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Odd parity and line nodes in heavy-fermion superconductors
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Group theory arguments have demonstrated that a general odd-parity order parameter cannot have line nodes
in the presence of spin-orbit coupling. In this paper, it is shown that these arguments do not hold on the
k,= m/c zone face of a hexagonal close-packed lattice. In particular, three of the six odd-parity representations
vanish identically on this face. This has potential relevance to the heavy fermion superconductor UPt;.

The symmetry of the order parameter of heavy-fermion
superconductors is still an unresolved issue after over a de-
cade’s worth of work.! Even the parity of the order parameter
has not been determined. At an early stage, though, group
theory arguments were given that limited the number of pos-
sibilities for the order parameter.>® In particular, Blount
showed that a general odd-parity order parameter would not
have line nodes in the presence of spin-orbit coupling. Since
experimental evidence in many heavy-fermion superconduct-
ors, especially UPt;, point to the presence of line nodes in
the order parameter, most theoretical models assume an
even-parity order parameter. In this paper, a review of this
argument is given and then a particular example is analyzed
where this argument fails. This example is the k,= 7/c zone
face of a hexagonal close-packed lattice, such as UPt;, where
it will be shown that three of the six odd-parity representa-
tions vanish. The proof is by construction, taking into ac-
count the product nature of the pair wave function, under the
condition that the pairing is due to the f electrons. This in-
volves analyzing the pair wave function of f electrons sepa-
rated by primitive and nonprimitive lattice vectors.

In this paper, only the case of a hexagonal close-packed
lattice is treated. The above argument of Blount is most eas-
ily illustrated by the use of basis functions, a complete set of
which were recently published by Yip and Garg* (Blount’s
argument, though, is general and does not depend on the use
of basis functions). For instance, consider the E;, (I'5) rep-
resentation. Basis functions at the p-wave level are
k(X*iy) and (k,*ik,)Z where X, ¥, and Z are basis func-
tions for S=1. Although the first function does have a line of
nodes, in the presence of spin orbit, the two functions will be
mixed with one another (since S, is no longer a good quan-
tum number). Therefore, in general, only point nodes can
occur.

Most odd-parity models that have been discussed in con-
nection with UPt; ignore this mixing effect (an example be-
ing the E,, model of Norman® and Sauls® where only the
S,=0 component is kept). An exception was a recent model
of Norman’ which treated the strong spin-orbit limit of on-
site pairing. In this case, it was found that the I'y (E,,) pair
state vanished on the k,=m/c zone face. The question is
whether this result is specific to on-site pairing of f electrons
or can be generalized.

The first question to address is how Blount’s argument
was circumvented in this case. To do this requires an analysis

0163-1829/95/52(21)/15093(2)/$06.00 52

of single-particle wave functions. The f electron part of the
single-particle wave functions is a linear combination of
J=5/2 functions (where J denotes the total angular
momentum?). In the case of a hexagonal close-packed lattice,
there are two f atoms per primitive cell (separated by a non-
primitive translation vector). Therefore, the wave function is

of the form a;’jl,u),« where n is a band index, u a basis
function (—5/2,—3/2,—1/2,1/2,3/2,5/2), and i a site index
(1,2). Consider the two symmetry planes k,=0 and
k,=m/c (these are the only symmetry planes perpendicular
to the ¢ axis, and are of interest for UPt; since line nodes
perpendicular to ¢ have been inferred experimentally). For a
particular site, i, only functions differing by two units of
angular momentum can mix. This occurs since these planes
are mirror planes relative to the operation z——z (0})
and the functions —5/2,—1/2,3/2 transform as —i and
—3/2,1/2,5/2 as +i under this operation.’ Thus, for a part-
icular site, the coefficients of either —5/2,—1/2,3/2 or
—3/2,1/2,5/2 vanish. For the k,=0 case, the a, coefficients
which are zero on one site are also zero on the other site, but
for the k,=m/c case, they are ‘staggered” (that is, if
—5/2,—1/2,3/2 are zero on site 1, then —3/2,1/2,5/2 will pq
zero on site 2). This difference occurs since the factor e*'"
will introduce a relative phase between the two sites of 1 for
k,=0 and —1 for k,=m/c.

Now consider basis functions for pairs of f electrons.
Since a center-of-mass momentum of zero is assumed (that

is, k and —k are paired), these pairs are from representations
at the I' point of the zone (I'; through I'¢). In addition, the
correct combination of these pair states corresponding to ei-
ther even or odd parity must be constructed. This was con-
sidered in the presence of spin orbit by Anderson.!® At a

general k, there are two Kramers degenerate states labeled &k
and PTk where P is the parity operator and T the time-
reversal operator, corresponding to up spin and down spin in

the spin only case. The analogous states at —k can be labeled
as Pk and Tk. The even parity combination is then
k,Tk— PTk,Pk and is a pseudospin singlet (corresponding
to S=0 in the spin only case). For odd parity, there are three
pseudospin combinations: k,Pk and PTk,Tk and k,Tk
+ PTk,Pk (corresponding to S=1 in the spin only case).
These are conveniently relabeled as a vector d with the
above three states corresponding to —d,+id,, d,+id,, and
d, . Finally, to consider the full effect of the space group on
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the order parameter, it is necessary to analyze the pair wave
function in real space. The cases of electrons on the same
site, electrons separated by a nonprimitive lattice vector, and
electrons separated by a primitive lattice vector have been
treated by Appel and Hertel® (it is from this work that the
arguments below will be obtained). By construction, then, if
something is proved for these three cases, then it is true for
the general pair wave function (assuming the pairing is due
to the f electrons) since all f atom sites are connected by
either a primitive or nonprimitive lattice vector.

For on-site pairs (the case treated in Ref. 7), three of the
six possible odd-parity representations, labeled even z repre-
sentations (I';, I';', I'5), involve states with even M, the
other three, labeled odd z representations (I's , I'y, T'g),
involve states with odd M, .!! This along with the statements
in the above two paragraphs allows one to trivially conclude
the following (remembering that the operator P interchanges
sites 1 and 2 in the unit cell, whereas the operator T inter-
changes u and — u). For k,=0, using the relations satisfied
by the single-particle wave functions, combinations like
k,Pk are nonvanishing only for odd M states whereas com-
binations like k,Tk are nonvanishing only for even M
states.!? Thus, for even z representations, d, and d, vanish,
whereas for odd z representations, d, vanishes. This is the
familiar result which was illustrated by basis functions* in
the first part of this paper (these basis functions involve ex-

pansions about k=0). The situation, though, changes for the
k,=/c case given the “staggering” of the single-particle
wave functions discussed above. In this case, only even M
states are nonvanishing for both k,Pk and k,Tk combina-
tions. Therefore, for even z representations, all three pseu-
dospin components are, in general, nonzero on this face,
whereas for odd z representations, all three pseudospin com-
ponents vanish identically.

The case of next-near-neighbor pairs (electrons separated
by a primitive lattice vector in the basal plane) turns out to
be identical to the on-site case. This is expected, since a
primitive lattice vector is involved. Formally, the group for
two fixed sites separated by a lattice vector is C,; composed
of the identity £ and o, . There are two representations of
this group, I'; (even z) and I', (odd z). The former is only
composed of even M pairs, the latter of odd M ; pairs. When
the full space group is considered (that is, all rotations of the
two sites plus their interchange), then I'; leads to the even z
representations, I', to the odd z representations, and thus the
arguments of the above paragraph follow immediately.
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The case of near-neighbor pairs (electrons separated by a
nonprimitive lattice vector) is somewhat different. In this
case, one electron is at site 1 in the primitive cell, the other at
site 2. Again using the properties of the single-particle wave
functions discussed above, for the k,=0 case, only odd
(even) M states are nonvanishing for the combination k, Pk
(k,Tk) just as before. On the other hand, for the k,=m/c
case, only odd M, states are nonvanishing for both combi-
nations (previously, it was even M ;). To complete the argu-
ment, though, one needs to know how even z and odd z
representations transform. A key difference from before is
due to the ¢ axis being a screw axis. Thus, the operation
o, must be followed by a nonprimitive translation. In the
previous paragraphs, this resulted in a phase factor of unity
since the pairs k, —k involved electrons either both at atom
site 1 or both at atom site 2 (modulo a primitive lattice vec-
tor). In the present case, though, one of the electrons is at site
1, the other at site 2, resulting in an overall phase factor of
e'*:° where c is the lattice constant along the ¢ axis. Thus the
effect of o, on a pair is (—1)Me™*:¢. For odd (even) z
representations, then, M; must be odd (even) for k,=0 and
even (odd) for k,= 7r/c to be nonvanishing. Combining this
with the constraints of the single-particle wave functions
mentioned earlier, one then finds the same results as before.
That is, for odd z representations, d, and d, are nonvanish-
ing and d, vanishing for k,=0, but for k,= 7/c, all vanish;
whereas for even z representations, d, and d,, are vanishing
and d, nonvanishing for k,=0, but all are nonvanishing for
k,=mlc.

The above arguments have implications, at least for the
case of UPt;. The calculated Fermi surface for UPt; has two
of the five Fermi-surface sheets centered about the k,= 7/c
zone face (contributing about 43% to the total density of
states)!® and both sheets are in good agreement with de
Haas—van Alphen data.'* Therefore, the existence of line
nodes in UPt; cannot be used as a criterion to differentiate
between even- and odd-parity pairing, since given the above
arguments, two of the five sheets will have line nodes for
three of the possible six odd-parity representations, even if
the pair state involves all three components of the d vector.
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