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The general theoretical framework underlying the GNXAS multiple-scattering (MS) data-analysis method

for x-ray absorption spectroscopy (XAS) is presented. The main approximations leading to the reduction of the

many-body process in that of a photoelectron scattering in an effective potential are summarized. The methods
available to expand the extended x-ray-absorption fine-structure g(k) into physically meaningful terms are

described. In particular, emphasis is given to the definition of the irreducible n-body signals y(") that can be
calculated directly by means of linear combinations of continued fractions, or by using their respective
multiple-scattering series. It is found that even for an infinite system the expansion of the y(k) signal in terms

of y
" has a better convergence rate than the MS series. Simple expressions for performing the configurational

averages of the structural signals in the presence of thermal and structural disorder are derived. These can be
used for the structural analysis of molecular, crystalline, or moderately disordered systems. It is shown that in

the case of highly disordered systems the expansion in terms of the y ") signals is the natural framework for the

interpretation of the XAS signal. General equations for the ensemble-averaged g(k) signal as a function of a
series of integrals over the n-body n&2 distribution functions g„are provided and the possible use of
advanced strategies for the inversion of the structural information is suggested.

I. INTRODUCTION

X-ray-absorption spectroscopy' (XAS) is a powerful
structural technique that allows one to investigate the neigh-
borhood of a photoabsorber atom embedded in a condensed
medium. The absorption cross section above a deep core-
level excitation threshold presents oscillations characteristic
of the compound being examined, due to interference effects
in the transition-matrix element, which in turn are related to
a suitably projected density of the unoccupied electronic
states.

The basic theory for XAS (Refs. 3—6) has been developed
since the early 1970 s, in connection with the rapid experi-
mental advances stimulated by the advent of synchrotron ra-
diation, in particular supporting the structural origin of the
so-called extended x-ray-absorption fine structure
(EXAFS). ' The EXAFS structural signal is defined as the
relative oscillation with respect to a smooth total atomic
cross section o.

o normalized to the atomic cross section
of the edge under consideration o.o, i.e., g(k)
= [o.(E) —cro(E)]/oo(E), where k= /2m(E E,)/his the, —
modulus of the photoelectron wave vector (E, being the
threshold energy). On the basis of both experimental evi-
dence and approximate theory it was first realized ' that
each atom at a given distance R contribute to y(k) with an
oscillating signal of the type A(k) sin[2kR+ P(k)]. This fact
suggested the use of a Fourier transformation technique ' to
isolate the contributions from the successive coordination

shells, in a way similar to the well established methods for
inverting the information contained in the structure factor
S(k) from diffraction experiments of disordered systems. It
was also realized that the amplitude A(k) is characteristic of
the backscattering atom while the dephasing term P(k),
which can be usually approximated with a linear function of
k, is, to a high degree of accuracy, the sum of two indepen-
dent functions associated with photoabsorber and backscat-
terer atoms, respectively. This fact, known as "amplitude and
phase transferability, " is also at the basis of the standard
EXAFS data-analysis method. '

Due to the simplicity of the data-analysis method the
EXAFS technique has become very popular in recent times
and has found many applications ranging from chemistry to
molecular biology, including obviously many liquid and
solid-state problems in condensed-matter physics. Some ap-
plications have dealt also with very dispersed systems, where
the atoms of interest are only present in traces, or have ad-
dressed dynamical effects with typical timescales of the or-
der of the milliseconds. Among the main advantages of XAS
as a structural tool, the atomic selectivity, which is an impor-
tant feature for studying multicomponent systems, merits
particular mention. The present paper is focused on another
quite remarkable characteristic of XAS, namely its sensitiv-
ity to atomic arrangements involving more than two atoms at
the same time.

The photoabsorption process can be schematized as fol-
lows: a primary probe, usually a high-energy x-ray photon,
interacts with a particular atom embedded in a certain struc-
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ture. Above the absorption threshold energy, the photon ex-
cites a deep core electron generating a photoelectron that acts
as a secondary probe. The photoelectron belongs to a con-
tinuum state with a well defined energy and its wave function
spreads out of the excited atom interacting strongly (through
Coulomb interaction) with the surrounding matter. The ef-
fects of the presence of neighboring atoms in the absorption
cross section can be calculated in a perturbative scattering
scheme starting from the isolated atom. Due to the strong
electron-atom coupling it is not sufficient to limit the expan-
sion to single-scattering terms, but higher-order multiple-
scattering (MS) terms, should be included. MS terms probe
the simultaneous presence of several atoms around the pho-
toabsorber, in other words they probe the n-particle distribu-
tion functions. This sensitivity makes the XAS a unique
probe in condensed systems. MS effects are dominant in the
low kinetic energy region corresponding to the x-ray-
absorption near-edge structure (XANES). Indeed the
XANES sensitivity to higher-order distribution functions was
quite early recognized, ' "and exploited. ' '

The occurrence of MS in the EXAFS region has been for
many years the subject of some scientific debate. Its presence
was initially identified in collinear atomic configurations
where MS is enhanced by the focusing effect of the central
intervening atom. ' A typical case is the fourth shell in the
fcc structure which is exactly shadowed by the first. It was
early recognized that a spherical wave approach' is essential
for the correct prediction of low-angle scattering effects and
expression for MS contributions were derived by various
groups. ' ' ' The presence of MS signals severely limits the
practical a plicability of the standard method of data
analysis, ' ' founded indeed on the single-scattering theory.
For this reason large efforts have been devoted, until rela-
tively recent times, to minimize the importance of the MS
contributions. ' ' Nevertheless, strong MS effects were
found in metal-carbonyl compounds Me„(CO) because of
the collinearity of the metal-C=O bond, ' ' ' and in metal-
imidazole complexes due to the nearly collinear geometries
and the short distances in the imidazole ring. Recently even
MS "superfocusing" effects were detected from chains of
Fe-F-Fe-F-Fe in FeF3. MS was also revealed in open
structures ' and its importance for a correct second-shell
analysis was recognized. The possibility of using MS for
bond-angle determinations in condensed matter was ad-
dressed by various authors. Computational difficulties
stimulated the development of efficient algorithms for MS
calculations. ' ' Recently the MS theory in XAS has been
reviewed.

The need to account correctly for MS contributions has
stimulated the development of sophisticated packages that
allow us to perform EXAFS data analysis based on theoreti-
cal calculations. Three main packages have been developed
by different groups that differ mainly in the way MS is in-
troduced and in the treatment of configurational average ef-
fects. The ExCURvE package ' was developed by the
Daresbury research group on the basis of early theoretical
advances' ' ' and was actually the first user-oriented pack-
age to be developed. An extensive application of polarized
MS to the analysis of surface EXAFS has been recently
performed by this group. The other two packages are the
GNXAS, ' developed by our group, whose theoretical

founding will be widely described in the present paper, and
the FEFF package developed by the Seattle group, that is
mainly based on the fast separable approximation by Rehr
and Albers. ' Recent applications of the FEFF package, re-
garded the understanding of alkali halides and mixed ionic
salts spectra and antiferrodistorsive phase transitions in
perovskites.

The purpose of the present paper is to discuss in a thor-
ough manner the theory underlying the GNXAS method of
EXAFS data analysis. An accompanying paper,

' hereafter
referred to as II, is instead devoted to the discussion of the
fitting procedure and contains a representative set of appli-
cations to prototypical molecular and crystalline systems.
The GNXAS method has been already applied to a large
variety of systems. Initial applications included a-Si, '" the
Os3(CO)i2carbonyl cluster, tetrahedral molecules, bromi-
nated hydrocarbon molecules, " and high-T, cuprates. A
complete and updated list of references is given in II. The
GNXAS approach was specifically developed to allow the
treatment of single and MS effects in disordered structures.
For this reason a central aspect of the theory resides in the
connection between MS signals and n-body distribution
functions. The possibility of deriving reliable short-range ra-
dial distribution function profiles from EXAFS data in liquid
systems, directly comparable with diffraction results or
molecular-dynamics simulations was demonstrated.
Moreover, the importance of taking proper account of MS
contributions in EXAFS data analysis of disordered systems
was proven in several applications regarding amorphous
solids ' and liquids.

The paper is organized as follows. Section II presents the
underlying theory divided for clarity in three subsections:
Section II A gives a brief discussion on the effective model
potential used for the calculation of the atomic phase shifts,
Sec. II B introduces and discusses the usual MS expansion,
whereas Sec. II C derives the related expansion in terms of
irreducible n-body signals and presents suitable methods for
their calculations. In Sec. III the general ideas underlying the
cluster analysis in terms of structural n-body units are pre-
sented and the yr(k) and rj(k) signals are defined. In Sec.
IV the general theory for the configurational average of the
structural signals is reviewed, and finally in Sec. V the case
of disordered systems is treated with particular emphasis on
the sensitivity of the XAS signal to three-body distributions.

II. THEORY

Without loss of generality we consider the problem of
calculating the y(k) for a model cluster which is relevant to
the structure under investigation. The procedure can be di-
vided into the following steps: (a) calculation of the model
potential for the final-state photoelectron, ensuing the reduc-
tion of the photoabsorption many-body problem to an effec-
tive one-electron problem moving in an optical potential, (b)
the calculation of the atomic phase shifts, (c) the signal cal-
culation, and (d) the configurational average. The model sig-
nal can be eventually compared with the experiment and
possibly subject to a refinement procedure as a function of
the unknown structural parameters. In principle, the refine-
ment should involve all of the last four steps, since a change
of the geometry affects, in principle, also the model poten-
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tial. In practice, however, provided that the starting model
cluster is sufficiently close to the real structure, the effects of
small changes in the geometry (mainly bond distances) is
negligible on both potential function and phase shifts, con-
sequently they can be calculated once and for all at the be-
ginning of the simulation. It will be shown that this is pos-
sible also for the yT(k) and xg(k) signals. As a consequence
the structural refinement procedure can involve only the last
step, reducing considerably the complexity of the procedure.
A self-consistent check can be eventually performed to as-
certain that the optimized geometry gives rise to phase shifts
identical, within a prescribed tolerance, to the starting ones,
otherwise the entire procedure can be repeated until self-
consistency is reached. Theoretical details on the various
steps are given below.

A. Model potential and cross section

In order to put things into the proper context it might be
useful to give here a sketchy description of the reduction of
the photoabsorption many-body problem into that of an elec-
tron moving in an effective optical potential. Under quite
general conditions it is possible to write the total many-body
absorption cross section o„,(c0) in the following way:

I

' co

tr„,(o)) = o(co —co')A, (o)') des' = o.(co)~S(co)~,

where o.(co) is the one-electron absorption calculated in an
optical potential that takes into account both the extrinsic
losses of the photoelectron in the final state and the transient
potential due to the switching of the core hole, A, (co) repre-
sents the intrinsic excitation spectrum of the core hole, and
fi, co is the photon energy. Equation (1) has a quite simple
physical content, in that it simply states that the total absorp-
tion cross section is obtained by convoluting the single-
electron spectrum with the probability function that a certain
excitation energy remains in the system and is not available
to the kinetic energy of the photoelectron. The function
A, (t0) is clearly normalized to one: consequently the areas
under the total absorption spectrum and the single-particle
spectrum are the same so that the quantity ~5(co)

~

defined in
Eq. (1) is expected to be structureless and nearly unity to a
first approximation, except for the presence of quantum
structures due to particularly strong inelastic channels which,
however, are sizable only near threshold and in systems with
high electron-electron correlation.

Under these assumptions the main problem becomes the
construction of the effective optical potential and the solution
of the associated Green's-function equation for the calcula-
tion of the one-electron cross section. Unfortunately, even
this simpler problem is out of the reach of present day theo-
retical capabilities. In practice, in order to be able to cope in
a simple way with the wide variety of systems usually en-
countered in practical applications, one tries to make a rea-
sonable ansatz as to the nature of the optical potential so that
it becomes applicable without too much difficulty to the vari-
ous cases under study. Experience by several groups32, 36,56-ss

has shown that the complex Hedin-Lundqvist (HL)
potential, suggested by Lee and Beni for this type of prob-
lem provides a very good approximation to this kind of "uni-

versal" optical potential, at least for what concerns the ex-
trinsic losses. ' ' ' ' It represents substantially the self-
energy of an electron embedded in a locally uniform
interacting electron gas with a density equal to the local den-
sity of the system under study. Physically, this potential acts
as a medium that diffracts the coherent electronic wave in the
elastic channel by its real part and attenuates it via its imagi-
nary part, giving rise to mean-free-path effects. The intrinsic
losses are not accounted for in this approximation and nei-
ther is the attenuation of the electronic wave due to them.
This is the reason why one keeps a constant many-body re-
duction factor So (Refs. 37 and 61) for these excitations
when fitting calculated signals to experimental data. The fit-
ted values for this factor range from 0.85 to 0.90 in various
materials indicating that the spectral weight of the intrinsic
losses varies from 10 to 15% of the total. However, the re-
duction due to the extrinsic losses is automatically taken into
account by using the complex HL potential. Notice that in
this scheme one actually expects an energy dependence of
So near threshold, due to the progressive opening of succes-
sive inelastic channels with energy. Simulations using vari-
ous theoretical models have however shown that this en-

ergy dependence actually dies out quite rapidly beyond the
first 40=50 eV above the rising edge, justifying in this way
the use of a constant So reduction factor in the energy range
used for EXAFS analysis.

Coming back to the construction of the optical potential,
one further notices that at given photoelectron energy the HL
potential, as the Coulomb potential, depends only on the lo-
cal density of the system so that a rapid and efficient way for
generating such a density is required. This is obtained to a
very good approximation by means of the Mattheiss
prescription which consists in overlapping neutral atomic
charge densities. The relaxation of the charge density around
the core hole and the screening of this latter are accounted
for by taking for the photoabsorbing atom the self-consistent
charge density relaxed around the core hole with the core
electron promoted to the first empty orbital (cf the Z+1
atom approximation in Ref. 5). The ideal situation would be
to have the self-consistent charge density of the system (pho-
toabsorber plus surrounding) relaxed around the core hole
and with the core electron promoted to the first empty va-
lence state. This is sometimes essential very near the edge,
but is less imperative in the energy region of EXAFS analy-
sis.

Given the charge density and consequently the potential, a
muffin-tin (MT) scheme is used to solve the Schrodinger
equation for continuum states, whereby the potential is
spherically averaged inside MT spheres around physical at-
oms, with radii chosen according to the Norman criterion,
and averaged to a constant in the interstitial region delimited
by a convenient outer sphere enclosing the cluster under con-
sideration.

Despite the apparently coarse approximations that are in-
troduced in this way, the accuracy of the present scheme for
the potential and phase-shift generation is sufficient, in the
EXAFS region, to perform a reliable structural data analysis
based on theoretical calculations. The main reason is that
photoelectrons with kinetic energies greater than Fz-30 eV
are only weakly sensitive to the details of the effective po-
tential. They are instead heavily scattered by the core regions
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of the atoms which are correctly described in the MT ap-
proximation. Also smoothing lifetime effects due to the
imaginary part of the potential further limit this sensitivity.
This circumstance justifies the development of advanced
methods of data analysis focused on the possibility of ex-
tracting information on the many-atom distributions like the
one presented in this paper.

Under the above assumptions and using the notation of
Refs. 12 and 63, the polarization averaged XAS cross section
for transitions to a dipole selected final state of angular mo-
mentum Ip can be written as

1 1
o.((o)=o-o 3-, g [T(I GT)—']oo' '. (2)"(t;) 2'o+'-o

This equation is valid with good approximation for complex
potential, whereas it is exact for real potential. For a more
complete discussion on this point the reader is referred to
Ref. 58. Here cro is the atomic cross section, T and G are the
atomic scattering and propagator matrices in a local basis.
An element of one of these matrices is indicated by the in-
dices i,j running over the different atomic centers in the
structure, and by a further set of angular momenta L,Z,

'

(where L=(l,m)). Each couple of atomic indices identifies
an "atomic" block of the matrices. In this representation the
T matrix is block diagonal (T;,=t;~;,) and, in the MT ap-
proximation for the potential, the scattering matrix for
the atom at center i is diagonal in the L indices

LL'
(t, ' =t', 6z 1 ), since the angular momentum is conserved
in the scattering from a single site. As is well known, in
terms of the lth potential phase shift 6,' at site i, one has

t,'=exp(i8, )sin(8,'). These quantities are easily calculated by
solving the Schrodinger equation for the potential at the cor-
responding site. It is worth noticing here that all MS equa-
tions, and in particular the XAS cross section (2), remains
unaltered if one replaces the MT spheres with domains
around each atom that do not leave any interstitial region

(space filling cells), provided t'is replaced by t, taking in
this way into account the nonspherical shape of the cell po-
tential. Progress is being made along this direction, which
will allow eventually the elimination of the MT approxima-
tion and hopefully the extension of the EXAFS analysis into
the near-edge region.

The propagator matrix is instead composed of null diag-
onal blocks, (l, i) sites, and nonnull off-diagonal blocks

G, ' describing the free propagation from site i to site j
(i 4j).The expression for a single propagator block involves
3J symbols and is given by

Equation (2) (or equivalent expressions) is at the basis of
the XANES theory" that is commonly used to interpret the
low-energy part of the absorption spectrum. An important
consequence of the MS approach, whether in the MT ap-
proximation or not, is that the electronic and the structural
part of the problem enter into the previous expressions in a
decoupled way. All of the assumptions on the model optical
potential for the excited electron are included in the scatter-
ing matrices t; that are characteristic properties of the atomic
sites i irrespective of their positions. Conversely, the matri-
ces G; contain only information on the geometrical disposi-
tions of atoms i and j irrespective of their actual scattering
power.

From the preceding formulas it is clear that the relation-
ship between geometry and signal is (unfortunately) strongly
nonlinear. Indeed looking at Eq. (2) we observe that the G
matrix appears in an inverse expression (I GT) —and for
this reason the effects of different structural arrangements on
the cross section can hardly be decoupled. The nonlinearity
is the mathematical consequence of the strong coupling of
the photoelectron with the surrounding atoms and it is the
major reason responsible for the difficulty in analyzing XAS
data. Most of the original results presented in this paper are
related to a new way of tackling such a nonlinear problem. In
the next section the traditional method for treating the in-
verse expression (I—GT) ', the so-called MS expansion,
will be briefly reviewed.

S. Multiple-scattering expansion

Let us assume that the norm of the GT matrix, defined as
the maximum modulus of its eigenvalues, is less then one,
i.e. , ~~GT~~~1; in this case the formal matrix expan-
sion T(I GT) '=T(—I+GT+GTGT+GTGTGT+ . .) is
convergent and gives rise to the familiar MS series. The
above condition will certainly hold above a given energy
since not only the elements of the G matrix decrease like

I/+abut also ~~T~~ =max~t;t tends to zero much more rapidly
with energy. The convergence threshold is system dependent,
typical values range from below the edge to a few Ry. More
stringent, however, for the practical use of the series is the
condition that only a few terms be actually dominant.

By evaluating the diagonal terms corresponding to the
photoabsorbing site and the final angular momentum in the
formal power series and taking into account the block nature
of the T and G matrices, the following expression is ob-
tained:

~(~)=~o 1+2 X2'+ X X3"'
i+0 iw j

iXOjWO

G, ' =[4'(21+1)(2l'+1)]"g (2l, +1)"
1

/ l l' I, ~ / l l' li I

(0 0 0/i, m —m' m' —mj

oijko+
X4

i4jWk
i/p, k@0

where the generic term is

(4)

X(—1) i"+ hI (kR;~)Y' r (R;/). Oi, . . . , jp
Xn i, 2l +IX (= ')i, ,i,

)
()

Here h,
+ are Hankel functions, F& are the spherical har-

monics, and R; j the vector joining site j to site i.
and specifically ' = Gp 't'G' ptp for
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Go &tkGk jtj Gj 't 'G ' oto for y4' . In this notation it is un-
derstood that the internal angular momentum indices have
been saturated.

In the above expressions each term y„of the MS series
can be related to a scattering path starting and ending at the
origin with the constraint that successive sites must be dis-
tinct. Therefore the sums in the above expressions extend to
all of the distinct sequences of sites of the type
Oi jk, . . . ,pqrO, with the constraint that i and r cannot be 0
and in general that any two successive indexes be different.
Note that the "internal" sites j,k, . . . ,p, q can be the origin
again. The y„signals are oscillating functions of the type:

g„(k) =A(k, R)sin[kRp+ @(k,R)], (6)

where A and cb are smooth functions of k and of the geo-
metrical parameters R. The relevant frequency of the signal
is determined by the path length R~.

The relation between geometry and signal expressed in

Eq. (4) is very cumbersome. The y2 terms probe the relative
position of atoms 0 and i whereas y3 terms probe the posi-
tions of the atoms 0, i, and j and therefore they are sensitive
to the two-particle and three-particle distribution, respec-
tively. Starting with the y4 term the situation becomes more
complicated, in fact, while the general OijkO probes four-
particle correlations, special paths like OiOkO or OijiO and
0ioi0 probe lower-order correlations (three-particle and two-
particles, respectively). In general at order n, in y„ there are
paths involving all particle distributions from 2 to n if n is
even or from 3 to n if n is odd. The symmetry properties of
the successive terms of the MS series have been thoroughly
investigated and efficient expressions for performing the ac-
tual calculations up to a large order in the scattering have
been derived. '

The single-scattering approximation, valid in the high-
energy limit, is obtained retaining only y2 terms in Eq. (4).
In this case the signal is the sum of independent contribu-
tions from different surrounding atoms. The cross section
depends only on the two-particle distribution, but, even more
important, the relation between structure and signal is linear-
ized, in the sense that the latter can be expressed as a linear
functional of the radial distribution function.

It should be noted that if a further term (y3) is retained in

Eq. (4) the linear relationship between structure an signal is
not destroyed. The y3 term can be represented by a linear
functional over the three-particle distribution. This circum-
stance is unfortunately of limited practical use because, in
addition to y3 terms, higher-order terms (expecially y4) usu-

ally contribute with similar amplitudes and frequencies. Con-
sequently, even with a path-length cutoff, higher-order terms
in the MS series often have to be taken into account. In order
to recast Eq. (4) into a linear functional forin with respect to
the distribution functions, a reordering of the MS terms is
necessary. This often requires the inclusion of a very large
number of terms with selection criteria that are not based
anymore on the scattering order. In this respect the straight-
forward use of the MS series turns out to be rather cumber-
some. For example, the FEFF package uses an ad hoc ampli-
tude cutoff criterion in order to select the relevant MS paths
to be considered in the calculations and to cut down their
prohibitively high number. In conclusion, there are draw-

backs in the use of the traditional MS theory for the deter-
mination of structural many-body properties in condensed
matter due to both convergence properties and cumbersome
structure-signal relationship.

C. Expansion in terms of y" signals

A different approach to the solution of the structural prob-
lem in Eq. (2) is based on a n-body decomposition of the
cross section, which partially avoids the drawbacks related to
the MS expansion. In general, it is always possible to calcu-
late XAS cross sections associated with a cluster of N atoms.
Let us indicate, as usual, the photoabsorber with "0"and the
surrounding atoms with i,j,k,

We define as the n-atom cross sections for increasing n
the quantities:

(i) o.(0) = pro. atomic cross section;
(ii) a.(o, i) cross section of the structure including atoms 0

and i only;
(iii) o.(o,i,j) cross section of the structure including at-

omsO, i and j;
(iv) tr(o, i,j,k) cross section of the structure including at-

omsO, i, j andk.
In the MT approximation these cross sections can be eas-

ily calculated using Eq. (2) including the appropriate number
of atoms in the structure and therefore the appropriate num-
ber of blocks in the G and T matrices.

The irreducible n-body cross sections o t"i(o, i i, . . . ,i„,) can be defined inductively starting from these quanti-
ties. For n = 2 it is the contribution due to the presence of a
second atom i that is given by

o. (O, i) = o.(o,i) —o. ' (0).
For n= 3 the cross section for atoms 0, i, and j can be
decomposed into the photoabsorber contribution, the two 0-i
and 0-j two-body contributions, and an irreducible three-
body contribution, that is given, by this definition as

~t'&(O, i,j)= ~(o,i,j)—~~'&(O, i) —~~'&(O,j)—~~'~(0).

Similarly the four-body contribution is given by

a. "
(O, i,j,k) = o.(o,i,j,k) —cr 3

(O, i,j)—o.~ (O, i,k)

—~~'&(O,~,k) —~~'&(O, i) —~~'l(O, j)
—~&'&(O,k) -~t'l(0).

By induction, we can define the irreducible n-body contribu-
tions as

at"~(o,i,j, . . . , n) = o (O,i,j, . . . , n) —g o~" '~(O, S(n —2))

—g ~'" "(O,S(n —3))—. .

—g ~&'~(O, i) —~~'~(0),

where S(m) indicates a choice of m elements among
1,2. . . N —1 and the sums are extended to all possible
choices.
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Solving Eq. (10) for the total cross section
o(.o, i,j, . . . , n) a useful expansion for this quantity in the
n-body cross sections is obtained:

ir(o, i,j, . . . , n)=oO+. g (r (O,i)+g o. (O, i,j)
l (&.j)

+ g i7t }(O,i,j,k)+
(i,j,k)

+ o-&"}(O,i,j, . . . ,n)

By introducing the dimensionless quantities

y
" = o. " /o. o, representing the irreducible n-body contribu-

tions to the EXAFS, Eq. (11) reduces to an equivalent ex-
pansion for the dimensionless experimental structural signal

y that differs substantially from the MS series (4):

X(oi j .n)=X y"'(O.i)+X y'"(O, i,j)
(~ j)

maps the inversion into a continued-fraction expansion. It
has been shown that the continued-fraction approximants
contain the exact terms of the MS series up to a given order,
but in addition they include leading terms of the MS series to
any order in the scattering. Convergence criteria can be de-
rived in terms of the eigenvalues of the tridiagonal matrix
generated by the recursion and conjectures can be formulated
in terms of the eigenvalues of the I—GT matrix which are
less restrictive than the convergence conditions for the MS
series. In particular the recursion algorithm is found to con-
verge very rapidly for small clusters. Thus the y" signals
can be calculated directly using Eqs. (13) and (14) that re-
duce to a sum of continued fractions. This method of calcu-
lation of y(") signals has already been successfully used in
several applications (see Ref. 41 and refs. therein).

The second method is based on the MS expansion for the
y("). These can be derived in a direct way substituting in
Eqs. (13) and (14) the respective MS series. For the two-
body term (13), due to the two-blocks structure of the matri-
ces, only even powers of TG give a contribution and the
matrix expression results:

+ y'"}(o,i,j, . . . , n). (12)

and

(13)

yt }(O,i,j)= ir(o, i,j)loo —o(o,i)loo o(Oj )lcrO+'—1. (14)

The ir(o, i), o(o,j), and o(o, i,j) cross sections can be
calculated using the previously published approach that

In this equation a linear relationship between structure
(expressed in terms of 2, 3, 4, . . . n-body distributions) and
signal is obtained. Equation (12) contains a finite number of
terms if the system is finite (cluster) and becomes a series
only in the case of a system with an infinite number of at-
oms. In this case it is expected anyway, due to mean-free-
path effects, that the higher-order n-body terms are smaller
than the lower-order ones and that the series has very good
convergence properties.

The y
" signals are the central quantities in our approach,

since they are associated with well precise n-body arrange-
ments of the atoms. Two different methods for their calcula-
tion are available.

The first is based on the continued fraction expansions of
the n-body cross sections. Starting from Eq. (10) the two-
body and the three-body contributions can be expressed in
terms of total cross sections of clusters including two or
three atoms only:

= rOGO i G;OrO+ iGOOr;G OrOGD;r G OrO+ ' ' ' . (15)

The corresponding MS expansion, pictorially depicted in
Fig. 1, results

(2}(~ q OiO+ Oi0iO+ OiOiOiD+ OiOiOiOiO+
Xp X4 X6 X8

This kind of expansion has been used in early
applications ' and also its importance has been more re-
cently emphasized by other authors in conjunction with the
appearance of shape resonances in the spectra of diatomic
molecules (Oz case discussed in Ref. 38). The number of MS
terms required depends on k range, bond distance, and
atomic numbers involved. In the EXAFS region, for short
bonds terms up to X6 are found important whereas for longer
bonds X4 is usually sufficient. The configurational average is
also effective in the damping of these kind of higher-order
MS signals. A peculiar feature in the MS expansion for

is that the successive terms have leading frequencies
multiple of 2R, R being the distance between atoms 0 and i.
As a consequence there is a large frequency difference be-
tween the leading term Xz and the next order correction

X4
The MS series for yt }(O,i,j) can similarly be derived

starting from Eq. (14):

+ =:-= + ~ ~ ~

FIG. 1. Pictorial view of the MS expansion for y signals,
including terms up to g6. The y signals account for an infinite
number of MS paths.

FIG. 2. Pictorial view of the MS expansion for y signals,
including terms up to y4. The y signals account for an infinite
number of MS paths.
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By performing the matrix products, in the three-body part, terms of any order in the scattering containing all three atoms 0, i,
and j, or simply 0 and i or 0 and j are obtained. These last two contributions are however compensated exactly by the terms

arising from the y~ ) signals appearing with negative sign. As a consequence y&, equals the sum of all possible MS signals
involving "all and only" 0, i, and j in any possible sequence. The lowest order terms are the X3 signals corresponding to the
sequences 0-i-j-0 and 0-j-i-0. Because of time-reversal symmetry the two signals coincide and only one of them can be
considered with double degeneracy. This obviously occurs for all the paths that, when reversed, generate a different sequence.
The sequences that are symmetric under inversion occur instead only once and have a single degeneracy.

By following the previous rules the MS expansion for the y signal is easily obtained:

(3) 2 Oijo+ 2 Oiojo+ Oijio+ Ojijo+ 2f Oioijo+ Ojojio+ Oiojio+ OJotJO+ OsJtJO&+ 2 OtO~OJO+ 2 Ojojoio+ Oiojoio

+ ojoioJo+2 ' ' ' +2 0 ' + ' '' + ' ' +2 ~0' +2 ' ~ +2 ~JOJ + & + & +'''OlX6 X6 X6 X6 X6 X6 X6 X6 EX7)' ' '

(18)

and depicted in Fig. 2. We point out that irrespective of the triangle geometry, the multiplicity of the possible paths brings a
nearly continuous distribution of leading frequencies, for the successive X„ terms, starting from Ro.+R J+RJO. As a conse-
quence y presents usually a regular oscillation in k space. Examples of the importance of Xs and X6 terms have been
reported. In most cases these higher-order terms contribute in the low-k range producing a detectable modification of the total
signal.

By induction and using the definitions for the y~"~ signals (10) we find as a general rule that: the MS expansion for the

y
" signal is given by the sum of the MS paths involving "all and only" the n atoms under consideration. All the other paths

involving a minor number of atoms are indeed subtracted away by the (n-m)-body terms where m= 1,2, . . . , n —2 in (10).
Obviously the lowest order paths will be of order n.

By applying the previous rule to the y~ ) signal, which depends on the position of the atoms 0, i, j, k, we obtain

(4) ~ p Oijk0+ Oikj 0+ Okij 0+ Oioj ko+ Oiokjo+ Oj Oiko+ Ojokio+ Okoijo+ Okojio+ Oijiko+ Oikijo+ Oj ij ko+ Oj kj io=2LX4 X4 X4 Xs Xs Xs Xs Xs Xs Xs Xs Xs Xs

+ Okikj 0+ Okj kio+ Oijkio+ Oj ikj 0+ Okij ko+
Xs Xs Xs Xs Xs ''' iX6)' 'le (19)

The expressions becomes rapidly more cumbersome as the

body order n is increased.
It is important to realize that while the MS expansions for

the y~") have a meaning only in the case that the expansion
relative to all the matrix inversions included in their defini-
tion converge (notice however that their convergence re-
quirements are in general different from that relative to the
matrix inversion of the whole cluster), the yt"~ signals al-

ways exist and can be calculated using the exact inversion.
In conclusion two methods are available for calculating

the y~") signals: the first makes use of total cross-section
calculations and continued-fraction expansions, the second
consists in expanding the y signals in an appropriate MS
series. Looking at expressions (16), (18), and (19), the ad-

vantage of incorporating in a few y~"~ signals a large (infi-
nite) number of MS terms is evident. Such a way of associ-
ating MS signals is moreover also reasonable from the
physical point of view. Indeed different MS term are not
independent if they involve scattering processes on the same
sets of atoms. From the computational point of view it
should be noted however that, in the high-energy region, the
continued-fraction expansion or other exact matrix inversion
methods are time consuming due to the matrix size, while the
MS series is faster because one can limit the calculation to a

X(I)=X X.+X Xs+X X.+ +Res," (2o)

x(k)=X ~"'+X r"'+X ~"'+ +R-',"'

(21)

Assuming that the MS series is absolutely convergent, then
the remainder Res~") will satisfy the following inequality:

low scattering order. In this limit the MS calculation is pref-
erable although the central quantities still remain the y~')

signals.
Generally speaking the y~"~ signals are, like the X„[Eq.

(6)], oscillating functions of the photoelectron wave-vector
modulus k. The dominant frequency is that associated with
the shortest path (i.e., lowest-order contribution) of the cor-
responding MS series. The oscillation shape has not neces-
sarily a regular sinusoidal behavior because of the presence
of higher harmonics. Indeed the MS terms associated with a

y signal provide a sort of frequency analysis of the y signal
itself that can be useful in several cases.

Finally we wish to address the question of the conver-
gence of the expansion in y~") signals. Let us consider the
two series expansions of the structural oscillation X(k):
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Res,'"'=X X;-X
i)n i&n

(22)

The remainder of the series (21) in the y signals, for any
given order will contain a smaller number of y terms with
respect to the remainder of the MS series, because many MS
terms to any order are enclosed in the y. As a consequence

Res',"'=2 r"'~X IV"'I~X Ix;1&~.
i&n i&n i&n

and therefore also the series in the y signals will be abso-
lutely convergent. In general the rate of convergence of (21)
is better (not worse) than the rate of the series (20).

III. CLUSTER ANALYSIS

In order to simulate the XAS signal of a given cluster
using Eq. (12) it is necessary to perform an analysis of the
main n-body configurations around the photoabsorber. Here
only some general considerations will be made. Without loss
of generality it can be assumed that there is only a @ingle

type of photoabsorber; this is the case of a single absorbing
atom surrounded by atoms of different atomic number Z or
the case in which there are many absorbers in equivalent
positions. A sufficient condition for equivalence is that by
means of spatial translations and rotations the absorber envi-
ronments can be made to coincide atom by atom. In the
following however we shall adopt a weaker definition, that
is, two sites are equivalent if the n-body arrangements up to
a given n and distance around the two sites coincide. The
cutoff values for the distance and the order n can be set in
such a way that all the relevant signals are reproduced. The
case of the presence of more than one prototypical photoab-
sorber is a simple generalization of the case treated here.

The main, geometrically different, n-body configurations
around a given atom 0, and their multiplicities, are identified
by considering all the different arrangements involving
couples of atoms (0, i), triplets of atoms (0, i, j), quadruplets
of atoms (0, i, j, k), . . . . This is also done by introducing a
natural, rotationally invariant, set of distances and angles that
is associated in some unambiguous way to the configuration.
In the case of a two-body configuration the only rotationally
invariant coordinate is the distance Rp;. In the case of a
three-body configuration it is possible to use the two shortest
distances among Rp, Rp J, and R;, , and the angle in be-
tween (obviously different choices can be made as well).
This choice is physically meaningful because the shortest
bonds are, in general, real chemical bonds and the angle in
between is a real bond angle. Using these coordinates, in
addition, one should specify the photoabsorber position.

The case of the four-body configurations is a bit more
complicated, indeed if one wishes to specify the geometry
using three distances and three angles there are already two
choices: either the three bonds are joined end by end forming
a "chain" or they are bound to the same center, forming a
"star." Criteria can be established, however, to make this
choice unique. Again this variety reflects the different physi-
cal situations encountered when parametrizing, say, linear
molecules or aggregates of atoms with a well-defined center.

Thus, each n-body structure will be defined by a set of

coordinates, by the types of the atoms in the various posi-
tions, by the position of the photoabsorber, and by a charac-
teristic dominant frequency, that is the length of the shortest
path involving a11 of the atoms in the configuration. This
characteristic frequency allows us to arrange the various
n-body configurations in their "natural order. "The most im-
portant configurations will be those associated with the low-
est frequencies, that is, the two-body first-neighbor configu-
ration with a length of 2Rb. The most important three-body
configuration will be associated with a frequency not smaller
than 3Rb, which would correspond to the equilateral triangle
with three first-shell bonds as sides, but in many systems the
shortest three-body path is much longer. Such a first three-
body configuration will have, in general, a characteristic fre-
quency comparable to the second or higher coordination
shells (two-body configurations). In a similar manner higher-
order n-body configurations will start contributing from suc-
cessively higher frequencies certainly above nRb. This cir-
cumstance is important, since by simple geometrical
arguments it is possible to identify the frequency interval in
which a given structure will contribute, and conversely by
performing a frequency analysis of an experimental signal it
is possible to select the relevant n-body configurations. Any
experimental signal will show a natural upper frequency cut-
off R, , limited by experimental resolution or signal intensity,
which will select automatically only a finite number of
n-body structures. In particular also, the order of the maxi-
mum number of bodies involved will be finite and not larger
than the integer part of R, /Rb, but usually more stringent
limits can be put using a more detailed knowledge of the
structure under investigation. In conclusion, the signal given
by Eq. (12) is actually dependent only on a limited number
of distribution functions which can be easily identified and
analyzed. In the interpretation of the signal of a completely
unknown structure it is possible to make an a priori selection
of the relevant n-body configurations thus limiting consider-
ably the number of unknowns.

Coming back to the n-body analysis we observe that in a
periodic structure (like a simple crystal) there will be an
infinite number of equivalent photoabsorbers, thus a given
n-body arrangement may contain m atoms (with 1 ~m~n)
of the photoabsorber atomic number. This atomic configura-
tion will give rise to I different yt"i terms in Eq. (12). In the
m~ 1 case the signals will be generally different (apart from
permutational symmetry). However, from the physical point
of view they are not independent because they are associated
with the same geometrical structure. Moreover, they have a
similar frequency and can be described by the same struc-
tural parameters. As a consequence it is reasonable to group
them together, in the spirit of reducing the independent com-
ponents of X(k), defining the total y signals yT as

(ij=p)

yT" (ii, i2, . . . , i„)= g y" [iJ,Perm(i (kiP j))], (24)
J

that is by the sum of all the related signals originating from
the same structural arrangements of atoms i&, . . . ,i„with
the photoabsorber placed in any nonequivalent position. A
pictorial view of the definition of the yT signal for a general
triangular configuration is given in Fig. 3. Examples of the
cluster analysis in prototypical molecular and crystalline sys-
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FIG. 3. Pictorial view of the definition of the total y signal for a
general triangular configuration of equivalent atoms.

account only for the dominant signals should be in this case
applied. A further useful procedure, for low-symmetry struc-
tures, is to combine together several similar geometries and
account for the additional structural disorder, that is present
in addition to the thermal vibration effects. The ways to treat
the effect of disorder are discussed in the following sections.

tems will be given in II and the various details described here
at a qualitative level will be further clarified. '

A different aspect of the cluster n-body analysis is high-
lighted by considering the hierarchical relationships between
different peaks. A n-body configuration contains several
n —m-body subconfigurations that are not independent.
These considerations are particularly useful when the cluster
analysis is focused on the successive coordination shells. The
outer shell atoms will give rise to new two-body signals, but
will also generate higher-order signals involving the atoms of
the inner shells. Part of these signals will have approximately
the same frequency because the dominant length is similar,
therefore it is physically meaningful (in some cases) to asso-
ciate them in an effective shell signal. Such a signal will be
denoted by y

" where n stands for the maximum number of
atoms contributing together, i.e., the maximum index of a
y~"~ signal, but clearly the signal

J=2
(25)

FIG. 4. Pictorial view of the definition of the g( signal asso-
ciated with a typical distant (second) shell contribution.

will also contain contributions from smaller clusters. A typi-
cal example can be the second-shell contribution which usu-
ally gives rise to detectable three-body signal with a first-
shell atom as the third atom. The three-body signal plus the
two-body second-shell signal will be in this case the y~ ~

signal associated with the second shell. A pictorial view of
the definition of' the y signal for a typical more distant
shell is given in Fig. 4. From the previous considerations it
appears that it may be useful sometimes to calculate n-body
signals using the coordinates of a larger cluster including say
n+m bodies even though some of the coordinates will not
affect the signal. In this way, by using the same set of coor-
dinates for n-body and n+ m-body signals, there is no need
to introduce redundant structural parameters, thus limiting
their total number.

Specific ap lications of this theory have been already
published. ' Moreover, a large number of examples of
applications to the analysis of molecular and crystalline sys-
tems will be reported in II.

We end this section recalling that, unfortunately, the entire
cluster analysis previously described becomes extremely
complicated in the cases where the structure is highly disor-
dered. In the limit of an N-atom cluster with no symmetry
the number of two-body, three-body, and four-body configu-
rations reaches the values of N 1, (N 1)(N —2)/—2!, and—

(N 1)(N—2)(N —3)/—3!, respectively. Selection criteria to

IV. CONFIGURATIONAL AVERAGE OF THE SIGNALS

y(k) = 3A (k, r) exp[i P(k, r) ], (26)

where r indicates a set of geometrical coordinates which are
sufficient to describe correctly the signal.

Let P(r) be the normalized probability density describing
a peak of the appropriate n-body distribution function. Con-
figuration degeneracy (coordination number for n=2) is a
trivial multiplicative factor and is omitted. The configura-
tional average of the signal (26) over the peak distribution
function P(r) is given by

(y(k)) =3 drA(k, r)exp[if(k, r)]P(r). (27)

Because of the hypothesis of small disorder P(r) will have a
single modal value in position ro and will decrease rapidly to
0 for strongly distorted geometries. Therefore, in order to
perform the integral in Eq. (27) it will be sufficient to know
the signal in positions close to ro. Because of the analytical
dependence of the amplitude and phase functions on the geo-
metrical parameters, it is possible to expand them in a Taylor
series about the mean r of P(r). Without loss of generality
we can translate the origin of the r coordinates to this mean
value. The expansions for amplitude and phase will then read

Different approaches are currently used to calculate the
configurational damping of MS contributions. Early MS ap-
plications dealt with the difficulties of reproducing correctly
the intensity of the signals. We have found that the approxi-
mation of an effective exp( —a k ) damping term is some-
times inadequate. This is also due to the existence of spheri-
cal wave effects neglected in the simplest approaches whose
analytic treatment is however quite involved. The algo-
rithm used in the GNXAS package is instead based on an
advanced theory, that accounts for the correlated vibration of
n-atom configurations and spherical wave effects.

The effect of configurational disorder or thermal vibra-
tions can be easily calculated in the case of small disorder,
that is in the presence of a well defined (isolated) peak, not
necessarily Gaussian, in the distribution function. This in-
cludes the thermal broadening of molecular or crystalline
peaks as well as the case of small structural disorder. In the
case of larger disorder, where the peaks are not any more
well defined, but the distribution functions oscillate without
vanishing in the configurational space, different average
methods should be used as discussed in Sec. V.

MS signals y„(k), n-body signals y" (k) or effective
shell signals rit"l(k) can be treated in the same way. In all of
these cases the signal, indicated generically by y(k), can be
written in terms of the amplitude A(k, r) and phase P(k, r)
functions as
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A(k ")=Ao(k r) l.=o+ (A t (k r) l.=o ")
1

+ —(r,A, (k,.) l „,.)+ O(r'), (28)

displaced geometries. This has turned out to be the most
practical way because analytical approaches are much too
involved. Equation (27) can be systematically approximated
by

0(k r) = ti'o(k r)l.=o+(0t(k r)l.=o r)

1
+ —(r, $2(k, r)

l
„pr)+ O(r ), (29)

1
(y(k)) = 3 dr Ao+ (At, r)+ (r,A2r) + O(r )

where A, (k, r)l„p (briefiy A, in the following) are the jth
order derivatives with respect to all of the geometrical coor-
dinates calculated for the mean r value. A similar notation
has been used for the P functions, they are in general sym-
metric tensors of rank j. The symbol ("," ) indicates sum-
mation over all coordinates. Obviously the approximation
will be useful only if a low-order expansion is sufficient: in
this case the derivatives can be easily calculated numerically
by performing repeated calculations of the signal for slightly

1
Xexp ' ti'p+(t/I~, r)+ (r, f—2r)+O(r ) P(r).

2

(30)

Isolating the zero-order terms in amplitude and phase as well
as the leading linear term in the phase and writing the Taylor
expansion for the amplitude as a differential operator with
respect to Pr, which is the conjugated variables of r, we
obtain

1 ( a
(y(k) ) = 3A pexp(i Pp) 1 +, A &,

iAo 5

1 i 8 8 l ( 8 l
,A2 + 0 j dr P(r) exp[i( pr, r) ]exp

2
(r, $2r)0(~ 1 ~ ll l~ 1

+O(r ) . (31)

This is the most general expression for the damping of struc-
tural signals which occurs in the XAS case. Various terms
can be easily identified: the initial factors before the large
square bracket represent the undamped signal, the rest is a
complex corrective factor. The amplitude expansion gener-
ates a differential operator, in square brackets, that acts on
the last integral term. The integral, neglecting the last expo-
nential term, i.e., neglecting P2 and the successive terms in
the phase expansion, is simply the characteristic function of
the probability distribution P(r). More specialized expres-
sions can be derived, for specific P(r) models and with the
Taylor expansions truncated to some lower order.

In the limit of a 8'-function-shaped P(r), the corrective
factor in Eq. (31) tends to 1 irrespective of A &, A2, P, , and

P2, and (g(k)) equals the undamped signal. For small dis-
order the configurational average of the signal can be calcu-
lated including only the next term (usually the first-order
one) in the Taylor expansions for both amplitude and phase.
Special cases occur when a particular geometrical parameter
has an extremum for the equilibrium configuration. Then the
corresponding first derivatives vanish and the first nontrivial
terms are the second-order derivatives. An example is given
by a three-atom collinear configuration described by a 180
bond angle. Clearly the signal is affected in the same way by
positive or negative angle displacements and therefore the
Taylor expansion must be even in the angular coordinate.

The possibility of using a low-order Taylor expansion is
favored by the smoothness of the functions involved. In gen-
eral both y~ ~ and y„signals have rather smooth amplitude
and phases, in a few cases, however, it is preferable to use
the MS expansion for the y" . A typical example is that of

; the higher harmonic y4 makes sometimes amplitude
and phases of y slightly less smooth than the correspond-
ing quantities in each y, term. In this case a high accuracy in
the damping of y might require the inclusion of second-
order terms, while a comparable accuracy can be obtained
with first-order terms only, but considering the MS terms
separately as y2+y4+ . . For y~" terms, as noted pre-
viously, the nearly continuous frequency spectrum of the
various MS terms usually makes amplitude and phase rather
smooth functions of the geometrical parameters. We have
found that first order expansions are able to give accurate
results in the case of thermal disorder in crystals or mol-
ecules, but also in several cases of configurational disorder in
glasses and amorphous solids.

In the case where first-order derivatives are sufficient we
obtain the following relevant expression:

1 t a5
(g(k)) 3Apexp(l l//p) 1 + .

A
'A ~, C ( p~ ),

o( ~ t)
(32)

where 4,(P&) indicates the characteristic function of the
probability distribution calculated for argument P, . Notice
that for two-body contributions Equation (32) contains the
usual results of the cumulant expansion, commonly applied
for non-Gaussian terms. Eq. (32) can be further specialized
in the case of particular probability distributions. In the fun-
damental case of Gaussian peaks (harmonic thermal disor-
der) C&,(P, ) =exp[ —1/2(Q, , MQ, )] where M is the covari-
ance matrix of the Gaussian distribution, and (32) reduces to
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~2, e

2
~2, e

0-2
0

(34)

where the suffix 1, 2, and 8 indicate first, second bond and
angle, respectively. The diagonal parameters are the vari-
ances of the coordinates, while the off-diagonal terms ex-
press the correlation between bond-bond or bond-angle vi-
brations. Since the matrix must be positively defined, it is
useful to define the dimensionless correlation parameters as

p,,=o„/go. ,
o. that satisfy —l~p~l. If p=0 then the

bonds (or angles) vibrate in an independent manner, if
p = + 1, the fully correlated limit, both expand or contract at
the same time, if p= —1 one expands when the other con-
tracts and vice versa. In cases of particular symmetries the
number of independent parameters is reduced. For an isosce-
les triangle where bonds 1 and 2 are equivalent o., = o 2 and

p& 6= p2 z with four independent parameters. For an equilat-
eral triangle parametrized with the length of the three equiva-
lent bonds as coordinates there are only two independent
quantities: bond variance o.

&
and correlation p» . Specific

examples of covariance matrices will be discussed in II.

E

(g(k))-3Aoexp(tgo) 1+ (Ai, MP&)
0

&& exp[ —1/2(P~, M Pi)]. (33)

For a generic three-body case the covariance matrix depends
on six independent parameters

In the case of a two-body signal (say a g2 path) there is
only one geometrical coordinate and I reduces to the single
bond length variance o, P, can be approximated by 2k and
consequently the last exponential correction reduces to
exp( —2k o ), the usual EXAFS Debye-Wailer (DW) factor,
while the correction in A& is usually small and neglected.

The previous equations (31), (32) generalize the common
EXAFS DW correction to MS g„or y" signals depending
on a larger number of atoms. They are particularly efficient
to be inserted in computational procedures and fitting rou-
tines.

V. DISORDERED SYSTEMS

In the case of disordered systems it is not anymore pos-
sible to have access to the exact positions of the atoms and
information on the relative atomic positions is meaningful
only in a probabilistic sense. For this reason the cluster
analysis of Sec. III loses its relevance.

The fundamental microscopic observables are the n-body
densities which are defined as appropriate ensemble
averages. For homogeneous and isotropic systems like liq-
uids or amorphous solids, the n-particle densities depend
only on translationally and rotationally invariant quantities.
The one-particle density p~'~(r&) = p equals the macroscopic
den»ty p"'(ri. r2) = p g2(lrt- rzl). and p"'(rt r2 r3)
= p g (sir, l2, lr, ls, @). These expressions define the n-body
distribution functions g

The generalization of Eq. (12) to the case of a disordered
system is obtained by substituting the sums over the
n-particle configurations with integrals over the appropriate
n-body distribution functions:

(X(k)) =
JO

f
dr 4~r'pg, (r) y"'( kr) + dr, dr, d@ 8~'r', r', »n(4) p'g, (r, , r, , @)y"'(r, , r, , @,k)

+ dr&dr2d@dr3dA 8m rir2r3 sin(P)p g4(r&, r2, @,r&, A)y (r, , r2, $, rs, A, k)+ (35)

4vrp t ~
S(k) = 1+ (g2(r) —1)rsin(kr)dr.

k )0
(36)

Both S(k) and the y(k) provide one-dimensional infor-

The integrals in the above expression formally extend to the
whole coordinate space, however, because of the short-range
nature of the kernels y~"~, they are actually limited to a re-
gion of linear dimensions of the order of few A due to the
exponential cutoff introduced by mean-free-path effects.

Equation (35) is the most general expression for the con-
figurational average of the XAS signal in terms of the
n-body distributions for a single component system. The rel-
evance of the previously defined y("~ signals appears obvi-
ous at this point, indeed they represent the kernels of the
integral equation which links the structure to the observed
signal. Equation (35) should be compared with the well-
known expression for the static structure factor which can be
measured by using x-ray or neutron diffraction:

mation as a function of the variable k. The large difference
in the kernels, however, makes the structural information on
the g2(r) obtainable in the two cases largely complementary.
In particular, while the y(k) is extremely sensitive to the
short-range order around the photoabsorber, but completely
blind to atoms at distances above 6—8 A. (especially for dis-
ordered systems), the S(k) data contain very important infor-
mation also on the medium-range order of the systems. In
addition the S(k) obeys the compressibility sum-rule in the
limit k —+0. No analog for this exists for the g(k). These
topics have been discussed in some detail elsewhere.

In spite of the complexity of the XAS kernels, which are
not simple sine functions like in the S(k) case, the present
approximations in the XAS theory are sufficiently accurate
to allow one to derive quantitative information from the
analysis of a disordered structure.

The XAS presents advantages in the case of multicompo-
nent systems because the signal depends only on the partial
distribution functions relative to the photoabsorbing atom
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and often the spectra can be recorded at the edges of several
components. However, the most important characteristic of
the XAS signal is that, according to Eq. (35), it contains
information on higher-order distributions which is of ex-
treme interest. This information, contained in the second and
successive integrals, is unique and characteristic of the XAS.
At present there is no other direct experimental technique
sensitive to the three-body and higher-order correlations in
condensed matter. An indirect, widely used technique, pro-
posed by Egelstaff, Page, and Heard is based on the iso-
thermal density derivative of the structure factor, a technique
that can be applied to compressible systems in thermody-
namic equilibrium, and has been widely applied in the case
of noble gases and liquid metals. This approach however is
based on the application of a sum-rule expression from
which only average information on the g is obtained. In
comparison each particular geometrical configuration con-
tributes to the EXAFS signal with a well defined frequency
in k space which can be directly revealed.

In a series of recent papers" ' ' ' " signals originating
from the third-order integrals have been detected in several
ordered or disordered condensed systems. A surprising cir-
cumstance is that in many cases the ratio between MS and
single-scattering components may even increase with the dis-
order of the sample.

From these results it is clear that XAS can provide quan-
titative, easy to obtain, and unique information on three-body
and higher-order distributions in condensed matter. Such in-
formation is of particular importance to test model inter-
atomic interactions and simulation procedures, expecially in
those cases where three-body and higher-order forces are im-
portant. These considerations are of central importance and
motivate the efforts to understand the XAS signal in terms of
distribution functions presented in this paper. We emphasize
that the information contained in the S(k) and the X(k) sig-
nals are extremely complementary and any effort to combine
the data should be encouraged.

Equation (35) is at the basis of our efforts to analyze
heavily disordered systems like amorphous solids and
liquids. ' ' ' The actual integral expression over the

g2(r) function has been used to calculate the pair EXAFS
signal associated with distribution functions obtained from
diffraction experiments or molecular-dynamics simula-
tions. ' ' Using consistent g2(r) models and compressibil-
ity constraints it has been possible to refine by EXAFS
analysis the short-range g2(r) shape in several liquid
systems. ' ' ' The three-dimensional integral over the g3

distribution presents larger computational difficulties. A part
of the integral coming from the main peak of the g3 distri-
bution in amorphous silicon has been used, for instance, to
compare the structural signals associated with different avail-
able models in reproducing the observed EXAFS signal.
The use and present limitations of the application of Eq. (35)
to prototypical systems will be discussed in paper II."'

For future developments in the field one might envisage
the adoption of more sophisticated inversion algorithms, ei-
ther based on regularized algorithms or reverse Monte
Carlo techniques.

VI. CONCLUSIONS

The present paper provides a complete account of the
theory underlying the GNXAS method for EXAFS data
analysis. The central elements in our approach are the irre-
ducible n-body signals y" . The EXAFS signal can be ex-
panded in terms of y

" obtaining a very powerful decompo-
sition into physically meaningful quantities. This expansion
is found to have a better convergence rate than the MS series
because each y" signal accounts for an infinite number of
MS terms. Direct ways for calculating the y~"~ signals, either
in terms of continued-fraction expansions or via MS expan-
sions, are described.

The GNXAS method of data analysis was specifically de-
veloped for a high flexibility and accuracy in the calculation
of configurational averages. In the cases of molecular or
crystalline systems, or in the presence of small configura-
tional disorder, analytical expressions that generalize the
Debye-Wailer factor correction to y~"~ signals can be de-
rived. General expressions for Gaussian or non-Gaussian
cases are reported and discussed. In the case of highly disor-
dered systems the present formalism provides an expression
of the averaged signal in terms of a series of integrals over
the n-body distribution functions gt"l(r. . . ). In this case
the y~"~ play the role of the kernels of integrals. The possi-
bility of using XAS experiments to probe local pair and
higher-order correlations in disorder matter is addressed, cur-
rent applications have been discussed, and possible direc-
tions of further developments suggested.

The present paper is intended to provide a self-contained
reference for the basic theoretical ingredients of the GNXAS
method. Specific examples and details about fitting ap-
proaches presently used in actual data analysis are described
in the following paper II. '

Present address: E.S.R.F., BP 220, F-38043 Grenoble Cedex,
France.

'P. A. Lee, P. Citrin, P. Eisenberger, and B. Kincaid, Rev. Mod.
Phys. 53, 769 (1981); B. K. Teo and D. C. Joy, EXAFS Spec
troscopy, Techniques and Applications (Plenum, New York,
1981); T. M. Hayes and J. B. Boyce, in Solid State Physics,
edited by H. Eherenreich, F. Seitz, and D. Turnbull (Academic,
New York, 1982), Vol. 37, p. 173.

X ray Absorp-tion: Principles, Applications, Techniques of
EXAFS, SEXAFS, and XANES, edited by D. C. Koningsberger
and R. Prins (Wiley, New York, 1988).

P. A. Lee and J. B. Pendry, Phys. Rev. B 11, 2795 (1975).

C. A. Ashley and S. Doniach, Phys. Rev. B 11, 1279 (1975).
P. A. Lee and G. Beni, Phys. Rev. B 15, 2862 (1977).
W. L. Schaich, Phys. Rev. B 27, 4028 (1973).
D. E. Sayers, E. A. Stern, and F. W. Lytle, Phys. Rev. Lett. 27,

1204 (1971).
E. A. Stern, D. E. Sayers, J. G. Dash, H. Shechter, and B.Bunker,

Phys. Rev. Lett. 38, 767 (1977);E.A. Stern, S. M. Heald, and B.
Bunker, Phys. Rev. Lett. 42, 1372 (1979).

P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Phys. Rev. Lett.
36, 1346 (1976).

' P. J. Durham, J. B. Pendry, and C. H. Hodges, Solid State Com-
mun. 38, 159 (1981).



15 134 FILIPPONI, DI CICCO, AND NATOLI 52

P. J. Durham, in X-ray Absorption: Principles, Applications, Tech-

niques of EXAFS, SEXAFS, and XA1VES (Ref. 2), p. 53.
' M. Benfatto, C. R. Natoli, A. Bianconi, J. Garcia, A. Marcelli, M.

Fanfoni, and I. Davoli, Phys. Rev. B 34, 5774 (1986).
' P. Kizler, Phys. Rev. Lett. 67, 3555 (1991).
'4B. K. Teo, J. Am. Chem. Soc. 103, 3990 (1981).
' S. J. Gurman, N. Binsted, and I. Ross, J. Phys. C 17, 143 (1984).
' S. J. Gurman, N. Binsted, and I. Ross, J. Phys. C 19, 1845 (1986).
' R. V. Vedrinskii and L. A. Bugaev, J. Phys. (Paris) Colloq. 47,

C8-89 (1986).
' C. Brouder, M. F. Ruiz-Lopez, R. F. Pettifer, M. Benfatto, and C.

R. Natoli, Phys. Rev. B 39, 1488 (1989).
' G. Bunker and E. A. Stern, Phys. Rev. Lett. 52, 1990 (1984).

C. E. Bouldin, G. Bunker, D. A. McKeown, R. A. Forman, and J.
J. Ritter, Phys. Rev. B 38, 10 816 (1988).

'R. F. Pettifer, in Metal Clusters in Catalysis, edited by B. C.
Gates, L. Guczi, and H. Knozinger (Elsevier Science, Amster-

dam, 1986), p. 254.
R. W. Strange, N. J. Blackburn, P. F. Knowles, and S. S. Hasnain,
J. Am. Chem. Soc. 109, 7157 (1987).

A. Kuzmin and Ph. Parent, J. Phys. Condens. Matter 6, 4395
(1994).

A. Bianconi, A. Di Cicco, N. V. Pavel, M. Benfatto, A. Marcelli,
C. R. Natoli, P. Pianetta, and J. Woicik, Phys. Rev. B 36, 6426
(1987).

M. F. Ruiz-Lopez, M. Loos, J. Goulon, M. Benfatto, and C. R.
Natoli, Chem. Phys. 121, 419 (1988).

R. V. Vedrinskii, L. A. Bugaev, and I. G. Levin, Phys. Status
Solidi B 150, 307 (1988); Physica B 158, 421 (1989).

J. J. Rehr and C. R. Albers, Phys. Rev. B 41, 8139 (1990).
A. Filipponi, J. Phys. Condens. Matter 3, 6489 (1991).
A. Kuzmin and J. Purans, J. Phys. Condens. Matter 5, 267 (1993).
L. Fonda, J. Phys. Condens. Matter 4, 8269 (1992).

'N. Binsted, J. W. Campbell, S. J. Gurman, and P. C. Stephenson,
The Dare sbury Laboratory EXCURVE90 program, Daresbury
Laboratory, Warrington WA4 4AD, England.

N. Binsted, J. W. Campbell, S. J. Gurman, and P. C. Stephenson,
The Daresbury Laboratory EXCURVE92 program, Daresbury
Laboratory, Warrington WA4 4AD, England.

S. J. Gurman, J. Phys. C 21, 3699 (1988).
N. Binsted and D. Norman, Phys. Rev. B 49, 15 531 (1994).
The acronym GNXAS derives from g„(the n-body distribution

functions) and XAS (x-ray-absorption spectroscopy).
A. Filipponi, A. Di Cicco, T. A. Tyson, and C. R. Natoli, Solid

State Commun. 7S, 265 (1991).
J. Mustre de Leon, J. J. Rehr, S. I. Zabinsky, and R. C. Albers,

Phys. Rev. B 44, 4146 (1991);J. J. Rehr, J. Mustre de Leon, S.
I. Zabinsky, and R. C. Albers, J. Am. Chem. Soc. 113, 5135
(1991).

J. J. Rehr, R. C. Albers, and S. I. Zabinsky, Phys. Rev. Lett. 69,
3397 (1992).

A. I. Frenkel, E. A. Stern, M. Qian, and M. Newville, Phys. Rev.
B 48, 12449 (1993); A. Frenkel, E. A. Stern, A. Voronel, M.

Qian, and M. Newville, Phys. Rev. Lett. 71, 3485 (1993);Phys.
Rev. B 49, 11 662 (1994).

B. Rechav, Y. Yacoby, E. A. Stern, J. J. Rehr, and M. Newville,
Phys. Rev. Lett. 72, 1352 (1994).

"'A. Filipponi and A. Di Cicco, following paper, Phys. Rev. B 52,
15 135 (1995).

A. Filipponi, A. Di Cicco, M. Benfatto, and C. R. Natoli, J. Non-
Cryst. Solids 114, 229 (1989)." A. Filipponi, A. Di Cicco, M. Benfatto, and C. R. Natoli, Euro-
phys. Lett. 13, 319 (1990).

A. Filipponi, A. Di Cicco, R. Zanoni, M. Bellatreccia, V. Sessa,
C. Dossi, and R. Psaro, Chem. Phys. Lett. 184, 485 (1991)." A. Di Cicco, S. Stizza, A. Filipponi, F. Boscherini, and S. Mo-
bilio, J. Phys. B 25, 2309 (1992).

E. Burattini, P. D Angelo, A. Di Cicco, A. Filipponi, and N. V.
Pavel, J. Phys. Chem. 97, 5486 (1993).

A. Di Cicco and M. Berrettoni, Phys. Lett. A 176, 375 (1993).
P. D' Angelo, A. Di Nola, A. Filipponi, N. V. Pavel, and D. Roc-

catano, J. Chem. Phys. 100, 885 (1994).
A. Filipponi, J. Phys. Condens. Matter 6, 8415 (1994).
A. Di Cicco and A. Filipponi, Europhys. Lett. 27, 407 (1994).

'A. Filipponi and A. Di Cicco, Phys. Rev. B 51, 12 322 (1995).
A. Filipponi, F. Evangelisti, M. Benfatto, S. Mobilio, and C. R.

Natoli, Phys. Rev. B 40, 9636 (1989).
L. Ottaviano, A. Filipponi, A. Di Cicco, S. Santucci, and P.

Picozzi, J. Non-Cryst. Solids 156-158, 112 (1993).
A. Di Cicco and A. Filipponi J, Non-Cryst. Solids 156-158, 102
(1993).

A. Filipponi, P. D' Angelo, N. V. Pavel, and A. Di Cicco, Chem.
Phys. Lett. 225, 150 (1994).

S.-H. Chou, J. J. Rehr, E. A. Stern, and E. R. Davidson, Phys.
Rev. B 35, 2604 (1987).

Dan Lu and J. J. Rehr, Phys. Rev. B 37, 6126 (1988).
T. A. Tyson, K. O. Hodgson, C. R. Natoli, and M. Benfatto, Phys.

Rev, B 46, 5997 (1992).
L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).
L. F. Mattheiss, Phys. Rev. A 134, 970 (1964).

' J. J. Rehr, E. A. Stern, R. L. Martin, and E. R. Davidson, Phys.
Rev. B 17, 560 (1978).

J. G. Norman, Mol. Phys. 31, 1191 (1976)
C. R. Natoli and M. Benfatto, J. Phys. (Paris) Colloq. 47, C8-11

(1986).
C. Brouder, J. Phys. C 21, 5075 (1988); C. Brouder and J. Gou-

lon, Physica B 158, 351 (1989).
M. Benfatto, C. R. Natoli, and A. Filipponi, Phys. Rev. B 40,
9626 (1989).

J. P. Hansen and I. R. Mc Donald, Theory of Simple Liquids
(Academic, New York, 1976).

P. A. Egelstaff, D. I, Page, and C. R. T. Heard, J. Phys. C 4, 1453
(1971).

Y. A. Babanov and V. R. Shvetsov, J. Phys. (Paris) Colloq. 47,
C8-37 (1986); Y. A. Babanov, V. V. Vasin, A. L. Ageev, and N.
V. Ershov, Phys. Status Solidi 105, 747 (1981).

S. J. Gurman and R. L. McGreevy, J. Phys. Condens. Matter 2,
9463 (1990).


