Magnetic-field effect on the specific heat of $PrBa_2(Cu_{1-x}Ga_x)_3O_{7-\delta}$

H. D. Yang

Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan 804, Republic of China

H. L. Tsay, C. R. Shih, and T. H. Meen

Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan 804, Republic of China and Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan 804, Republic of China

Y. C. Chen

Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan 804, Republic of China (Received 14 November 1994; revised manuscript received 6 July 1995)

The specific heat of $PrBa_2(Cu_{1-x}Ga_x)_3O_{7-\delta}$ (x=0, 0.04, and 0.08; $\delta \sim 0.1$) in magnetic fields up to 8 T was studied. A depression of antiferromagnetic transition temperature T_N for Pr ions with Ga substitution becomes evident through broad specific-heat anomalies peaked at 17, 14, and 10 K for x=0, 0.04, and 0.08, respectively. Both the magnitude of the anomaly and the T_N values can be suppressed with magnetic field as often observed in conventional antiferromagnetic transitions. The specific-heat data above or below T_N increase with Ga substitution. In addition, by fitting them to $C=A/T^2 + \gamma T + BT^3$ in the temperature range $0.6 \leq T \leq 5$ K, the linear term coefficient γ of the specific heat increases with x and decreases with magnetic field. These results suggest that the unusually large value of γ in PrBa₂Cu₃O_{7-\delta} may be partially due to the strong magnetic correlation among Pr ions.

The absence of superconductivity and anomalous magnetic properties of $PrBa_2Cu_3O_{7-\delta}$ have received a great deal of interest since this compound was first synthesized. This compound forms the same orthorhombic structure as high- T_c YBa₂Cu₃O_{7- δ}, but it is strangely not superconducting.¹ Meanwhile, an antiferromagnetic Pr ordering in $PrBa_2Cu_3O_{7-\delta}$ was observed below $T_N = 17$ K by magneticsusceptibility, specific-heat, and neutron-diffraction measurements.²⁻⁴ Extensive experiments on the depression of T_c with increasing x in $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ have been reported, and various mechanisms for the magnetic coupling interactions responsible for the high T_N in PrBa₂Cu₃O_{7- δ} have been proposed.⁴⁻⁶ In general, $PrBa_2Cu_3O_{7-\delta}$ exhibits at least the following unusual magnetic properties compared to its isomorphic magnetic rare-earth compounds. (1) The value of $\mu_{\rm eff}$ derived from magnetic susceptibility is considerably lower than the expected value of $3.58 \mu_B$ for the Pr³⁺ free ion.^{1,2} (2) The magnetic ordering temperature $T_N = 17$ K is about two orders of magnitude higher than expected if one scales the T_N for GdBa₂Cu₃O_{7- δ} (T_N =2.2 K) assuming either purely dipolar interactions or the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange. (3) Unlike $\chi(T)$ for a conventional antiferromagnetic ordering, where the magnetic susceptibility decreases below T_N , the magnetic susceptibility of $PrBa_2Cu_3O_{7-\delta}$ increases below the apparent ordering temperature.^{2,7} (4) In contrast to GdBa₂Cu₃O_{7- δ}, the T_N of PrBa₂Cu₃O₇₋₈ remains essentially unchanged with Zn substitution but is suppressed substantially with Ga substitution, indicating that the magnetic coupling mechanisms in $GdBa_2Cu_3O_{7-\delta}$ and $PrBa_2Cu_3O_{7-\delta}$ are different in nature.⁷ (5) The Pr spins are arranged antiferromagnetically along all three crystallographic directions. However, the spin arrangement along the c axis changes from antiparallel to parallel by partial doping with Zn and Ga.^{8,9} (6) In contrast to the suppression of T_N for GdBa₂Cu₃O_{7- δ} by magnetic field,¹⁰ the T_N of PrBa₂Cu₃O_{7- δ} is basically field independent up to 5 T.² (7) The relatively high value [300 mJ/mol K² (Ref. 3) or 200 mJ/Pr mol K² (Ref. 11)] of the Sommerfeld constant γ determined from specific-heat measurements is comparable to that of heavy-fermion systems. Among these, it is of particular interest to study the correlation between the high T_N and the large γ in PrBa₂Cu₃O_{7- δ}. In this work, we present the magnetic-field dependence of specific-heat data for PrBa₂(Cu_{1-x}Ga_x)₃O_{7- δ} to examine the magnetic-field effects on γ as well as the correlation of γ and T_N .

Polycrystalline samples of $PrBa_2(Cu_{1-x}Ga_x)_3O_{7-\delta}$ (x=0, 0.04, and 0.08; $\delta \sim 0.1$) were synthesized by the standard solid-state-reaction method. Details of their preparation and characterization have been described elsewhere.⁷ The specific heat of individual small samples ($\sim 2 \text{ mg}$) was measured in the temperature range 0.6-40 K with a ³He thermal relaxation calorimeter using the heat-pulse technique¹² at fields of 0, 4, and 8 T. The samples were attached to a sapphire chip (sample holder in calorimeter), which has two separated silicon films deposited on it to serve as the heater and thermometer, respectively. The Si-film thermometer was calibrated against either a precalibrated germanium thermometer in zero field or a precalibrated capacitance sensor in field measurements. The chip was then connected to a constanttemperature copper block with a weak thermal link, for which thermal conductance κ was measured at each temperafield applying a small ture and by power $P = \kappa (T_{\text{sample}} - T_{\text{block}})$ to the chip. When the power was turned off, the sample temperature relaxed exponentially to the block temperature with a time constant $\tau = C/\kappa$. Thus the total heat capacity C was obtained. The uncertainty of this system estimated from measurements of reference sample Cu $(\sim 2.5 \text{ mg Cerac product } 99.999\%)$ in the temperature range 0.6-5 K is around 1%.

<u>52</u>

15 099

FIG. 1. Molar specific heat divided by temperature C/T as a function of temperature T for $PrBa_2(Cu_{1-x}Ga_x)_3O_{7-\delta}$ with x=0, 0.04, and 0.08.

Molar specific-heat data for $PrBa_2(Cu_{1-x}Ga_x)_3O_{7-\delta}$ with x=0, 0.04, and 0.08 are shown in Fig. 1 as C/T vs temperature T. An antiferromagnetic-ordering-induced maximum occurred at $T_N = 17$ K for x = 0, consistent with reported results.² Similar anomalies are also observed at 14 and 10 K for x = 0.04 and 0.08, respectively. In contrast, there is just a minor deviation from the Curie-Weiss behavior in the temperature dependence of magnetic susceptibility.⁹ Meanwhile, magnetic ordering has also been observed in neutrondiffraction experiments at about the same temperatures.⁹ In fact, the T_N of PrBa₂Cu₃O_{7- δ} decreased substantially with Ga substitution but remained essentially constant with Zn substitution.⁷ This is not yet completely understood. However, the T_N of GdBa₂Cu₃O_{7- δ} is more affected when the doping occurs in Cu-O₂ planes¹³ (such as Zn) than in the Cu-O chains (such as Co).¹⁴ It is recalled that the Cu-O₂ planes play a much more essential role than the Cu-O chains in the superconductivity of YBa₂Cu₃O_{7- δ}¹⁵ Also, there exists a strong correlation between the quenching of superconductivity and the high T_N in Pr-based cuprates.¹⁶ Therefore the Cu-O chains cannot be totally ignored in discussing the magnetic coupling mechanism for high T_N of $PrBa_2Cu_3O_{7-\delta}$. Figure 2 shows the C/T vs T for $PrBa_2(Cu_{1-x}Ga_x)_3O_{7-\delta}$ in the vicinity of antiferromagnetic transitions for x=0, 0.04,and 0.08 with magnetic field H=0, 4, and 8 T. It is found that the transitions are broader than those for typical magnetic ordering transitions. The anomalies are suppressed by H in all three compounds. The T_N values determined from the peak position of each anomaly decrease from 17 to 15 K and from 14 to 11 K as H up to 8 T for x=0 and 0.04, respectively. These results are similar to those in conventional antiferromagnetic ordering, where an external field of a few tesla is usually sufficient to suppress its T_N by a few degrees. On the other hand, the T_N and the magnetic anomaly are almost field independent up to 5 T in magneticsusceptibility measurements.²

The analyses for the linear term coefficient γ of molar specific heat in Y_{1-x}Pr_xBa₂Cu₃O_{7- δ} have been discussed by many groups.^{2-4,11,17} In fact, the value of γ in this particular

FIG. 2. C/T vs T of $PrBa_2(Cu_{1-x}Ga_x)_3O_{7-\delta}$ in the vicinity of antiferromagnetic transition temperatures for x=0, 0.04, and 0.08 with H=0, 4, and 8 T.

system depends on the different fitting temperature ranges, fitting terms, and interpretations, $^{2-4,11,17}$ while its origin remains to be identified. Though the value of γ determined for $PrBa_2Cu_3O_{7-\delta}$ differs significantly from different groups using various fitting procedures, it is commonly recognized to have a large value and heavy-fermion-like characteristics. For example, the sensitivity of γ to fitting procedure is highlighted by Li et al.⁴ who obtained a value of 114 mJ/mol K² for T < 5 K and an excess of 300 mJ/mol K² when extrapolated from T>17 K. However, in solids simple Debye T^3 behavior dominates the lattice contribution below about $\theta_D/50$, above which higher terms due to anharmonicity become significant. Thus, in this report, we fit the low-temperature $(0.6 \le T \le 5 \text{ K})$ specific-heat data of $PrBa_2(Cu_{1-x}Ga_x)_3O_{7-\delta}$ to the equation $C = A/T^2 + \gamma T$ $+BT^{3}$, where the first term is the contribution from a nuclear Schottky anomaly and the third term is the sum of the lattice and three-dimensional antiferromagnetic magnon contributions. Figure 3 shows the agreement of the fit to the data (a) for x=0, 0.04, and 0.08 with H=0 and (b) for x=0 with H=0, 4, and 8 T. The fitting parameters A, γ , and B for various x and H are listed in Table I. It is found that the obtained γ value 118 mJ/mol K² for x=0 and H=0 is consistent with that obtained by Li et al.⁴ using the same fitting

FIG. 3. Low-temperature $(0.6 \le T \le 5 \text{ K})$ specific-heat data of $PrBa_2(Cu_{1-x}Ga_x)_3O_{7-\delta}$ (a) for x=0, 0.04, and 0.08 with H=0 and (b) for x=0 with H=0, 4, and 8 T. The solid lines represent fits to the equation $C=A/T^2 + \gamma T + BT^3$.

temperature limit. The γ value increases with Ga doping concentration for the same field. The enhancement of γ with various dopants has been observed in Fe-doped Y_{1-x}Pr_xBa₂Cu₃O₇ (Ref. 3) and Zn-doped La_{1.85}Sr_{0.15}CuO₄ (Ref. 18), which were thought to be associated with the atomic disorder or localization effects. On the other hand, the γ value decreases with increasing fields for all three samples in this work. The H dependence of the γ value suggests that it may be associated with low-energy magnetic excitations in the ordered state. It has been reported that¹⁹ in heavyfermion systems the γ values show little (<20%) or no change in a magnetic field up to 13 T. However, "false" heavy-fermion systems (i.e., those with a large lowtemperature C/T value due to strong magnetic correlation) show a large change in specific heat with applied magnetic fields. Based on the above observations and arguments, the decrease of γ with magnetic field shown in Fig. 3 and Table I suggests that the large γ value in PrBa₂(Cu_{1-x}Ga_x)₃O_{7- δ}

TABLE I. Fitting parameters A, γ , and B to $C = A/T^2 + \gamma T + BT^3$ in the temperature range $0.6 \le T \le 5$ K for $PrBa_2(Cu_{1-x}Ga_x)_3O_{7-\delta}$

x	<i>H</i> (T)	A (mJ K/mol)	$\gamma (\mathrm{mJ/mol}\;\mathrm{K}^2)$	$B \text{ (mJ/mol } \mathrm{K}^4\text{)}$
0	0	44±1	118 ± 2	5.5 ± 0.1
	4	40±1	125 ± 4	5.3 ± 0.2
	8	53 ± 1	74 ± 2	7.1 ± 0.2
0.4	0	93 ± 2	146 ± 3	8.3 ± 0.2
	4	24 ± 1	151 ± 4	8.9 ± 0.3
	8	65 ± 2	90 ± 3	10.4 ± 0.3
0.8	0	77 ± 2	168 ± 5	11.4 ± 0.3
	4	24 ± 1	163 ± 5	12.4 ± 0.4
	8	75±3	101 ± 4	14.3 ± 0.5

may be partially due to a strong magnetic correlation between Pr ions.

It is interesting to study the correlation between the anomalously high T_N and the large γ value in Prbased cuprates. These parameters for six selected Prbased compounds including Pr₂CuO₄, PrBa₂Cu₂NbO₈, $PrSr_2Cu_2 Mo_{0.3}O_7$, and $PrBa_2(Cu_{1-x}Ga_x)_3O_7$ (x=0, 0.04, and 0.08) are listed in Table II for comparison. Where the Pr_2CuO_4 forms a T'-type structure consisting of only the square-planar CuO₄ arrangement with no apical oxygen atoms, the PrBa₂Cu₂NbO₈ and PrSr₂Cu_{2.7}Mo_{0.3}O₇ have a similar structure to PrBa₂Cu₃O₇ but with NbO₂ planes replacing the CuO chains and Sr-O replacing the Ba-O, respectively. Indeed, Pr₂CuO₄ seems to have very different structural and physical properties from the other five compounds. Thus Pr₂CuO₄ has no indication of a magnetic ordering transition and an effective magnetic moment $\mu_{\text{eff}} \sim 3.51 \mu_B$ close to the $3.58 \mu_B$ for the free Pr^{3+} ion, as well as a metal-like γ value suggesting a nonmagnetic ground state.²⁰ In contrast, the anomalous properties of the other five compounds may be attributed to their unique magnetic and/or electronic structure characteristic of Pr ions. Furthermore, it is difficult to correlate the large γ value with the high T_N from the information listed in Table II. A high T_N (~12 K) with a small γ in $PrBa_2Cu_2NbO_8$ (Ref. 21) and a low T_N (<0.6 K) with a large γ in PrSr₂Cu_{2.7}Mo_{0.3}O₇ (Ref. 16) imply that the large γ value is not necessarily a result of the strong magnetic coupling (high T_N) between Pr ions. Moreover, a similar relation is also seen in an increase of γ with a decrease of the high T_N in $PrBa_2(Cu_{1-x}Ga_x)_3O_{7-\delta}$. Therefore the primary origin of large γ values in Pr-based cuprates is still unclear.

In summary, magnetic-field effects on the specific heat of

TABLE II. Antiferromagnetic transition temperature T_N , effective magnetic moment μ_{eff} , and linear term coefficient γ of specific heat for selected Pr-based compounds.

Compound	<i>T_N</i> (K)	$\mu_{\mathrm{eff}} \left(\mu_B \right)$	$\gamma \ (mJ/mol \ K^2)$	Ref.
Pr ₂ CuO ₄	not observed	3.51	1.5	20
PrBa ₂ Cu ₂ NbO ₈	12	2.86	3.1	21
PrSr ₂ Cu _{2.7} Mo _{0.3} O ₇	not observed	3.05	197	16
PrBa ₂ Cu ₃ O ₇	17	2.97	114, 118	4, this work
$PrBa_2(Cu_{0.96}Ga_{0.04})_3O_7$	14		151	this work
$PrBa_2(Cu_{0.92}Ga_{0.08})_3O_7$	10		168	this work

PrBa₂(Cu_{1-x}Ga_x)₃O_{7- δ} are presented and discussed. Several features can be concluded from the present data. (1) A depression of T_N with x is clearly shown by the specific-heat anomalies, even though there is only a slope change in the χ -T curve. (2) The specific-heat anomalies are broader than those in typical magnetic transitions. However, both their magnitudes and the T_N values for PrBa₂(Cu_{1-x}Ga_x)₃O_{7- δ} are suppressed by magnetic field, suggesting that the magnetic transition of this system is consistent with conventional antiferromagnetic ordering. (3) The low-temperature specific-heat data are slightly suppressed with magnetic field and the derived γ values show an significant decrease in the

- ¹L. Soderholm, K. Zhang, D. G. Hinks, M. A. Beno, J. D. Jorgensen, C. U. Segre, and I. K. Schuller, Nature (London) **328**, 604 (1987).
- ²A. Kebede, C. S. Jee, J. Schwegler, J. E. Crow, T. Mihalisin, G. H. Myer, R. E. Salomon, P. Schlottmann, M. V. Kuric, S. H. Bloom, and R. P. Guertin, Phys. Rev. B 40, 4453 (1989).
- ³I. Felner, U. Yaron, I. Nomik, E. R. Bauminger, Y. Walfus, E. R. Yocoby, G. Hilscher, and N. Pillmayr, Phys. Rev. B **40**, 6739 (1989).
- ⁴W-H. Li, J. W. Lynn, S. Skanthakumar, T. W. Clinton, A. Kebede, C. S. Jee, J. E. Crow, and T. Mihalisin, Phys. Rev. B 40, 5300 (1989).
- ⁵H. B. Radousky, Mater. Res. Bull. 7, 1917 (1992), and references quoted therein.
- ⁶H. D. Yang, M. W. Lin, C. K. Chiou, and W. H. Lee, Phys. Rev. B **46**, 1176 (1992).
- ⁷H. D. Yang and M. W. Lin, Phys. Rev. B 44, 5384 (1991).
- ⁸W-H. Li, K. J. Chang, W. T. Hsieh, K. C. Lee, J. W. Lynn, and H. D. Yang, Phys. Rev. B 48, 519 (1993).
- ⁹W-H. Li, C. J. Jou, S. T. Shyr, K. C. Lee, J. W. Lynn, H. L. Tsay, and H. D. Yang, J. Appl. Phys. **76**, 7136 (1994).
- ¹⁰S. H. Bloom, M. V. Kuric, R. P. Guertin, C. S. Jee, D. Nichols, E. Kaczanowicz, J. E. Crow, G. Myer, and R. E. Salomon, J. Magn.

magnetic field up to 8 T. Therefore the large γ value in PrBa₂Cu₃O_{7- δ} may be partially induced by the strong magnetic correlation. (4) The increase of γ values with decrease of T_N in PrBa₂(Cu_{1-x}Ga_x)₃O_{7- δ} suggests that the origin of large γ values in these particular Pr-based cuprates needs further clarification.

The authors would like to thank Professor W-H. Li, Professor C. C. Huang, and Professor J. C. Ho for helpful discussion. This work was supported by National Science Council of Republic of China under Contract No. NSC84-2112-M110-005.

Magn. Mater. 68, 1135 (1987).

- ¹¹N. E. Phillips, R. A. Fisher, R. Caspary, A. Amato, H. B. Radousky, J. L. Peng, L. Zhang, and R. N. Shelton, Phys. Rev. B 43, 11 488 (1991).
- ¹²Bachmann, F. J. Disalvo, T. H. Geballe, R. L. Greene, R. E. Howard, C. N. King, H. C. Kirsch, K. N. Lee, R. E. Schwall, H. U. Thomasand, and R. B. Zubeck, Rev. Sci. Instrum. 43, 205 (1972).
- ¹³C. Lin, Z. X. Liu, and J. Lan, Phys. Rev. B 42, 2554 (1990).
- ¹⁴Y. Yamaguchi and S. Waki, Jpn. J. Appl. Phys. 27, L 1307 (1988).
- ¹⁵G. Xiao, M. X. Cieplak, A. Gavrin, T. H. Stratz, A. Bakhshai, and C. L. Chien, Phys. Rev. Lett. **60**, 1446 (1988).
- ¹⁶H. D. Yang, H. L. Tsay, C. R. Shih, and Y. C. Chen, Phys. Rev. B 51, 8543 (1995).
- ¹⁷S. Ghamaty, B. W. Lee, J. J. Neumeier, G. Nieva, and M. B. Maple, Phys. Rev. B 43, 5430 (1991).
- ¹⁸G. Hilscher, N. Pillmayr, R. Eibler, E. Bauer, K. Remschnig, and P. Rogl, Z. Phys. B **72**, 461 (1988).
- ¹⁹G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).
- ²⁰ Hundley, J. D. Thompson, S. W. Cheong, Z. Fisk, and S. B. Oseroff, Physica C **158**, 102 (1989).
- ²¹I. Felner, U. Asaf, D. Hechel, and T. Kroner, Physica C **214**, 169 (1993).