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Scattering matrix of a three-terminal junction in one dimension
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We study the transport characteristics of a three-terminal junction of quantum wires through
a one-dimensional formalism. A single-mode S matrix is derived by the tight-binding formulation
and its relation with the scattering matrix approach is clari6ed. By using this S matrix, the
transport characteristics of quantum interference devices are reproduced in a single-mode regime.
This formulation helps us to introduce realistic junctions in one-dimensional analyses of quantum
wll es.

Quantum efFects can be observed in semiconductors
when the size of the structures reaches the coherence
length. This condition can be easily accomplished by
modern epitaxial and lithographical techniques. Among
quantum effects, tunneling phenomena can be analyzed
in one dimension as a first approximation. However, to
analyze other quantum interference effects in electron
waveguides such as the A-B effect, junctions should be
introduced.

To perform this task, two-dimensional (2D) analyses
of electron waveguides have been performed by numer-
ical methods such as the mode matching method or
the tight-binding (recursive) Green function method.
Although these numerical analyses are easy to perform
for specific examples, it is not always easy to acquire gen-
eral characteristics from numerical results. To obtain an
analytic representation of conductance, one-dimensional
(1D) analyses have been applied by using a single-made S
matrix at a junction. Furthermore, one-dimensional
analyses are of particular importance when one intends to
incorporate many-body effects into analyses, because it
is very difFicult to analyze quantum wires in two dimen-
sions and in the Hilbert space of more than one elec-
tron. By using one-dimensional formalism, the qualita-
tive features of quantum oscillations are described in an
AB ring or a T-stub structure ' ' in a single-mode
regime. However, these one-dimensional approaches are
phenomenological and have been discussed mainly from a
theoretical interest, because the applicability of these ap-
proximations is not clear. In this paper, we clarify the re-
lation between the S matrix approach and tight-binding
formulation and derive an S matrix which corresponds
to an energy-dependent extension of that S matrix.

We consider a 1D system which describes a three-
terminal junction. When the problem is mapped to
1D from 2D, information about the direction is natu-
rally lost and assumptions must be made to describe
such a system. Because the only indispensable restric-
tion is unitarity, there is some freedom in choosing an
S matrix. At a three-terminal junction, an outgo-
ing wave @ = (gM, @~,QI) and an incoming wave

(pM, po, pl) are related by the following linear
equation:

where S is a 3 x 3 scattering matrix 1SJg). Here, I, 0,
and M denote the indices of an input, output, and in-
termediate lead, respectively. In the following discussion,
we only consider junctions in which two of the three leads
are equivalent. g~ (rpJ ) is the amplitude of the outgoing
(incoming) wave from (to) the junction through a lead
P. And S~g is a scattering amplitude from a lead Q to
a lead P.

Buttiker et al. derived the scattering matrix from a
unitarity condition and an artificial assumption that the
S matrix of the junction is real. Using a free parameter
e (0 ( e ( 1j2), the scattering matrix of the junction
was described as

where

S= ( —(a+ b) +e
+e a b

b a j
(2)

( ) f +2(v 1 —2e —1) ) ( +2(/1 —2e+1) )
( +2(gl —2e+ 1) ) ( + 2(v 1 —2e —1) )

This S matrix has an advantage in that it can describe
various junctions by changing a single parameter and has
been widely used. ~~ ~2 ~4 When e = 4j9, it describes a
homogeneous junction and is equivalent to the formula-
tion of Xia, in which matching of the wave function was
used. ~s ~ ' When e = 1j2, S~~ = 0 and corresponds
to the S matrix introduced by Shapiro. '

However, it is not clear to what extent this S matrix.
can be used as a model to describe realistic junctions.
Even if energy is kept fixed in the analyses, the value of e

should be determined &om phenomenological arguments.
While the above treatments contain specific assump-

tions on the elements of the scattering matrix, the tight-
binding formulation leads to an energy-dependent and
complex scattering matrix without any assumptions ex-
cept for a tight-binding lattice. Guinea and Verges
directly obtained transmission coefficients of quantum
wires with junctions. However, we will show that the
S matrix obtained from this formulation can be used to
describe realistic junctions, without the restriction of the
lattice.

In this formulation, the Hamiltonian is given by

0163-1829/95/52(3)/1508(4)/$06. 00 52 1508 1995 The American Physical Society



52 BRIEF REPORTS 1509

H =Hp+H',
Hp ———t

i=.. ., —2, —1,P, 1,2, .. .
(I')(t+ 11+ lt+ 1)(tl)

). (Ii)(~+II+ li+ 1)(il)

If' = —t(lo) (1'I +11')(ol).

(4)

The sites are shown in the inset to Fig. 1. Hp repre-
sents transfer terms within an infinite lead and within a
half-infinite lead. H' connects these two leads. All the
hopping matrix elements are set to be —t. Using the
Green functions for each part and connecting them by
solving the Dyson equation, ' Green functions for the
total system can be analytically determined. By using
the formula by Fisher and Lee, the S matrix can be
derived as

where

S= f p~p
(p p ~)

(6)

iA;a

2eika e —iA:a '
2i sin ka

2e~~~ —e

By following the same procedure as the previous case,

where k is the wave number and is related to energy by
the formula E = 2t(l —cos ka). This expression is equiv-
alent to that of Xiais when ka = vr/2. The transmission
probability T = IPI and reHection probability R = Io.

l

are plotted against wave number in Fig. l. While any
length in the system must be discrete in the tight-binding
formulation, this restriction can be removed if only the
above S matrix is used. It can be regarded that the en-
ergy dependence was introduced by the scale defined by
the tight-binding lattice.

Though the above formulation treats all leads as equiv-
alent ones as that of Xia, by introducing another trans-
mission element t in (3), this formulation can be ex-
tended to describe a junction in which one of the three
leads is connected by a different transfer term.

a' = -t'(lo)(1'I+ 11')(ol)

the S matrix is obtained as

(~ p p)S= po.
)

2 ikao. = —ip e'

2p
P = sinka,

2
p = —sinka,

1
b = —(—2sinka+ ip e '" ),

where p = t'/t and A = 2 sin ka —ip e'" . By chang-
ing t', it is possible to change the coupling between the
half-infinite lead and the infinite lead. This S matrix
amounts to a natural extension of the homogeneous S
matrix (6). Moreover, when ka = vr/2, this expression
reduces to the first branch of the expressions in (2) when
e = 4p /(p + 2) . The condition 0 & e & 1/2 is nat-
urally satisfied for a real p. As a result, the above for-
mulation corresponds to an energy-dependent extension
of the S matrix (2). Therefore, when the S matrix of
(2) is used, we can consider that the configuration of the
junction is changed by changing the parameter e, while
the energy is kept fixed. In particular, p = 1 corresponds
to a homogeneous case, and y, = v 2 corresponds to the
strong coupling case of e = 1/2 in (2); thus the S matrix
used by Shapiro can be achieved for ka = vr/2.

The transmission probability IPI, Ipl and reflection
probability Inl, Ibl are plotted against wave number in
Fig. 2(a) for p, = 3/4. For reference, the same values
in a 2D T junction depicted in the inset to Fig. 2(b)
are shown in Fig. 2(b) in a single mode regime. The
transmission coefficients, Tpg = I(S~g)iil, are numer-
ically obtained by the tight-binding (recursive) Green
function method. ' Though quantitative agreement is
not achieved in this simple formulation, qualitative char-
acteristics are reproduced in ka & vr/2, if we regard a as
TV and ignore the threshold energy of propagation in 2D.
It is expected that various configurations of 2D junctions
can be described by changing the single parameter p.

Finally, as simplest applications, the above formulation
is applied to quantum interference devices in which one
of the three leads is terminated by an infinite potential
barrier. The symmetric structure, in which the lead M is
terminated and symmetric about an input and an output
lead, corresponds to a T-stub structure. The asymmetric
structure, in which the lead 0 is terminated, corresponds
to a bend structure. In the symmetric structure, the
transmission amplitude is obtained as

t —p+ o.po. + o.pbpn+

0
0

k (z/a)

2(1 + p) sink

2(1 + p) sin k —t'p2(e'" + pe '")

I'IG. 1. Transmission and reBection coefficients in the 1D
homogeneous tight-binding junction (p = 1). Inset: 1D
tight-binding sites for a three-terminal junction. The solid
line represents Ho, while the dotted line represents H'.

Here, p is the factor obtained while propagating through
the terminated lead and equal to —e2'"~, where L is the
length of that lead. In this expression, it is readily seen
that zeros of the transmission occur for p = —1 and k =
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FIG 2 (a) Transmission and reffection c«fQefficients in the
1D tight-binding junction for p = 3/4. (b) Transmission an
re8ection coefficieri s in effi t ' th 2D T junction. Inset: the T junc-
tion.

nx. In contrast, the transmission maximum occurs when
= —e '" and the maximum always reaches the va ue

of 1 regardless of the value of p.
Similarly, in the asymmetric structure, the transmis-

sion amplitude is described as

t = n+ npp+ npPpp+ .
2p, sin k(1 + p)

2 sink —ip2e*"(1 + p)

While the zeros occur at the same parameter as in
the symmetric case, eth transmission maximum occurs
at a different value from (9). From (10), the following
equation is derived:

+ (cot kL —p cot k)
4@2 4@2

(p2 + 1)2
4 2

Therefore the transmission coeKcient ~~t~~is y
~ ~

is alwa s less
than 1 as long as p ~ . n o~~1 In other words, the symmetry
between the inpu an eh t d th output lead is necessary to ob-
tain maximum mo u a ion.d l t' Wave number dependence

d l th de endence of the transmission coeKcient foran eng epen
three different parameters are depicteu. in igs. ,a,

FIG. 3. (a) Wave number dependence forroL= a3a dnb
length depen ence ord f k = 7r/(3a) of transmission coefficients
in symme nc an at d sz mmetric quantum inter erence devices.
Solid line: p = an= 3& 4 and symmetric structure; dotted ine:

=3 4p = 1 an symme ric s rucd t tructure and dot-dashed line: p, = 3/
and asymmetric structure.

3(b), respectively. In spite of the simphcity of the for-
mulation, the general characteristics are qualitatively re-
produced. The results smoothly change when is no
an integer multiple of the lattice unit a, and they be-
come periodic 'th one-half of the wavelength. Though
the conductance is periodic wite

' one-half of the wave-
len th in a single-mode regime, it oscillates with many
fre uencies in a multimode regime, and this reHects the
existence of many transverse modes and cacannot be dealt

In conclusion, we have studied the transport prop-
erties o t e junc ions inr n t' s in one-dimensional formu ations.
We clarified the relation between the 1D tight-binding
Hamiltonian an ed th 1D scattering matrix approach.
The energy- epen end d t S matrix was derived from the
ti ht-binding formalism and was shown to be an energy-
dependent extension of the phenomenologica

' al 8 matrix
introduce y u i er ea 0 8-tt k t al This formulation is ex-
pected to be useful for incorporating realistic junctions
in quantum wires within a 1D approximation.
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