives satisfac-
tory results for the acoustic phonon dispersion curves, equa-
tion of state, thermal expansion coefficient, and elastic con-
stants variations with temperature. In our opinion, the
reasons for the success of this potential can be attributed to
its ability to describe well the volumetric variation of the
cohesive energy (as can be seen in Fig. 3) and to its bond-
order nature. It is also noteworthy to recall that the only
specific property of the compound (as opposed to properties
of the elemental constituents Si and C) which enters into the
potential is the heat of formation, and it is used to determine
the strength of the heteropolar bond relative to a simple in-
terpolation. Moreover, the Tersoff potential predicts correct
surface energy for P-SiC, where the shuffle-(111) surface has
the lowest surface energy. It also predicts fair energy gain

2X1 2X2 2X1 2X2 2X1 2X2

C (100)

TP(SiC)
PP(SiC)
TB(SiC)

2.42
2.97
2.31

2.29
2.90

1.48
1.49
1.74

1.49
1.49

~ 0.79 ~ 0.78
~ 0.74 ~ 0.73
~ 0.67

Si (100)

TP(SiC) 0.67 0.63 2.46 2.54 ~ 0.30 ~ 0.26
PP(SiC) No Dimer 0.41 No Dimer 2.49 No Dimer ~ 0.24
TB(SiC) 1.03 2.16 ~ 0.45

TABLE X. Surface reconstruction of the (100) surfaces of
P-SiC. r is the bond length (in units of A); dF. is the energy gain
(in units of eV); and dL is the top layer lateral displacement (in
units of A).
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and excellent vertical displacements for (100) and (111) sur-

face relaxation. However, due to the absence of proper treat-
ment of electron transfer and the resulting charge effect, the
Tersoff potential cannot account for the correct buckling be-
havior of the (110) surface relaxation and the splitting of the
optic phonon modes at the I point. Currently, none of the
empirical potentials for SiC deal with the charge effect ex-
plicitly, though the inclusion of Coulomb interaction into the
two-body potential part is possible.

Although the current modification of the Tersoff potential
is successful to some extent, we believe that it is desirable to
take into consideration the Si-Si and C-C interactions in the
fitting procedure for P-SiC. As we have discovered, the un-

physical effect is the large repulsion between the Si-C bond
due to second-nearest-neighbor interactions at small angles.
Proper fitting of the angular function for the P-SiC structure
could resolve this problem. Incorporating the Si-Si and C-C
interactions in P-SiC in the fitting should give a better de-
scription of the disordered structures of SiC, such as molten

and amorphous SiC. In the original Tersoff potential, these
states were not considered. In our modification, fitting the
melting temperature of P-SiC implicitly brings in some ef-
fects of the Si-Si and C-C interactions. Also, our scheme of
introducing the variable cutoff can be extended by consider-
ing local cutoffs scaling with local instead of global volume.
The variable cutoffs may be useful for heterogeneous defor-
mation.

ACKNOWLEDGMENTS

This work has been supported by AFOSR Grant No. 91-
0285. One of us (M.T.) acknowledges support from MIT. We
are grateful to E. Kaxiras for providing us with the total
energy results obtained by first-principles calculation. We
also acknowledge early contributions to develop the molecu-
lar dynamics simulation code for Tersoff potential by E.
Burke. Computations were carried out in part under alloca-
tions from the San Diego Supercomputer Center.

'T. Nguyen, P. S. Ho, T. Kwok, C. Nitta, and S. Yip, Phys. Rev. B
46, 6050 (1992).

K. S. Cheung and S. Yip, Modeling Simul. Mater. Sci. Eng. 2,
865 (1994).

V. Bulatov, S. Yip, and A. Argon, Philos. Mag. A 72, 496 (1995).
H. Balamane, T. Halicioglu, and W. A. Tiller, Phys. Rev. B 46,

2250 (1992).
F. Finocchi, G. Galli, M. Parrinello, and C. M. Bertoni, Phys.

Rev. Lett. 68, 3044 (1992).
P. C. Kelires, Europhys. Lett. 14, 43 (1991).
M. Kohyama, S. Kose, M. Kinoshita, and R. Yamamoto, J. Phys.

Condens. Matter 2, 7791 (1990).
M. Tang and S. Yip, J. Appl. Phys. 76, 2719 (1994).
M. Tang and S. Yip, Phys. Rev. Lett. 75, 2738 (1995).

' M. Tang, Ph. D. thesis, Massachusetts Institute of Technology,
1995.

"A. El-Azab and N. M. Ghoniem, Radiat. Effects Defects Solids
129, 117 (1994).

' J. Tersoff, Phys. Rev. B 39, 5566 (1989).
' E. Pearson, T. Takai, T. Halicioglu, and W. A. Tiller, J. Cryst.

Growth 70, 33 (1984).
' M. I. Baskes (unpublished).
' J. Tersoff, Phys. Rev. B 27, 6991 (1988); 3S, 9902 (1988).
' J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).
' M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
' J. R. Ray, Comput. Phys. Rep. S, 109 (1988).
' G. C. Abell, Phys. Rev. B 31, 6184 (1985).

A. Isik, Ph.D. thesis, Massachusetts Institute of Technology,
1994.

' J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B
29, 2963 (1984).

E. Kaxiras (private communication).

D. H. Lee and J. D. Joannopoulos, Phys. Rev. Lett. 48, 1846
(1982).

H. M. J. Smith, Proc. R. Soc. London Ser. A 241, 105 (1948).
D. W. Feldman, J. H. Parker, W. J. Choyke, and L. Patrick, ibid.

173, 787 (1968); 170, 698 (1968); W. J. Choyke, D. R. Hamil-

ton, and L. Patrick, Phys. Rev. 133, A1163 (1964).
E. O. Kane, Phys. Rev. B 31, 7865 (1985).
W. A. Bassett, M. S. Weathers, and T. C. Wu, J. Appl. Phys. 74,

3824 (1993).
M. Yoshida, A, Onodera, M. Ueno, K. Takemura, and O. Shimo-

mura, Phys. Rev. B 48, 10 587 (1993).
F. Birch, J. Geophys. Res. 83, 1257 (1978).
Z. Li and R. C. Bradt, J. Mater. Sci. 21, 4366 (1986).

'M. Born and K. Huang, Dynamical Theory of Crystal Lattice
(Clarendon, Oxford, 1956).

K. Mizushima, S. Yip, and E. Kaxiras, Phys. Rev. B 50, 14952
(1994).

C. S. G. Cousins, J. Phys. C 11, 4867 (1978); 11, 4881 (1978).
Z. Li and R. C. Bradt, J. Mater. Sci. 22, 2557 (1987).
W. R. L. Lambrecht, B. Segall, M. Methfessel, and M. van

Schilfgaarde, Phys. Rev. B 44, 3685 (1991).
K. S. Cheung, A. Argon, and S. Yip, J. Appl. Phys. 69, 2088
(1991); J. H. Wang, Ph. D. thesis, Massachusetts Institute of
Technology, 1993.

37B. N. Oshcherin, Phys. Status Solidi A 34, K181 (1976).
S. P. Mehandru and A. B. Anderson, Phys. Rev. B 42, 9040

(1990).
D. H. Lee and J. D. Joannopoulos, J. Vac. Sci. Technol. 21, 351

(1982).
C. S. Chang, N. J. Zheng, S. T. Tsong, Y. C. Wang, and R. F.

Davis, J. Vac. Sci. Technol. B 9, 681 (1991).
'R. Kaplan, Surf. Sci. 215, 111 (1989).


