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Angular pinning and domain structure of a two-dimensional Wigner crystal
in a III-V semiconductor
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We consider acoustic-phonon-mediated electron-electron interaction in III-V semiconductors. It is
shown that this is strongly anisotropic and inBuences the properties of the two-dimensional Wigner
crystal. The resulting domain structure of the Wigner solid and the surface tension between the
domains are semiquantitatively investigated.

Many interesting phenomena determined by electronic
correlations in the two-dimensional (2D) electron systems
such as the fractional quantum Hall effect or the possi-
bility of formation of a 2D Wigner crystal are widely in-
vestigated experimentally and theoretically. It has been
shown (e.g. , Refs. 2—7) that Wigner crystallization can
occur in a magnetic field for suKciently small Glling of the
Landau level. However, the phase diagram of the 2D cor-
related electronic system is not yet well known. One im-
portant difFiculty of the theory of 2D electronic phases is
that the Coulomb interaction is long range, and the ther-
modynamical properties of the system only weakly de-
pend on its local structure. Therefore, the different elec-
tronic phases have almost the same value of the energy.
For example, in the 2D Wigner crystal the difference in
the energies per particle of the hexagonal (minimum) and
the square (maximum) lattices is only 0.0104(e /e)~n,
(that is 1/200 of their values), where e is the elemen-
tary charge, n is the concentration of the carriers, and
e is the dielectric constant. In this situation a weak ex-
ternal perturbation can strongly in8uence the system.
We suppose that this perturbation in III-V semiconduc-
tors can be attributed to the electron-phonon coupling.
These Tp-symmetry crystals are piezoelectrics. Hence,
acoustic phonons cause a long-range electric Geld giving
rise to a phonon-mediated electron-electron interaction.
Theoretical investigations of the electron-phonon inter-
action in piezoelectrics were performed extensively.
It has been shown in Ref. 10 that the electron —acoustic-
phonon coupling is analogous to the electron-photon in-
teraction in quantum electrodynamics with the appropri-
ate "charge" determined by the crystal properties. Most
of the studies assumed an isotropic electron-phonon
coupling vertex. Below we investigate the interaction of
the electrons via the acoustic phonons using the full ex-
pression for this anisotroJ)ic coupling. The strength of
the resulting anisotropic interaction is determined by two
different charges, in order of magnitude coinciding with
the one introduced in Ref. 10. (An analogous problem
vras considered for isotropic optical phonons in Ref. 13.)
In the two-dimensional case the anisotropy is determined
by the crystallographic plane of the 2D system. We an-
alyze the effect of this interaction on the properties of
the 2D Wigner crystal, generalizing the approach of Ref.

14. We demonstrate that this interaction considerably
affects the 2D Wigner solid, although it is much weaker
than direct Coulomb repulsion. We always use h = 1.

In the III-V crystal the piezoelectric tensor is re-
duced to one constant v. i4, and the Hamiltonian of the
electron-acoustic phonons coupling is written as
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where A = nB is the radius vector between the particles.
The invariants I~ and the charges e~ are

Io ——1, I4 —n n„+ n n„+ n n, Is ——n n„n„(2a)

Here the index p = l, t corresponds to the phonon branch
(longitudinal and transverse one), s„ is the tz-branch
speed of sound, p is the crystal density, V is its volume,
A:, q are the electron and phonon momentum, respectively,
d = q/q, and e is the polarization of the phonon. a+

q)p
and 6+ are the phonon and electron creation operators,

k+q
respectively.

The procedure of calculating the pair interaction be-
tween the charges is well known. Because the Hamilto-
nian in Eq. (1) is e and q dependent, we have to average
over the directions of the intermediate phonon momenta
and polarizations. After averaging over e directions for
the longitudinal, and d and e directions for the trans-
verse phonons, we integrate with respect to q in order to
obtain the interaction potential. In the static limit, for
which the electrons are at rest (the applicability of this
approximation will be discussed below), the additional
potential is written as the sum of the invariants of the
Tp-symmetry group:
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respectively. Since s~ ) sq, the "transverse" charge e& is
larger than the "longitudinal" one, e~. Because they are
of the same order of magnitude, for the estimations we
can use e~.

The investigation of the 2D electron system, which is
located on a crystallographic plane characterized by the
normal vector v, requires a projection of the function

yz(R) on this plane. We treat two types of v for which
these projections can be written in a simple form.

(A) Plane with the normal vector v = (0, vq, v2), v = l.
In this case an in-plane vector n, is written as

n = eq cos @ + e2 sin g,

e, = (,o, 0), ez = (0, —v2, vg). (3)

The projections of the invariants on this plane are

I4 (nlv) = —(1+3vzv2) + —vzv2 cos2$
8 2

——(1 —v, v, ) cos4q
1 2 2

anisotropy, the properties of the crystal determined by
this interaction are sensitive to its local order because at
large distances the role of the @-dependent terms is neg-
ligible. Therefore, it can affect the transition of the cor-
related electron system to the Wigner solid or the charge
density wave states.

We now discuss the applicability of the static limit
calculations. A suKcient condition for the validity of
this approximation is ms~ )) ~n„where m is the ef-
fective mass of the carrier. For the electron systems
where m O. lmo (mo is the free electron mass) and
s~ 5 x 10 cm/sec, this condition is fulfilled for con-
centrations n, & 10 cm (these systems have been
investigated in Ref. 17). Another situation occurs in the
hole systems. Here the effective mass of the carrier is
determined by the width of the 2D structure as a re-
sult of the coupling between subbands of heavy and light
holes. The mass can be rather large (m mo), yielding
n -10"cm 2

Now let us consider how this interaction affects the
properties of the Wigner solid located on the high-
symmetry planes. The basic vectors of the Wigner lattice
are given by bq ——(aq, 0) and b2 ——(aq/2, a2/2). The in-
variants Io and I4 (nlv) on the [ill] plane of hexagonal
symmetry only lead to a weak isotropic renormalization
of the charge, which for our purpose can be neglected.
From the Is invariant [Eq. (4b)] we get the anisotropic
potential

and
2
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(B) For v = (vq, vq, v2) the basic vectors in the plane
are given by

where r is the in-plane radius vector and @ is the an-
gle between r and the projection of the (001) vector on
the [111]plane. Numerical calculations give the energy
per particle for the hexagonal (Eh) and the square (E,)
lattices due to this interaction: Eh, —2.24es~n, and
E, = 0, respectively. Because of the inequality Eh (E„
the Wigner crystal is stabilized. Consider the square
symmetry [001] plane, where Is (nlv) = 0. Then p (r)
can be written as

Hence we obtain e,
(p (r) = —' cos 4@,

2
~4

e (6)-- =1 1 2 2I, (nl )v= — 1 —- (3v —1)
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'

cos 6q. (4b)

We can see that the projections are strongly anisotropic
and re8ect the symmetry of the plane. As a result of the

where @ is the angle between n and the z direction. We
have a competition of two interactions: the strong direct
Coulomb repulsion tends to form the hexagonal lattice,
while the relatively weak anisotropic interaction favors
the square one. The corresponding piezoelectric energy of
the square and hexagonal lattices are E, —1.04e24~n,
and Ep ——0, respectively. The lattice with the minimum
total (Coulomb + piezoelectric) energy is a centered rect-
angular one with 1/~3 & a2/aq & 1.

The pair interactions in Eqs. (5) and (6) depend on
the g angles. Hence, the total energy of the Wigner
solid should be dependent on its orientation with respect
to the III-V lattice. This effect is macroscopic, since it
is determined by the number of particles in the Wigner
crystal. Therefore, the system should be sensitive to this
weak coupling. From this statement we can draw two
conclusions.
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(1) The Wigner crystal loses the rotational symmetry,
and hence, should be pinned with respect to rotations
in the plane. A simple estimation based on Eqs. (2b)
and (6) shows that if n 10 cm and e~ 10 e
then the domains with the number of the particles N )
10 (T/K) should be pinned, while the smaller ones are
still randomly oriented. Pinning of the Wigner crystal
by impurities as a result of breaking of the translational
invariance is widely investigated (e.g. , Refs. 6 and 19).
The breaking of rotational invariance means that a new
branch should be observed in the spectrum of collective
excitations of the 2D Wigner crystal. The corresponding
frequency of the small angular vibrations of the Wigner
solid 0 is evaluated as e~n, /~m, . Supposing e~/e10, m 0.1mo, and n 10 cm we obtain values
of 0 in the order 1—10 GHz. This frequency is close to
the predicted for the Wigner glasses.

(2) Because the Wigner crystal on the [001] plane has
four minimal energy positions [where the angle 0 between
the bq and the (100) axis is 7rl/2, l = 0, 1, 2, 3], it is pos-
sible to obtain a domain structure with different orien-
tations of the basic vectors. We qualitatively evaluate
the width and the surface tension of the domain wall.
For this purpose we write the energy of the wall per unit
length as

C o de x' dx' + cos 40 x' —1 dx', 7

2

ac

2e4P-—
aC

(7a)

where a, 1/~n, is the Wigner lattice constant. We
should minimize 4 with respect to the function 9(x')
taking into account the boundary conditions e(oo)
0, 8(—oo) = 7r/2. A variational procedure leads to the
sine-Gordon equation. For a qualitative estimation we
obtain the wall width

e
a ))a,

Ee4
(7b)

where the axis x' is perpendicular to the wall. The 6.rst
term in the brackets of Eq. (7) is the elastic energy of
the deformed crystal determined by the Coulomb forces,
while the second one depends on the Wigner solid ori-
entation with respect to its host lattice. The constants
n and P can be expressed in the terms of the system
parameters as follows:

We can see that o. is small enough, while m is rather large.
Estimation according to Eq. (7c) at n, 10~0 cm 2 gives
0 10 K/10 cm. The small tension means that the
Wigner crystal can have a developed domain structure.
This structure is specific only for the [001] plane because
in the other cases the domain structure is impossible [this
follows from the analysis of Eqs. (3) and (4)].

Summarizing the most relevant aspects of the paper,
we formulate the following statements. First, the ex-
change by the acoustic phonons in III-V semiconductors
leads to an anisotropic interaction between the charges.
Second, this interaction manifests itself via the proper-
ties of the 2D electronic systems, especially in the Wigner
solid region. For instance, the stable lattice on the [001]
plane is between the hexagonal and square ones. For
the strong enough interaction the square one is prefer-
able. On the [111] plane this interaction stabilizes the
hexagonal Wigner crystal. However, this effect is small
because e~/e 10 . Third, as result of the anisotropy of
the electron-electron interaction the basic vectors of the
Wigner crystal should be oriented on the plane by a spe-
cific way to minimize the total energy of the system. This
effect is macroscopic and can be experimentally investi-
gated. For example, the electron diffraction recently used
by Harris et al. 0 for investigation of a 2D Wigner solid
should be sensitive to the domains orientation and can
be used for this purpose. On the [001] plane this inter-
action can lead to a domain structure with small surface
tension and wide walls. Therefore, this system can have
an orientational disorder, in some aspects analogous to
"orientational glasses. "

Note, that the qualitative statements and estimations
discussed above are based mainly on symmetry argu-
ments. Therefore, they are model independent and not
strongly sensitive to the detailed properties of the Wigner
Solid.

The theory of 2D melting shows that the symme-
try of the substrate infj.uences the melting process. In
Ref. 22 this effect is determined by the fiuctuations in-
duced by the substrate symmetry. In our case substrate
symmetry leads to the new interaction within the melted
crystal. Comparison of these cases is interesting and will
be presented elsewhere.

Note, that in our consideration the weak phonon-
mediated interaction occurs on the background of the
strong Coulomb one. Further investigation of these sys-
tems, for instance, by methods like Monte Carlo simu-
lation can shed additional light on the properties of the
strongly correlated 2D systems.

and the surface tension

ee4
0 ~ 0,' ~ A~. (7c)
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