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Ab . initio calculation of phonon spectra for graphite, BN, and BCzN sheets
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Phonon spectra for graphitic sheets of carbon, BN, and BC2N are computed and studied. The
dynamical matrices are constructed from force constants obtained by performing supercell Hellmann-
Feynman force calculations within the framework of the local-density approximation. The calculated
phonon dispersions of the BC2N sheet are found to be similar to a superposition of those of graphite
and BN sheets. Geometrical relations between the calculated phonon modes of the BC2N sheet and
those of graphite and BN sheets are discussed.

I. INTRODUCTION

Graphitic sheet structures are found not only for car-
bon but also for compounds such as BN, BC3, and
BC2N. The electronic structures of these graphitic
compounds have been investigated using first-principles
calculations. Despite a commoD honeycomb pattern in
atomic arrangement, the calculated electronic structures
of these compounds show diferent properties. Because of
the C substitution by B atoms, the BC3 sheet has both
m and m* bands above the Fermi level in the proposed
atomic geometry. The calculated electronic density of
states is consistent with the electron energy loss spec-
troscopy data. The most stable atomic structure of the
BC2N sheet was theoretically predicted to have zigzag
chains of C-C and B-N atoms. This structure results
in an anisotropic electron energy band structure. Tubule
forms of these compounds were proposed ' to be as likely
to form as carbon nanotubes which were known to exist,
and recently nanotubes originating &om graphitic com-
pounds of B C„N have been synthesized. According
to erst-principles and tight-binding calculations, ' the
electronic properties of the sheets formed &om B C„N,
should be retained in the tubule forms. Hence, knowledge
of the electronic structures of graphitic sheets are impor-
tant and useful to understand the electronic structures
of their tubule forms.

Beside the electronic structures, theoretical and ex-
perimental information about phonon properties is also
useful to characterize these graphitic compounds as
are investigations of electron-phonon interactions which
play crucial roles in normal and superconducting trans-
port properties. Phonons of graphite are well investi-
gated both experimentally and theoretically, and the
electron-phonon couplings have been studied for graphite
sheets and carbon nanotubes. However, details re-
lated to phonon dispersions and vibrational modes of the
B-C-N compounds have not been reported to our knowl-
edge.

In this paper, we focus on the relations between
phonons in graphite, BN, and BC2N sheets. For the
BC2N sheet, the most stable structure shown in Fig.

1 can be interpreted as a mixture of graphite and BN
sheets. Hence the phonon modes of the BC2N sheet are
expected to be related to those of graphite and BN sheets.
We have performed calculations for the phonon spectra
of graphite, BN, and BC2N sheets within the harmonic
approximation. The calculated phonon &equencies of the
BC2N sheet are found to be similar to a superposition of
those of graphite and BN sheets. The major features of
the phonon modes for the BC2N sheet have similarities
to those of graphite and BN sheets at most wave vectors
in the Brillouin zone (BZ), but show a sharp contrast
along a particular line of wave vectors. In the rest of
this paper, we present the details of our calculations and
discussion.

II. CALCULATION

Within the harmonic approximation, the phonon fre-
quencies and polarizations are obtained by diagonalizing
the dynamical matrices given at each wave vector k by

D' p(k) = ) exp(ik. (~; —~j —K))
M;Mj

~ ~

x4'"p(~; —~j —R)

FIG. 1. Atomic structure of a hexagonal BC2N sheet. The
largest open circles denote B atoms while the smallest open
circles denote N atoms. The shaded circles denote C atoms.
The unit cell is denoted as a parallelogram, which is two times
larger than the unit cells of graphite and BN.
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Here 4'~ (w; —r. —R) denotes force constants and R de-
notes lattice vectors. Labels i and j denote the atoms in
the unit cell, while n and P denote the Cartesian coordi-
nates 2:, y, and z of the atomic displacement. Here, M;
and 7;. denote the mass and position of each atom in the
unit cell, respectively. In order to calculate the force con-
stants, supercell total-energy calculations are performed
within the &amework of the local-density approximation
with the use of pseudopotentials and plane wave basis
sets. For the nonlocal parts of the pseudopotentials, the
separable form is used. The force constants for each
atom are calculated by considering interactions up to sec-
ond neighbors, while more accurate phonon dispersions
of graphite sheets have been obtained by taking up to
fourth neighbors into account, which shows the best
Gt with the data of neutron diffraction. Despite some
detailed differences, the features of the phonon disper-
sions for a graphite sheet are similar in the experimental
data, the previous calculations, and our present cal-
culations. Supercells consisting of eight atoms are used to
calculate the force constants of graphite, BN, and BC2N
sheets. In the case of the graphite sheet, we have checked
that the changes of force constants are tiny when we cal-
culate them by using a supercell consisting of 24 atoms.
This change results in minor differences in phonon dis-
persion curves which will not change our present conclu-
sions. From this numerical experience, we believe that,
in order to compare the phonon spectra among graphite,
BN, and BC2N sheets, it is enough to take up to the sec-
ond neighbors for the force constants by using eight-atom
supercells. A cutoff energy of 50 Ry for the plane wave
basis sets is found to be sufhcient to obtain well converged
phonon kequencies. Prior to the calculations of the force
constants, the equilibrium geometries are obtained by re-
stricting the Hellmann-Feynman forces on each atom to
be less than 6x10 Ry/(a. u.). The stable geometries of
graphite and BN sheets are Bat while the BCqN sheet is
found to be slightly distorted. Force constants for all the
atoms are calculated by comparing Hellmann-Feynman
forces before and after the displacement of each atom
&om its equilibrium position. The amount of the dis-
placement is 0.05 a.u. for each direction along the the
x, y, and z axes. The symmetry relation of the force
constants

and

4'"p (7', —
~~

—R) = 4p' ( r; + ~j + R)—
~ ~ ~ ~4'")[S . (v', —r~ —R)] = S O'Jp(~; —r~ —R).S

The calculated highest phonon &equencies at the I'
point for the graphite and BN sheets are 1555 cm and

are found to be satisfied within an error of 1070 in most
components of the calculated force constants (Here S.
denotes a matrix for symmetry operation which keeps
the equilibrium geometry invariant. ) This error causes
an uncertainty in phonon &equencies of 30 cm in
the present calculations. The numerically obtained force
constants are symmetrized according to above relations.

III. R,ESULTS

FIG. 2. The first Brillouin zone of the BC2N sheet (inner
rectangle) related to the Brillouin zone for graphite and BN
sheets (outer hexagon). The vertical direction is parallel to
the vertical direction of Fig. 1, i.e., parallel to C-C and B-N
chains of the BCzN sheet. The high symmetry points are also
shove n.

1299 cm, respectively, which are reasonable when com-
pared to the corresponding experimental data of 1600
cm for bulk graphite and 1366 cm for bulk hexag-
onal BN. In both cases, these phonon modes are dou-
bly degenerate consisting of stretching and shear modes.
This is because of the threefold symmetry of graphite and
BN. The corresponding phonon modes at the I' point of
BC2N split into two frequencies due to the lack of this
syxnmetry, 1442 cm for the stretching mode and 1394
cm for the shear mode. This splitting would be a good
indicator for &equency measurement in BCqN, such as
Raman scattering or in&ared absorption.

We now present results for the phonon dispersion
curves. The unit cell of the BC2N sheet is two times
larger than those of the graphite and BN sheets, as can
be seen in Fig. 1. Hereafter, the unit cell of the BC2N
sheet is referred to as a 2x1 unit cell, while the unit
cells of graphite and BN sheets are referred to as 1x 1
unit cells. Figure 2 shows the first BZ of the 2xl unit
cell relative to the 1xl unit cells, and Fig. 3 shows the
phonon dispersion curves for graphite, BN, and BC2N
sheets along the symmetry lines of the 2x1 unit cell. For
the phonon dispersions of the graphite and BN sheets, the
folding of the Grst BZ of the 1x1 unit cell into that of
the 2xl unit cell is considered. The right lower panel of
Fig. 3 contains a superposition of the phonon &equencies
of graphite and BN sheets for comparison with a BC2N
sheet. Despite differences in detail, the gross features
of the phonon dispersion of the BC2N sheet is similar to
the superposition of those of the graphite and BN sheets.
The phonon dispersions along the lines J'-M and M-J in
the lower panels of Fig. 3 are easier to compare, since the
phonons on these lines remain unfolded. For the acoustic
modes of the BCqN sheet, the slopes seem to be almost
equal in the directions I'-J' and I'-J, which correspond
to the directions parallel and perpendicular to C-C and
8-N chains. Furthermore, the slopes in the direction of
I'-M are also the same as those before. From this re-
sult, the sound velocity in the BC2N sheet is expected to
be isotropic. The anisotropic atomic structure shown in
Fig. 1 makes most of the BC2N tubule have chiral prop-
erties. For example, chirality in the tubule conductivity
was previously predicted. On the other hand, the sound
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I IG. 3. Calculated phonon dispersion curves of graphite
and BN sheets (upper panels) and a BCqN sheet (lower left
panel). For comparison, a superposition of the curves of
graphite and BN is also shown in the right lower panel.

propagation along the tubule axis is expected not to have
chiral properties according to the present results.

Despite a difference in symmetry properties among
these sheets, phonon modes of the BC2N sheet at the
I' point are similar to those of the graphite and the BN
sheets at the I' and M points because of the zone fold-
ing. Away &om the I. points, the phonon modes of BC2N
can still be related to those of graphite and BN sheets.
Here we illustrate particular phonon modes of the BN
and BC2N sheets at the K point of the lxl unit cell.
(The corresponding point for the 2x1 unit cell is located
two thirds of the way from the I' point toward the J'
point of Fig. 2.) Figures 4 and 5 show phonon modes
of the BN and BC2N sheets, respectively. Corresponding
phonon frequencies lie in the same range, 1144 cm and
1014 cm for the BN sheet, and 1179 cm and 1114
cm for the BC2N sheet. The direction of the arrows
in Figs. 4 and 5 denotes the direction of the atomic dis-
placement, while lengths are magni6ed compared to the
atomic replacement. For the BN sheet, the phonon of
higher &equency is dominated by 8 vibration while the
phonon of lower frequency is dominated by N vibration.
This result is consistent with the heavier mass of the N
atom. Even with the atomic displacements, the system
still has threefold symmetry around the static sites. ~~

For the BC2N sheet, the phonon of higher &equency
is dominated by 8 and C vibrations while the phonon
of lower &equency is dominated by C and N vibrations
as shown in Fig. 5. This is also consistent with the
heavier reduced mass for the phonon of lower &equency.
An interesting point is that the system appears to have
threefold symmetry if we ignore the minor differences in

1014 crn '

FIG. 4. Snapshot for atomic motions in the BN sheet asso-
ciated with phonons at the K point with frequencies of 1144
cm ' (top) and 1013 cm (bottom). Arrows indicate the
directions of atomic displacements from the equilibrium po-
sitions. The larger hexagons drawn with thick broken lines
denote irreducible units of the atomic displacement. The di-
rections of the arrows change for a snapshot at a difFerent
time.

BC2N phonon mode ( K point )

1179 cm '

1114 cm '

FIG. 5. Snapshot for atomic motions in the BCqN sheet
associated with phonons at the K point with frequencies of
1179 cm (top) and 1114 cm (bottom). As in the case
of Fig. 4, the larger hexagons of thick broken lines denote
the irreducible units and the directions of the arrows will be
changed at a difFerent time.
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FIG. 6. Snapshot for atomic motions in the BCqN sheet
associated with phonons at the M point with frequencies of
1347 cm (top) and 1330 cm (bottom).

bend, so phonons of small diameter tubules of these
sheets should. have different features. On the other hand,
phonons of rather large diameter tubules are simply ob-
tained by the same zone-folding technique as in the case
of band structure calculations. The phonon &equencies
of graphitic sheets thus are also useful for identifying the
composition and structure of tubules by measuring vi-
brational &equencies.

Finally, we comment on the conductivity of the BC2N
tubules arising &om electron-phonon scattering in the
sheet. The BC2N sheet and tubules are semiconductors
so these have to be doped with either donors or acceptors
to obtain higher conductivity. In both doping cases, the
wave function of the carriers is found to be concentrated
only on C sites according to our recent calculations.
This result raises an interesting question as to whether
the electron-phonon coupling in a BC2N sheet is larger
than that in a graphite sheet. Recently, 3ishi, Dressel-
haus, and Dresselhaus estimated the relaxation time of
the carrier in carbon nanotubes to be almost 50 times
longer than that in copper. If the relaxation time of
the BC2N tubule is of comparable size, a remarkably
large current is expected for BC2N tubules. This cur-
rent may generate measurable magnetic fields since the
BC2N tubule is expected to have chiral conductivity.

IV. CONCLUDING REMARKS

the magnitude of atomic displacements. The obvious dif-
ference in this case is that the symmetry center here is
the center of each hexagon. (Of course, this displacement
does not exactly have threefold symmetry since the orig-
inal structure of the BC2N sheet lacks this symmetry ).
In the graphite sheet, the corresponding modes also ex-
ist. The center of the threefold symmetry is either the
atomic site or the center of each hexagon depending on
the &equencies. Even though the symmetry property of
the general phonon modes of the BC2N sheet is differ-
ent from those of graphite and BN sheets, the geomet-
ric features have relationships similar to the case which
we have illustrated above. However, in sharp contrast,
unique phonon modes of the BC~N sheet are found to
appear at wave vectors along the J'-M line of Fig. 2.
The corresponding 6gures of the atomic displacements
are shown in Fig. 6 associated with the phonon at the
M point with &equencies of 1347 cm and 1330 cm
In these vibrational modes, the coexistence of the dis-
placed atoms into two orthogonal directions, i.e., parallel
and perpendicular to C-C and B-N chains of the BC2N
sheet, is always observed, while such a mode is not seen
for the cases of the graphite and BN sheets.

The calculated phonons of the BC2N sheet show negli-
gible coupling between in-plane and. out-of-plane modes.
Meanwhile, the coupling will increase when the sheets

In summary, we have calculated. the phonon spectra
of graphitic sheets of carbon, BN, and BC2N within
the harmonic app."oximation using force constants deter-
mined. by ab initio supercell calculations. The calculated
phonon dispersions of the BC2N sheet can be expressed
approximately as a superposition of those of graphite
and BN sheets. The similarities and differences in the
geometric displacements of the phonon modes among
these graphitic sheets depend on the wave vector of the
phonons. The present results should be useful in identi-
fying graphitic compounds by measuring vibrational &e-
quencies and also useful in performing further investiga-
tion of electron-phonon coupling in these systems.

ACKNOWLEDGMENTS

This work was supported by National Science Founda-
tion Grant No. DMR91-20269 and by the Director, Of-
fice of Energy Research, Once of Basic Energy Sciences,
Materials Sciences Division of the U.S. Department of
Energy under Contact No. DE-AC03-76SF00098. Part
of the present calculations were done using the CRAY-
C90 computer at the San Diego Supercomputer Center.
Y.M. acknowledges support &om the Fundamental Re-
search Laboratories of NEC Corporation.

* Permanent address: Fundamental Research Laboratories,
NEC Corporation, 34 Miyukigaoka, Tsukuba 305, Japan.
K.M. Krishnan, Appl. Phys. Lett. 58, 1857 (1991).
J. Kouvetakis, T. Sasaki, C. Shen, R. Hagiwara, M. Lerner,

K.M. Krishnan, and N. Bartlett, Synth. Met. 34, 1 (1989).
X. Blase, A. Rubio, S.G. Louie, and M.L. Cohen, Phys.
Rev. B 51, 6868 (1994).
R.M. Wentzcovitch, M.L. Cohen, S.G. Louie, and D.



52 AB INITIO CALCULATION OF PHONON SPECTRA FOR. . . 14 975

Tomanek, Solid State Commun. 67, 515 (1988); D.
Tomanek, R.M. Wentzcovitch, S.G. Louie, and M.L. Co-
hen, Phys. Rev. B 37, 3134 (1988).
A.Y. Liu, R.M. Wentzcovitch, and M.L. Cohen, Phys. Rev.
B 39, 1760 (1988).
A. Rubio, J.L. Corkill, and M.L. Cohen, Phys. Rev. B 49,
5081 (1994); X. Blase, A. Rubio, S.G. Louie, and M.L.
Cohen, Europhys. Lett. 28, 335 (1994).
Y. Miyamoto, A. Rubio, M.L. Cohen, and S.G. Louie,
Phys. Rev. B 50, 4976 (1994); Y. Miyamoto, A. Rubio,
S.G. Louie, and M.L. Cohen, ibid. 50, 18360 (1994).
S. Iijima, Nature 354, 56 (1991).
O. Stephan, P.M. Ajayan, C. Colliex, Ph. Redlich, J.M.
Lambert, P. Bernier, and P. Lefin, Science 266, 1683
(1994); Z. Weng-Sich, K. Cherrey, N. G. Chopra, X. Blase,
Y. Miyamoto, A. Rubio, M.L. Cohen, S.G. Louie, A. Zettl,
and R. Gronsky, Phys. Rev. B 51, 11229 (1995).
N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett.
BS, 1579 (1992); M.S. Dresselhaus, G. Dresselhaus, and R.

Saito, Solid State Commun. 84, 201 (1992).
See, for example, C. Oshima, T. Aizawa, R. Souda, Y.
Ishizawa, and Y. Sumiyoshi, Solid State Commun. 65, 1601
(1988).
See, for example, R. Al-Jishi and G. Dresselhaus, Phys.
Rev. B 2B, 4514 (1982).
L. Pietronero, S. Strassler, and H.R. Zeller, Phys. Rev. B
22, 904 (1980).
R.A. Jishi, M.S. Dresselhaus, and G. Dresselhaus, Phys.
Rev. B 48, 11385 (1993).
L. Kleinman and D.M. Bylander, Phys. Rev. Lett. 48, 1425
(1982).
R.J. Nemanich, S.A. Solin, and R.M. Martin, Phys. Rev.
B 2$, 6348 (1981).
The BN sheet has another mode having threefold symmetry
with frequency of 1252 cm . In this case, the center of
symmetry is the center of each hexagon and all atoms are
moving.
Y. Miyamoto, S.G. Louie, and M.L. Cohen (unpublished).


