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We have constructed a Bethe ansatz solution for the multichain quantum supersymmetric frustrated z-J
model. The system is in the antichiral state for both spin and charge degrees of freedom. Elementary spin and
charge excitations carry nonzero chiralities (topological charges) but they are confined into pairs with opposite
signs of their chiralities, so the state of the system remains antichiral. Topological terms of Wess-Zumino
nature in the Hamiltonian cause such chiral behavior. We conjecture that a multichain supersymmetric frus-
trated #-J model without topological terms in the Hamiltonian has charge and spin excitations with gaps.

In recent years physicists have been greatly interested in
the low-temperature properties of low-dimensional strongly
correlated electron systems. The discovery of high-
temperature superconductivity in metal oxides has focused
much attention on electron systems with repulsive interac-
tion. Understanding of the mechanism by which supercon-
ductivity occurs is strongly connected with the correct de-
scription of low-energy excitations of such systems.
Following Anderson,! we believe that superconductivity is
connected with the interaction between spin and charge ex-
citations of strongly correlated systems: spinons and holons.
One can construct the special two-dimensional (2D) theory
of superconductivity using, e.g., the concept of anyons car-
rying intermediate statistics between bosons and fermions;?
anyons are specific to the (2+1) quantum theories. A way to
describe anyons is in adding the Chern-Simons topological
term (violating T and P symmetries) to the Lagrangian of the
system, which changes the statistics of excitations.” One of
the intriguing features of such ‘““topological” superconductiv-
ity in the 2D systems®~® is the connection between the chiral
spin ordering and the supercondu<:tivity.7’6 It is known that
frustrated spin lattices with antiferromagnetic Heisenberg in-
teraction reveal the main features of metal oxide behavior.®
Some examples of real cuprates exist in which so-called lad-
ders (multichain subsystems) divided from each other by
frustrated spin bonds play an essential role and the conduc-
tivity for such systems is connected strongly with these
ladders:*!° e.g., superconducting copper oxide
St2,-2CU3, 04y, -2, (VO),P,0;, and Lay4,Cug2,04,-2
contain weakly coupled arrays of metal oxide—metal ladders
with spin frustrating bonds betweed them. These strongly
correlated electron systems are of great interest now because
of their intermediate properties between the 1D and 2D,
which implies the better understanding of some aspects of
high-temperature superconductivity in cuprates.

It is important to solve the low-dimensional quantum
many-body problem exactly in order to understand the fea-
tures of the 2D quantum strongly correlated electron systems
(because of peculiarities in the density of states in low-
dimensional systems quantum fluctuations are enhanced
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there). Theorists have to answer one essential question in
high-temperature superconductivity (see, e.g., Ref. 1):
whether elementary spin and/or charge excitations of the 2D
strongly correlated repulsive electron systems have gaps and
the quantum Anderson’s disodered ground state emerges, or
they are gapless and the ground state is ordered. We believe
that the exact solution of a multichain strongly correlated
electron model with spin frustration could help in answering
this question. This paper is a generalization of Ref. 11, in
which the exact solution for the multichain spin-1/2 frus-
trated magnet with the 7 and P symmetry violation was
obtained. We study exactly, using the quantum inverse scat-
tering method,'? the multichain strongly correlated electron
system with 7 and P violation. The model reveals some
properties both of the 1D and 2D systems. We show that the
system 1is in the antichiral charge and spin state for any val-
ues of an external magnetic field and for various band filling
(except of trivial ferromagnetic ground state). Elementary
spin and charge excitations (gapless for non-half-filled band
and nonferromagnetic state) carry nonzero chiralities, but
only pairs of them with opposite signs of their chiralities
contribute to the ground-state energy without changing the
total antichirality. We conjecture that for the multichain frus-
trated supersymmetric ¢-J model without 7 and P symmetry
violation elementary charge and spin excitations have gaps
even for non-half-filled band. Zhang and Rice'® proposed the
2D t-J model for the description of high-temperature super-
conductors. The 1D supersymmetric version of the ¢-J model
permits the exact solution using the Bethe ansatz.'* In this
paper we construct the multichain realization of the 1D su-
persymmetric #-J model. This is an attempt to describe ex-
actly a multichain strongly correlated electron system and to
show specific 2D topological features of spin and charge
excitations for it.

We write the transfer matrix T(N)
=T(N—6,)T(AN—0,)---T(N— 6;), and the Hamiltonian for
the L supersymmetric ¢-J chains (L is even) with the inter-
and intrachain interactions (the Hamiltonian is the logarith-
mic derivative of the transfer matrix as usual), see, also Ref.
11, which has the form
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where T(\) is the standard transfer matrix of a single super-
symmetric ¢-J chain;'> \ is the spectral parameter (this con-
struction is the generalization of the multichain spin-1/2
magnetic frustrated model!! for the system with internal de-
grees of freedom), 6, , are the interchain coupling param-
eters, 6, ,=6;,— 0, 0,,,= 6, Ilyy is the graded permuta-
tion operator for the supersymmetric z-J model’® (X, is the
Hubbard operator, see later), and square brackets denote
commutator. In the first term we must replace I1 X, X with
II XpXinsr? which means toroidal winding boundéry condi-
tions (see, also, Refs. 11 and 16), and we have omitted in Eq.
(1) higher order in permutations terms. The third term and
omitted (nonlocal) terms do not change classical equations of
motion for spin and charge (they are total derivatives)—they
are higher-order topological charge and spin lattice numbers
of our multichain strongly correlated electron system. On the
other hand, the structure of the third term and omitted terms
of the Hamiltonian (1) is similar to the structure of higher
moments for the supersymmetric ¢-J model, see Ref. 15. Let
N, be the number of sites on each chain, N the total number
of electrons, M the number of electrons with down spins,
and u; and A, the rapidities for the unbound electrons and
spinons, respectively, which are determined from the Bethe
ansatz equations in FFB (fermion-fermion-boson) grade. The
ground state is formed by the bound pairs,'* for which

=N\=*(i/2) and unbound electrons (we have M pairs and
N—2M unbound electrons). Thus the set of rapidities u;
consists of (N—2M) real values and M pairs of complex
conjugated values (spin-paired electrons) u, =\ = (i/2) for
the ground state. Taking it into account, the energy of the
state is equal to

L M
E=C+2, |22 [(A\+6,)%+1]!
r=1| k=1

N—-2M
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= —

where C is the shift of the energy which does not depend on
the interaction, and A, and u; are the solutions to the sets of
equations
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4
where f(x)=((x+i)/(x—1i); a# B;
a=1.2,... M.

It can be seen from Egs. (3) and (4) that in the limit
0, x—0 one has the 1D supersymmetric ¢-J chain with
LN, sites, and if 6, ,—o we describe L noninteracting su-
persymmetric ¢-J chains with N, sites. We can solve Egs. (3)
and (4) in the limit N,M ,N,—o, M/N,, N/N, being fixed,

j=12,....N—2M;

for the nonmagnetic case and for the band filling N=LN,
the ground-state energy is minimal and equal to
= |1+exp(iwb, )|
Eo=C—N, Z | Ty e ©

To understand better chiral topological properties of the
multichain model Eq. (1), let us consider the structure of the
Hamiltonian for the simplest case of two supersymmetric ¢-J
chains, L=2, which reveals some properties of the 2D (a
number of papers are devoted to the quantum description of
the strongly correlated multichain case!” and especially to
the two-chain problem,'® most of them used Abelian
bosonization technique'®):

> B(Hypon+Hipone1)T40°(Hy i i1+ Hoponr1)

+810{[X{;_X§;+1+57',0(X??n 2n+1 ]X1n+1Xg,:l
0
+ (X=X (X X3+ X0 X, = X T X5, — X000 X0
+ (X7 X5, 1)Xl Jr IXZ’ —H.c.})+const, (6)
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where H;,jm=(XT0X)0 +He) = XX 75+ X0 X7,
oo, 7,7=1,—1, X‘]’,’zb,n are the Hubbard operators [we used
Hubbard operators in terms of which the supersymmetric
(permutation) properties could be seen obviously]
X =|a)(b|, of the site electron (a,b=0,1,—1) on the first
or second chain in site n, and 6 is the interchain coupling
parameter. A classical 3D analog of the quantum two-chain
strongly correlated electron system could be the double-layer
fractional quantum Hall system, studied recently in Ref. 20,
where excitations have specific (2D) topological properties
like in our case. The third (topological) term in Eq. (6) could
be originated from spin-orbit coupling for low enough tem-
peratures, for which orbital degrees of freedom of electrons
were frozen.!! It breaks both 7' and P symmetries separately,
the TP symmetry being conserved. The effect of this term
for spin degrees of freedom of electrons is equivalent (for the
nonmagnetic phase) to the topological magnetic charge (or
Noether charge) for the chiral (magnetic) classical field. This
term is equivalent to the time component of conserved topo-
logical current; the Lagrangian of the system’s spin part has
the usual form of the nonlinear o-model Lagrangian (or
CP! model) with the Wess-Zumino term. For a classical field
the term, linear in 6, is an integer number??? (Pontryagin
index). On the other hand this term is connected with the
(statistical) current known as the Chern-Simons term,?!
which is specific for the 2D systems. Note that in D=1 or 3
we cannot construct a scalar (or pseudoscalar) with the prop-
erties of the topological charge, e.g., for 3D we have the
vector instead of this term, and can construct the Hopf in-
variant, which has integer values only.?! Our pseudoscalar
(topological charge) is the homotopy class characteristic
7r2(SZ)=Z;22 it is the total time derivative, so it does not
change classical equations of motion. The spin-charge and
charge parts of the chiral term in the Hamiltonian (6) are
total time derivatives too, so they do not change classical
equations of motion. They are charge and spin-charge lattice
quantum analogs of a spin topological charge, describing
(charge) chiralities of a strongly correlated electron system.
Another explanation of those terms nature may be a gener-
alization of the well-known Shraiman-Siggia model;*> see
also, Ref. 24. Note that for all sites occupied with electrons
the Hamiltonian of our model is equal, naturally, to one of
the multichain spin-1/2 frustrated antiferromagnet.'!
Equation (5) is an even function of the chirality parameter
6, . In previous papers“’25 we named such states as ‘‘anti-
chiral.” We can see that the supersymmetric multichain z-J
model reveals antichirality too in the ground nonmagnetic
half-filled state. For the ‘‘ferromagnetic” case (with the
nominal value of the magnetization of the system) the
ground-state energy, naturally, is an even function of 6, ; and
spin chirality is equal to zero. But this state has trivial ferro-
magnetic ordering. If we apply a small magnetic field the
magnetization of the system behaves like a spin-1/2 frus-
trated  multichain system,!! and 1D spin-1/2
antiferromagnet.26 The ground-state energy remains an even
function of the chirality parameter 6, ;, so we can conclude
that the weak magnetic field does not change the antichirality
of the system. Thus a small magnetic field does not change
the number of spin topological excitations (instantons) which
form the (spin and charge) Dirac seas of the system. For the
nonmagnetic situation, if the band is almost half-filled, fol-
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lowing Schlottmann,'* we can see that at non-half-filling the

model reveals the antichiral properties too.

There exist two types of low-energy excitations for the
model. A charge excitation carries no spin, and spin excita-
tion (spinon) is pure spin only at half-filling, like the 1D
case.?’ Charge excitation has a gap at half-filling. For a
charge hole, non-half-filled and nonmagnetic case, the en-
ergy is not an even function of 6, so a hole carries nonzero
chirality (nonzero topological charge) E,
=Eo+(m/2)=L sech[m(N g+ 6,1)/2], where A, is the
hole rapidity (from this point of view, hole or particle carries
topological chargelike spin instanton, similar to the quasipar-
ticle in the fractional quantum Hall effect). But, analogously
to the 1D case, the elementary charge excitation of the sys-
tem is the particle-hole excitation: a particle carries topologi-
cal charge of the opposite sign as to the hole’s, so total
chirality (or topological winding number) of a particle-hole
charge excitation remains zero. For a simple spin doublet
excitation (which is the quantum analog of a classical instan-
ton solution) we have, following Refs. 28 and 27,
E=Ey+ 7=k sech[ m(uo+ 6,1)], where u, is the spinon
rapidity. Two doublet excitations (spinons) carrying different
chiralities (winding numbers with opposite signs) with both
spin S =3 confines into singlet and triplet states, see Refs. 28
and 27, or the Dirac seas for holons and spinons follow ex-
citations carrying nonzero charge and spin chiralities (or
nonzero topological charges) in such a way that the total
multichain correlated electron system remains antichiral. It is
connected with the periodic (toroidal) boundary conditions in
our case. Note that away from half-filling spin excitations
carry nonzero charge. At half-filling, we can see that a hole is
the pairing of a holon with a charge e and zero spin and a
spinon with zero charge and spin 1/2, like the 1D case, see
Ref. 27, carrying nonzero topological charge.

We have shown that the exact elementary excitations
(doublet, singlet, triplet spin excitations, and particle-hole
charge ones) of the Hamiltonian (1) are gapless. But the
Hamiltonian (1) contains the §-vacuum (topological) terms.
The situation is analogous to Haldane’s picture of a 1D an-
tiferromagnetic spin chain (see, e.g., Refs. 29 and 30);
Haldane argued that an integer spin chain has a gap, and a
half-integer one has not due to the #-vacuum term for the last
case. Using reasoning analogous to Haldane’s (see, also Ref.
11), we may suppose that the existence of the € term in the
Hamiltonian (1) implies the gapless behavior of our system,
similar to the multichain spin-1/2 model."! The same differ-
ence takes place in the 2D classical Wess-Zumino model and
the 2D classical nonlinear o model.>'=>* Thus for the frus-
trated supersymmetric multichain ¢-J model without topo-
logical terms in the Hamiltonian we can conjecture that the
spin and charge excitations do have gaps. In our case hole,
particle, and doublet spin excitations change chiral properties
of the system, because their energies are not even functions
of 6,;. In Ref. 11 we suggested that such excitations (from
the classical point of view they are similar to instantons>*)
could form antichiral spin liquid. But the temperature does
not change topological properties, so our strongly correlated
electron system is in the antichiral state for any temperatures,
like the multichain spin-1/2 frustrated magnet.!! To change
antichirality into chiral state one has to change the periodic
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boundary conditions into, say, free ones for which meronlike
topological excitations could exist. The generalization of the
results of this paper for the case of the multichain strongly
correlated electron exactly solvable model with correlated
pair hopping® with spin and charge chiralities (or 7 and P
symmetry violation) will be reported elsewhere.

To summarize, we have studied the Bethe ansatz exact
solution of the multichain z-J supersymmetric model. We
have shown that the ground state of the model reveals anti-
chiral spin and charge properties for any values of the exter-
nal magnetic field and band filling (except for the trivial
“ferromagnetic” case and the half-filled point for which the
charge Fermi velocity is zero). Elementary excitations of the
strongly correlated electron system are spinons and holons
carrying nonzero spin and charge chiralities (or nontrivial
spin and charge topology). Only pairs of such excitations
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with opposite spin and charge chiral numbers form the
ground state of the system and contribute into the free en-
ergy. We cannot divide ‘“charge” and ‘“‘spin topological
charges” (or chiralities) for our model, that is, undoubtedly,
the lack of the considered model, but it reveals topological
properties of the 2D, and has spin-charge separation (for the
ground state and excitations). Elementary excitations of the
model are gapless, but for the multichain #-J supersymmetric
frustrated system without topological terms in the Hamil-
tonian (breaking 7 and P symmetries separately) we can

" conjecture that the elementary excitations (holons and

spinons) have gaps.
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