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Short-range correlation between electrons with antiparallel spins is considered for a two-dimensional
electron gas. A model for the effective electron-electron interaction is constructed using a pseudo-
linear-response treatment. This treatment rests on a parametric Thomas-Fermi-Weizsiacker approxima-
tion for screening. The parameter is constrained by the electronic cusp condition for the induced hole.
Comparison with results obtained by means of the ladder approximation for the effective interaction is
presented. A remarkable agreement for the pair-correlation functions at zero interparticle separation is

established.

In a paramagnetic electron gas, the pair distribution
function g (r) is an arithmetic average of the spin-parallel
distribution function g '"(#) and the spin-antiparallel one,
g ' (r). The only fixed rule for g(r) is that it may not be
negative, since it is a probability.! The spin-parallel dis-
tribution function vanishes at zero interparticle separa-
tion g '1(0)=0, due to the exclusion principle. Because
of this restriction, the function g”(r) at short distances
is little affected by inclusion of the electrostatic Coulomb
interaction. On the other hand, the interaction between
two electrons of antiparallel spins in the presence of a
filled Fermi sea plays a determining role in calculations of
g'4(0). In the Hartree-Fock approximation g''(0)=1,
deviations form this value signal the importance of corre-
lation effects in an interacting electron liquid.? This po-
larization is related to deviations from plane-wave states,
i.e., the wave function of two electrons with antiparallel
spins is deformed at small separations by the short-range
part of the effective potential.

The problem of g 'V at short distances is essentially the
two-particle-scattering problem in the medium. In the
standard diagrammatic approach, one calculates the
short-range part of the effective interaction by solving the
Bethe-Goldstone integral equation® within the ladder ap-
proximation. In this case, the effective interaction (the
particle-particle ladder vertex) satisfies an integral equa-
tion with bare Coulomb interparticle potential.*~¢ The
kernel of the integral equation contains the Fermi factors
that restrict the allowed states of a scattering pair in the
filled Fermi sea.

The long-range correlations in an electron system
reduce the Coulomb potential to a screened one. Using
the physically appealing picture of impurity (with charge
Z) screening, one can determine the induced hole and
thus g '4(0) within an effective mean-field approximation.
To our knowledge, such a treatment of the problem has
not been discussed for a two-dimensional (2D) electron
gas. Our basic framework is the Thomas-Fermi-
Weizsacker classical density-functional theory (TFW-A),
which relies directly on electron-density distributions and
does not involve explicit electronic wave functions. We
use Hartree atomic units throughout this report.

The energy functional of the TFW-A theory for a D-
dimensional electron gas with V(D,r) common one-body
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potential is the following:’
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where n is the density, A is the Weizsacker parameter,
and ¢rg is the Thomas-Fermi kinetic-energy density,
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By variational principle, E is stationary with respect to
small variation of the ground-state density, thus it is easy
to obtain the relevant Euler equation. Next, we linearize®
our Euler equation by using the n(D,r)=ny+06n(D,r)
and  &n(D,r)=21'nyw,(D,r)+O0(w}) expressions,
where n is the unperturbed host density in dimension D.
Finally, we arrive at the following equation for the deter-
mination of wy :
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We can solve Eq. (3) by Fourier transformation; the re-
sult reads

Vg
(Ag%/2)+P(D,ng)

w;(D,q)= V(D,q) . (4)

The one-body potential in our mean-field approximation
is specified as

V(D,q)=—v(D,q)[Z —8n(D,q)], 5)

in which v(D,q)=A(D)/qP? ! (here we exclude the
D =1 case; see Ref. 9) is the Fourier transform of the
Coulomb potential v (r)=1/r, and 4 (D) is given by

A(D)=2P"17P-D2r[(D —1)/2] .
By substituting Eq. (5) into Eq. (4) we obtain for the
(linear) density change 8n(D,q),
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Considering the short-range part (r—0) of Eq. (3) we i
can deduce _
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for the derivative of &n at the origin. E
From this step we restrict ourselves to the D =2 and +
Z =—1 (i.e., electron) case. The induced hole density at r
zero interparticle separation (» =0) is given by L
1 )
=0)= —— d ko) 2, . 8 . 1 L { 1 | ! 1
8n(2,r=0)=— fo 9 qdn(2,q) (8) 001

Introducing the variable a =(4mny/A), after straightfor-

ward integration one obtains [P(2,n,)=2wn, and
v(2,q)=2m/q] from Eq. (8) with Eq. (6),
__ 1 a |1 |, a’t4a 1
5n(2,0)= 27 3—a 2aln 2a + a VB
T -1 Qa
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in which a and B are the following:

a=[a+Va +(a/37]"A+[a —Va +(a/3)]'?,
B=a(6+a)/a .

From now on we keep Eq. (6) in view as the defining
expression of a pseudolinear response treatment. In such
a treatment, we transfer the problem of nonlinearity into
the determination of A, by using Egs. (7) and (9), via the
(representation-independent) electronic cusp condition'”

n'(D,r)

—_4Zp
n(D,r) r=0 (10)
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in which u is the two-body reduced mass; p=1 for
electron-electron interaction (Z =—1), and n(D,r)=n,
+86n(D,r) in our case. This condition is related to a gen-
eral property of Coulombic systems and prescribes the
proper derivative of configurational eigenfunctions or
densities at the singularity point » =0. For high density
of the system n(D,r)—ng, the parameter A tends to a
fixed value A—p~!. The spin-antiparallel distribution
function at zero interparticle separation is defined as fol-
lows:

gTH0)=1+202r=0) (an

ng

where ny=(mr?)"! is the host density and r, is the usual
density parameter.

In the following, we present results obtained for g T0)
as a function of r;. The solid curve in Fig. 1 is based on
our approximation. The small solid circles refer to Ref.
6, in which the standard diagrammatic approach was
used. By comparison we can establish a remarkable
agreement over a very broad range of the electron densi-

3 6 9 12 B B 2
& (au)

FIG. 1. Spin-antiparallel distribution function of a 2D elec-
tron gas at zero interparticle separation g '*(0), as a function of
the density parameter r;. The solid curve is the result of the
present calculation while the small solid circles are results of
Ref. 6, which is based on the diagrammatic method.

ty. An approximate solution of Ref. 6 is as follows:
ILx) |?
Io(x) ’

—;—T-L](x)——lLo(x)

go)= |1+ (12)

where x =(2V2r,)!/?, L, and L, are modified Struve
functions of order 0 and 1, I, and I, are modified Bessel

functions of the first kind of order O and 1, respectively.
For the very dilute limit (7;— o ), Eq. (12) gives
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In our formulation, the corresponding asymptotic result
is

g2
urg

in which B=(3V3/7)*?/8=0.27 and p=1 for
electron-electron interaction. Our asymptotic expression
gives accurate numerical values [in comparison with Eq.
(11)] for r,>2, in practice. It is worth mentioning that
without constraining the values of A (i.e., using only the
value of A=p ") the unmodified linear approximation re-
sults in g '4(0) <0 for r, = 0.73, which is unphysical.

In summary, we have calculated the spin-antiparallel
distribution function at zero interparticle separation for a
two-dimensional electron gas. We constructed a model
for the induced hole using the impurity concept, via a
pseudo-linear-response treatment based on a parametric
Thomas-Fermi-Weizsacker approximation. We applied a
general constraint to determine the free parameter of the
von Weizsacker term. Application of this nonperturba-
tive constraint in our model yields accurate values for
g'(0). The presented method might be useful to con-
struct reliable screening densities and effective one-body
scattering potentials for ions of different charge-sign
moving in a 2D electron gas. A recently developed
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theory of stopping power for two dimensions requires
these potentials as input quantities.!! Ideas of a similar
nature were successfully applied to various problems in
three dimensions also. !?
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