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Statistical error analysis of surface-structure parameters determined by
low-energy electron and positron diffraction: Data errors
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An error-analysis procedure that gives statistically significant error estimates for surface-structure pa-
rameters extracted from analyses of measured low-energy electron and positron diffraction (LEED and

LEPD) intensities is proposed. This procedure is applied to a surface-structure analysis of Cu(100) in

which experimental data are simulated by adding Gaussian-distributed random errors to the calculated
intensities for relaxed surface structures. Quantitative expressions for the variances in the surface-

structural parameters are given and shown to obey the expected scaling laws for Gaussian errors in the
experimental data. The procedure is shown to describe rigorously parameter errors in the limit that the
errors in the measured intensities are described by uncorrelated Gaussian statistics. The analysis is valid

for structure determinations that are of sufficient quality to admit errors that have magnitudes within the
region of convergence of a linear theory that relates perturbations of diffracted intensities to perturba-
tions in structural parameters. It is compared with previously proposed error-estimation techniques
used in LEED, LEPD, and x-ray intensity analyses.

I. INTRODUCTION

In this paper, we develop and apply a methodology to
obtain statistically significant error estimates for surface-
structural parameters extracted from dynamical analyses
of low-energy electron or positron diffraction (LEED)
and LEPD) intensities. This methodology is based on ap-
plying techniques, which are well known in discrete in-
verse theory, ' to the determination of surface structures
by LEED and LEPD. We confine our attention to un-
certainties in the structural parameters caused by random
errors in the measured intensities, primarily because the
analysis is greatly simplified in this case yet affords con-
siderable insight.

Our effort on this problem is motivated by the
conAuence of three factors. First, in our prior compar-
isons of LEED and LEPD structure analyses for
GaAs(110) and InP(110), it became evident that current
approaches to the estimation of errors in the resulting
structural parameters fail to account satisfactorily for
systematic differences between electron and positron
diffraction. Second, other similar cases have occurred in
the literature in which LEED yielded structures different
from those obtained using other techniques ' or different
LEED analyses of the same system ' yielded different
structures. Taken together with the current trend toward
determining complex structures exhibiting small atomic
displacements from a reference geometry, these observa-
tions suggest that a closer examination of error estimates
in LEED and LEPD intensity analyses would be produc-
tive. Third and finally, mathematical techniques adapted
for error analyses in inverse problems have been
developed in a variety of contexts' and offer promise for
surface crystallography as well. Therefore, we have both
the motivation and the means for another look at this old
problem.

We proceed in three steps. In Sec. II, we define the
analysis methodology. In Sec. III, this methodology is
applied to two model problems on Cu(110) to show how
it works in practice. Section IV is devoted to its compar-
ison with other methods described in the literature. We
close with a synopsis.

II. ANALYSIS PROCEDURE

Consider the extraction of one or more surface-
structural parameters in a case in which the only errors
are those due to random statistical Auctuations in the
measured intensities (due, e.g. , to Poisson statistics of a
digital electron or positron detector '"). The geometry
of a LEED or LEPD experiment' ' is illustrated
schematically in Fig. 1. An incident beam with momen-
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FIG. 1. Schematic diagram of LEED or LEPD experimental
in which 0 is the incident polar angle, @ the incident azimuthal
angle, E the energy, and g(hk) the reciprocal vectors of the
two-dimensional surface bravais net. In general, the plane
defined by the surface normal and the exit beam differs from
that defined by the surface norma1 and the incident beam.
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turn parallel to the surface of

k~~=k„i+k j,
k =k (E) sin8 cosN,

k~ =k (E) sin8sin@,

k (E)=2mE/fi

is diffracted into a series of beams

kii(hk) kii+ g(hk)

(la)

(lb)

(lc)

(1cl)

variables characterized by a Gaussian distribution, with
zero mean value, over a finite grid of values {h, k, 8;, 4;,
E; j. If the data set is sufficiently large (has sufficient sen-
sitivity to the structural parameters) as to lead to parame-
ter estimates whose errors are within the convergence re-
gion of a linear LEED theory, then the estimates of the
structural parameters, {a;j, themselves form Gaussian
distributions, with means and variances which are deter-
mined by the statistics that characterize the Gaussian in-
tensity errors. The probability distribution for an esti-
mate, a„„ofa single structural parameter is thus

in which g(hk) are the reciprocal-lattice vectors of the
surface Bravais net. E designates the energy of the in-
cident electron (positron); m is its mass; and fi is Planck's
constant. Only beams with real values of

P(a„,)=[(2m.)' o] 'exp[ —(a„,—(a)) /2cT ], (Sa)

(a ) = JaP(a)da,

and o. is its variance

(5b)

in which ( a ) is the mean of the Gaussian distribution,

emerge from the crystal: a condition which restricts the
values of (hk) in Eq. (2a) to those which satisfy o. = a„,—a P ada. (Sc)

2k(~.g(hk)+g (hk) &2mE cos 8/iri~ . (2c)

Typically the diffracted beams either disappear or be-
come sensitive primarily to bulk properties for

E&E -300 eV .

Thus, the total body of intensity data available for
surface-structure determination consists of the intensities
of all of the allowed [from Eq. (2c)] (hk) beams as func-
tions of E, 0, and @ for E (E, i.e.,

{I„„(E,8, C ), 8&m, 4&2~,E .&E j . (4)

Surface structures are determined by comparing these
data with model calculations in which the structural pa-
rameters of the uppermost few atomic layers are treated
as adjustable parameters to be extracted from fitting a
selected sample of the potentially available database
defined by (4). This fitting is typically done using a relia-
bility ("R") factor to define an optimal
geometry ' ' " (associated with the minimum value
of R). Many different R factors have been introduced in
the literature. ' ' Use of these R factors has been
motivated by various rationales (e.g., analogy with x-ray-
diffraction, ecpnpmy, ' the nature pf the thepry pf
electron diffraction, ' ' etc.). These R factors have not,
however, been selected on the basis of a systematic sta-
tistical consideration of the consequences of errors in the
input data and models on the values extracted for the
structural parameters. Our goal in this section is to uti-
lize discrete inverse theory' to define an R factor whose
minimum value and curvature about that minimum
specify precisely the "best" estimates of the structural pa-
rameters and the uncertainties therein obtained, by vary-
ing these parameters to achieve the best fit to a selected
sample of the potentially available measured intensities.

The basis for our calculation is the analysis by Menke'
of a model in which the theory of LEED (LEPD) is per-
fect, all parameters in the model, except the identified
structural parameters, are known exactly, and the errors
in the measured intensities, Ii,J, ( 8, @, E), are random

In the case of multiple structural parameters (ad-
dressed more fully below), the parameter error distribu-
tions are correlated and are described by a multivariate
Gaussian distribution, whose complete specification re-
quires not only variance, but also covariance information.
Estimation theory provides a general expression for the
parameter estimation error covariance in terms of the co-
variance of the intensity errors. Knowledge of the pa-
rameter variances, o.;, allows the assignment of
confidence levels to parameter ranges around specific esti-
mates. An estimated value, a; „„of the parameter
represented by a; obtained from a given analysis will lie
within cT; of the mean (a;) of the distribution with
probability 0.68 and within +2o.; of the mean with prob-
ability 0.95. Thus, if the measurement error distribution
is unbiased (has mean 0), one can expect with 95%
confidence that the true value of the parameter whose es-
timate is a;„, will lie within the interval a;es, +2o.;.
Hence, the analysis produces a statistically significant
measure of the deviation of estimated values from true
values.

In the case in which intensity errors can be described
as uncorrelated and of constant variance, estimates of the
variances o.; as well as estimates of the parameters can be
determined directly from the fitting procedure if the
proper R factor is utilized to compare the measured and
calculated intensities. ' The analysis proceeds by defining
the Gaussian statistics R factor, R, via

R (a)= g g g[Ii', i, (a) If p], —(6a)
X —M

Ii', i, (a)=Ii', i,(8, @,E;, a),
If,„" =If,„" (8, 4, E, ),

(6b)

(6c)

in which we utilize N to indicate the total number of data
points in the sums, M to indicate the number of parame-
ters being estimated, a= {8, @ j to specify the grid of
incident-beam directional parameters, (hk) to specify the
beam indices for a given incident-beam direction, and E;
to specify the energy grid along the diffracted beams for a
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F=N —M —1, (7b)

in which we have introduced the required normalization
constant c. This constant is determined by minimizing
R with respect to it, giving

c =Ci/C2,

Ci = Q [Ikk(O, C,E;,a)Ihk (8, N, E, )]
a, hk, i

(7c)

(7d)

C2= g [Ikk(8, N, E;, a)] (7e)
aihk, i

Equations (7) define the "Gaussian error" R factor, R,
and thus specify our criterion for comparing calculated
intensities Ikk(a) with experimental ones Ikk when select-
ing structural parameters. The R minimizing parameter
values, Q, , are the least-squares solution to the parameter
estimation problem by virtue of the sum of squares form
ofR .

In the vicinity of the R-factor minimum, the R factor
can be expressed as a second-order Taylor expansion
about R p. Since the first derivative at the minimum is
zero, the R factor expansion appears as

d Rg
R (a)=R 0+(a —a„,)—

Q p
(Sa)

if the structural refinement involves only one variable pa-
rameter. If, furthermore, the errors in the various intensi-
ty data points are uncorrelated and of constant variance,
and Eq. (7) is used to define R, then the parameter es-
timation variance (Ref. 1, pp. 58 —60) is

given set of [a, (hk)j parameters. The estimates a are
the values that minimize R (a) and the variance is ob-
tained from the minimum value of R (a) and the second
partial derivatives evaluated at the minimum.

If the theory predicted the absolute normalization of
the intensities, then Eqs. (6) would suffice, but such is not
the case. Thus, Eq. (6a) is replaced by

Rs(a, c)=—y y y[cI,'k(a) Ikk—]',=1
a hk i

20, dR
C7

dQ2 0

where o., is the variance of the zero-mean Gaussian dis-
tribution of errors in the measured intensities, the deriva-
tive is evaluated at the minimum-R structure, and F, the
number of degrees of freedom in the theory/data fit, is
the denominator in R . For constant variance data, R
at its minimum (R 0) is itself a random variable with a y
distribution, F degrees of freedom, mean o.„and variance
20, While R 0 assumes different values when calculated
using different data sets, for a sufficiently large number of
data points of moderate variance, the mean of Rgp is well
approximated by a given realization. Hence,

2O., =R 0, (10)

and Eq. (Sb) follows. The R-factor curve thus yields not
only an estimate, a„„ofthe structural parameter a (the
minimum-R structure), but also the sensitivity informa-
tion necessary to characterize the accuracy of the esti-
mate.

As noted above, when multiple structural variables
a j, . . . Q& are to be extracted from the analysis of LEED
or LEPD intensities, the estimates are correlated. The
multivariable Gaussian distribution that describes the pa-
rameter estimates

cov aP (a) = exp[ —
—,'(a —(a) ) (cov a)

)
N/2

X(a—(a))],
T= (al a2 ' ' N)

(1 la)

(1 lb)

where a is a column vector consisting of the X structural
variables. Equations (8) become

is expressed in terms of the error covariance matrix, ele-
ments of which are defined as

[cov a];.= f dai. . . fdaN[a; —&a; &][aj—&a &]P(a),

(1 lc)

0 (Sb)

l BR
R (a)=R 0+[a—a„,] — [a—a„,],est 2 ~ 2 est

and

(12a)

where the subscript 0 is used to indicate evaluation of R
or of its second derivative at the value of Q which mini-
mizes R . The quadratic form of the R-factor surface
[Eq. (8a)] in the vicinity of the minimum follows from the
assumption of a linear theory [in the case of LEED, a
first order perturbation theory (e.g. , the linear tensor
LEED approximation ) relating intensity variations to
the parameter variations], and the extent of the quadratic
region corresponds to the con'vergence region of the
linear theory around the R-factor minimizing structure.
Equation (8b) follows from the single variable version of
Menke's Eq. (3.52), which (with FR substituted for
Menke's E) is

(12b)

BR
aa2

a'R,
BQ&

8 Rg

BQ~BQ i

BR BR

(12c)

2R 0 BRg
[cov a)=

Ba2 p

where the bracketed derivatives of R are a matrix of
partial second derivatives, known as the Hessian matrix,
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The analysis proceeds by finding an approximate
minimum of the R surface and then evaluating the par-
tial derivatives by fitting R factors for a grid of nearby
structures to a quadratic form similar to that in Eq. (12a).
The structure corresponding to the exact minimum of the
R-factor function is determined, and the partial second
derivative matrix is inverted to find [cov a] via Eq. (12b).
The diagonal elements of the covariance matrix [defined
by Eq. (11c)]are the variances, o „,of the individual pa-
rameter estimates. The square root of a particular diago-
nal element is the standard deviation, o.„., of the estimate
of the corresponding parameter. While the o.„. indicate
the size of the errors in the individual parameter esti-
mates, the off-diagonal elements of the covariance matrix
specify the level of correlation among errors in estimates
of pairs of parameters. In the single variable parameter
estimation problem, the standard deviation of the param-
eter estimate is determined by the scalar curvature of the
R-factor function. Equation (12b) indicates that, unless
the Hessian matrix is diagonal, the standard deviation of
a particular parameter estimate in the multivariable es-
timation problem depends upon many elements of the
Hessian matrix.

Appendix A presents the derivation of Eqs. (12) as an
application of standard estimation theory results for co-
variance mapping. Appendix B describes the procedure
for calculating partial derivatives of the R factor by
fitting the R-factor surface to the appropriate form.
These two Appendixes provide, therefore, the derivation
of the equations used in the numerical analyses described
in subsequent sections.

III. APPLICATION TO Cu(100)

A. Generation of simulated experimental intensities

To provide an illustrative example of the consequences
of the analysis set forth in Sec. II, we consider a case
which we and others, ' ' previously have ana-
lyzed: Cu(100). For a selected structure, we generate
"experimental" intensities by adding to the calculated in-
tensities for that structure random Gaussian errors,
e =Ioeo, with standard deviation o., =Ioo-o at each ener-

gy and angle. eo is a Gaussianly distributed random vari-
able with zero mean and variance 0.0, and Io is a normali-
zation constant expressed in terms of the average of the
calculated intensities. We describe our simulated data in
terms of the standard deviation of its errors expressed as
a fraction of the average intensity, I„.

The calculated intensities were generated using our
current version of the Duke-Laramore-Beeby angular-
momentum-representation multiple-scattering pro-
grams. The potential for Cu is taken to be a self-
consistent nonrelativistic potential, ' which is reduced to
muffin-tin form by overlap of nearest-neighbor potentials.
The resulting muffin-tin radius is rMT=1. 278 A, and the
muffin potential is VMT = 11.86 eV. Slater exchange
(a= 1) is used to describe the scattering of the low-
energy electrons from the charge density inside the
muffin-tin radius. Vibrations of the Cu ion cores are de-
scribed using a Debye model with OD =330 K, T=298
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FIT&. 2. Simulated experimental diffracted intensities for elec-
trons normally incident on Cu(100) for Io =0 (lower curve), 0.1

I, (center curve), and 0.5 I,„(top curve). Panel (a): (01) beam;
Panel (b): (02) beam; Panel (c): (22) beam.

K, and complex phase shifts. ' Six phase shifts are
used to calculate the diffracted intensities from a ten-
layer slab of Cu. Scattering from the top six layers of the
slab is treated exactly and that from deeper layers in a
layer-by-layer fashion. Io is in units of the average
diffracted intensity over all angles and energies, I,„. The
eo are generated via the random number generator in the
NAG library.

To emulate a practical structure analysis, ' ' we cal-
culated the difFracted intensities of the (01), (11), (02),
(12), (21), (22), (03), and (13) beams in the energy range
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50 ~E ~ 250 eV at 2-eV intervals for normally incident
electrons. For these electrons, symmetry greatly reduces
the number of independent beams [e.g. , the (01), (10),
(01), and (10) are equivalent], to those noted above over
this energy range. The specular beam was removed from
the data sample to emulate the analysis procedure used
by Davis and Noonan. In panels (a) —(c) of Fig. 2, we
show simulated experimental intensities for a strong
[(01)], moderate [(02)], and weak [(22)] beam, respective-
ly, in the case that the top layer spacing is contracted by
2% (to di2 = 1.771 35 A) relative to the bulk interlayer
spacing of do = 1.80 750 A. Within each panel are simu-
lated intensities with error levels o., =0, 0. 1I„, and
0.5I,„. It is evident that the fine details in the intensity
profiles are obscured by the noise of variance
cr, =(0.1I,„) and that noise of variance o, =(0.5I„)
obliterates even the shapes of the weaker beams. Thus,
we see from the figures that visual comparison between
calculated and measured intensities becomes of marginal
utility for noise levels in the range 0. 1I„~o., ~0.5I„.
The visible impact of the added Gaussian noise scales
roughly as o.„with the results for o., =0.1I„ in Fig. 2
being not unreasonable values for typical experimental
data.

3 2+ f'
2' 3

(13a)

r =y(r(hk)EE/, /, )
hk hk

(13b)

B. Single-parameter analysis: Contracted top-layer spacing

To generate a single-parameter analysis, we consider
the situation in which only the top layer spacing, d &2, for
Cu(100) deviates from its bulk value. The independent
structural variables for Cu(100) are illustrated in Fig. 3.
Simulated experimental data were generated for
0 i2 =0.984' = 1.771 35 A and then were fit using the en-
tire eight-beam database for 50 + E + 250 eV by varying
the value of d&2 used to calculate the theoretical intensi-
ties, I'".

We performed a structure analysis using the simulated
experimental data using three R factors: R given by
Eqs. (7), the x-ray R factor, ' R„, and the global x-ray R
factor, "R x&. The x-ray R factor is defined by'

r (hk) =g[c (hk)I/', /, (E; ) I—/', /", (E; )] +[I/', /","(E;)]

(13c)

c (hk) =+I/', /, (E,. )I/', /", ~(E, ) +[I/', /, (E; )] (13d)

c =+DE/, /, +I/~(E;)I/', /", (E, ) QAE/, /, +[I/', /, (E, )]
hk 1 hk

(14)

for all of the beams, rather than a beam-by-beam normal-
ization. Plots of these three R factors versus d]2 for the
case that o, =0.1I,„are shown in Fig. 4. The associated
values of diz(min) and, for Rs, cr(d&2) from Eq. (8b), are
given in Tables I and II, each of which has entries de-
rived using a different prescription for construction of the
noise in the simulated measured intensities. It is evident
from the tables that the extracted values of d &z(min) are
comfortably within the calculated 95% confidence limit.
All of the d&2 estimates based on global R factors are
within the 68% confidence limit. We show in Fig. 5 the
comparison between the Gaussian best fit and simulated
experimental data for o., =0.1I„.The calculated profiles
reproduce the noise free profiles in Fig. 2 to within visual
accuracy.

Several checks were made to confirm the validity of the
analysis. The minimum value, R o, of R was compared
with the variance of the data noise in order to confirm its

TABLE I. Values of d» and its standard deviation predicted
by quadratic minimization of various r factors. The "experi-
mental" data were constructed by adding noise of variance o,
to intensities calculated for a Cu(100) structure with

0

d» =1.771 35 A. The four noise profiles were generated from a
single set of Gaussian errors scaled to the indicated variance
levels.

0.05 I„0.10 I,„0.25 I„0.50 I,„

in which n is the number of beams used in the analysis
and bE/, /, is the energy range over which intensities are
measured for the (hk) beam. The global x-ray R factor,
Rxo, is defined" by Eqs. (13a)—(13c), but using the same
normalization constant,

sk (F00)

~ W
Ik

d12
Jk

d23

(011)

FIG. 3. Illustration of the definition of the independent
surface-structure parameters for a relaxed Cu(100) surface.
These are the interlayer spacings d;J between the ith and jth lay-
ers. i = 1 designates the top layer.

dl2 from R
d» from RxG
d» from R
od from Rg»
d» from Rg (01)

from Rg ( 1 1)

d» from Rg (02)
d» from Rg (12)
d» from Rg (22)
d» from Rg (03)
dl2 from Rg (13)
d» from Rg (21)
Mean d» from Rg (hk)
o.z from Rg (Ak)»

1.7709
1.7713
1.7714
0.0004

1.7708
1.7714
1.7742
1.7740
1.7723
1.7601
1.7699
1.7698
1.7703
0.0045

1.7705
1.7713
1.7715
0.0007

1.7702
1.7715
1.7768
1.7768
1.7757
1.7534
1.7700
1.7680
1.7703
0.0076

1.7699
1.7719
1.7718
0.0018

1.7685
1.7717
1.7841
1.7858
1.7671
1.7516
1.7500
1.7613
1.7675
0.0133

1.7693
1.7740
1.7723
0.0035

1.7657
1.7721
1.7935
1.8112
1.7690
1.7267
1.7720
1.7433
1.7692
0.0264
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2.760x10

2.755X10

2.750x10

2.745x1Q

2.740x10
W

2.735x10
1.7700

I, I 1

1.7705 1.7710 1.7715 1.7720

1.2590x10

suitability as a substitute for o, [Eq. (10)] in the deriva-
tion of the covariance expression, Eq. (Sb). R~o was
found to be within 10%%uo of the variance of the data noise
in all cases. It also is useful to check the scaling of the re-
sults with the variance of the data errors. From Eq. (9)
[and Eq. (A10) in Appendix A], we expect o (d, 2) to
scale linearly with o., for a constant number of data
points. Two sets of calculations were performed to test
this hypothesis. The first set of structure searches was
performed using four simulated data sets, each of which
was generated using intensity errors derived from a single
random Gaussian intensity error profile scaled to the

from R
d12 from Rxa
d12 from Rg
hard from Rg12

d12 from Rg (01)
d» from Rg (11}
d» from Rg (02)
d12 from Rg (12}
d12 from Rg (22)
d, from R (03)
d, 2 from Rg (13}
d12 from Rg (21)
Mean d» from Rg (hk)
a d from Rg (hk)

12

1.7711
1.7713
1.7714
0.0002

1.7711
1.7714
1.7728
1.7727
1.7717
1.7647
1.7698
1.7706
1.7706
0.0026

1.7709
1.7713
1.7714
0.0004

1.7708
1.7714
1.7742
1.7740
1.7723
1.7600
1.7?00
1.7698
1.7703
0.0045

1.7702
1.7714
1.7717
0.0012

1.7694
1.7716
1.7801
1.7807
1.7557
1.7498
1.7697
1.7653
1.7678
0.0108

1.7699
1.7719
1.7718
0.0018

1.7685
1.7717
1.7841
1.7858
1.7671
1.7516
1.7500
1.7613
1.7675
0.0133

desired level. The calculated parameter variances,
o (d,2), are shown in Panel (a) of Fig. 6 opposite the scal-
ing levels, Io (Io in units of average intensity). The
second set of searches was performed using simulated
data sets each of which was generated from separate ran-
dom Gaussian error profiles with variances o~. The cal-

TABLE II. Values of d» and its standard deviation predict-
ed by quadratic minimization of various r factors. The "experi-
mental" data were constructed by adding noise of variance o.,
to intensities calculated for a Cu(100) structure with

O

d» = 1.771 35 A. Each of the four noise profiles was generated
using a different set of random Gaussian errors.

0.025 I,„0.05 I,„0.17 I„0.25 I,„

1.2585x10

~ 1.2580x10
(01) BEA

1.2575x10

1.2570x10
1.7700

1.3255x10

1.3250x10

~ 1.3245x10

i

1.7705 1.771 Q

12,J
1.7715 1.772Q

0

O

V)

&D

C

(02) SEAM

1.3240x10 (22) BEAM

1.3235x1Q
1 .7700

I . I

1.?7Q5 1.771 Q

d12,J
1.7715 1.772Q

FIG. 4. Plots of R factors versus the independent structural
parameter d» for the experimental data simulated using
d12 = 1 ~ 771 35 A 0 p= 0.1I ~ Panel (a): Rg, d12(min) = 1.7715;
Panel (b): R,d»(min) =1.7705 A; Panel (c}: R«, d»(min)
=1.7713 A.

I I I I I I I I I I I I I I I I l t I I I I I I I I I I

50 100 150 200 250 300
Energy(eV)

FIG. 5. Comparison of the Gaussian best-fit and simulated
experimental intensity profiles for o-p =0. 1I,„.
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1.5x10

1,0x10

5.0x10

I

0.2
I

0.4 0.6 0.8

(~./I.„)'
1.0 1.2

4x10

2x]0
b

I

0. 1

2
V0

I

0.2 0.3

FIG. 6. Scaling of o. (d» ) with o, . Panel (a): Errors used to
construct simulated data for each noise level were generated by
scaling a single random noise profile of variance (0.5); Panel (b):
Each simulated data set was generated from a different random
noise profile of variance, a.o,

' the random error was scaled by
Io =0.5I,„.

of the data (i.e., the individual beams) yield the same
values for the structural parameters. Performing this
analysis for data sets with a broad range of noise levels
gives the results presented in the lower rows of Tables I
and II. The sampling uncertainties o'(d&2) for these
cases are the estimated standard deviations of the corre-
sponding Gaussian distributions given in the last row of
each table. It is clear from the tables that this estimation
procedure generates less accurate estimates and
significantly larger variances than use of the global es-
timation procedures based on Rg or RXG. The sampling
estimates appear to be sensitive to large deviations ob-
tained from a few beams. For our calculations, much of
the variance results from the (03), (13), and (12) beams. It
should be of little surprise that the I ( V) profiles of a few
individual beams may have low sensitivity to particular
parameters, and that the R-factor surface for a single
beam might display multiple minima and assume its
lowest value at a structure, which is well removed from
the global minimum of the multibeam R factor. It is
more plausible to view large differences between single-
beam structures as a measure of the spacing between lo-
cal minima than as a measure of uncertainty in the pa-
rameters determined by a proper optimization. Issues re-
lated to the low sensitivity of single-beam I( V) data to
particular parameters can be expected to be of even
greater concern in multiparameter structure problems.
The large sampling errors and erroneous standard devia-
tions displayed in the last two rows of Tables I and II can
be presumed to be modest, relative to what is likely to be
observed when the sampling method is applied to more
complex problems.

C. Two parameter analysis: Double-layer relaxation

culated parameter variances are shown in Panel (b) of
Fig. 6. Both sets of calculations demonstrate the linear
scaling of the parameter variance with the data error
variance. Furthermore, from Table I, we see that with
increasing data variance the uncertainty, ad, in the pa-

12

rameter estimate (i.e., of d&2 calculated by minimizing

Rg ), grows in proportion with o, . Moreover, it is of in-
terest that at moderate data error levels both of the glo-
bal R factors, R and RXG, give more accurate values of
d, 2 than does the beam-by-beam normalized R factor,
R . It is evident from Fig. 2, Fig. 5, and Tables I and II
that accurate structural parameters can be extracted
from simulated measured intensities that appear extreme-
ly noisy if the noise is uncorrelated and has a Gaussian
distribution.

A common ' ' ' method of estimating uncertainties
in structural parameters for relaxed metal surfaces is to
determine parameter values from each beam indepen-
dently and to interpret the variance of the beam-specific
parameter estimates as a measure of the uncertainty in
the selected value. We refer to these calculations as esti-
mates of the sampling uncertainties, because they mea-
sure the extent to which presumably independent samples

Cu(100) is believed to exhibit at least a double-layer
surface relaxation. The two analyses thereof ' yield re-
sults for these relaxations which differ, however, by more
than the errors quoted by one of the two groups of au-
thors. If we write

Ad &2
= 0.0199 A+0. 0072 A

hi~3=+0. 0307 A+0.0108 A

whereas Mayer et al. ' give

d 12 0.0380 A+0.0307 A,
Ad23 =+0.0081 A+0.0307 A .

(16a)

(16b)

(17a)

(17b)

The generous error estimates of Mayer et al. render the
two analyses marginally compatible. We thought it of in-
terest, however, to repeat the structure analysis using a
procedure equivalent to that of Noonan and Davis to
determine if there exists a level of random noise at which
the two analyses became compatible. If such were the

dIJ =dg +AdIJ.

to describe the actual layer spacings, we can specify the
two sets of results in terms of Ad; . Davis and Noonan '

give
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TABLE III. Interlayer spacings predicted by a two-
dimensional downhill simplex, with the range of the final sim-

0
plex & 0.002 A in each dimension.

Structure 0 0.05 I,„0.25 I„0.5 I„

case, then uncertainties in the experimental LEED inten-
sities could account for the deviations between the two
groups' results. If not, these deviations must result from
systematic errors associated, e.g. , with the construction
of the model of the diffraction process. Thus, for each of
the structures given by Eqs. (16) and (17), we generated
simulated measured intensities as before for a range of
values of o.„0.05I„~cr, ~0.5I„.

A two part search was used to locate the R factor
minimizing structure for each simulated data set. Ap-
proximate structures were located using a simplex algo-
rithm. These structures are shown in Table III. Subse-
quently, the minimum of each Rg surface was located by
fitting a set of R values corresponding to a grid of
d &z, 823 values to a quadratic form and analytically deter-
mining the structure which corresponded to the R
minimum. (See Appendix B.) These structures are
shown in Table IV. Also included in the table are the
square roots of elements of the covariance matrices.
Square roots (o ) of the variances (o ) in the estimates of
d, 2 and dz3 are labeled as o,2 and o 23', the square root of
the off-diagonal matrix element, which describes the
correlation of uncertainties in estimates of d i2 and d23, is
labeled as o.

&2 p3.
The parameter estimation errors (i.e., the deviations

between the estimated and input values) again are small,
even for noise levels which appear to be quite large.
These errors scale with the standard deviation of the
measurement noise as do the elements of the covariance
matrices. The errors in estimating d23 are approximately
5 times as great as those in d i2. Moreover, the d23 uncer-
tainty variances are approximately 2.5 times the size of
the d&2 variances. The quadratically extrapolated best fit

structures are slightly outside the 95% confidence inter-
vals around the input structure, although the estimated
di2 values are themselves well within the 95% intervals
around the input value of d, z. Cross terms in the covari-
ance matrices identify correlation between the uncertain-
ties in the first and second interlayer spacings. It is these
correlations that explain the larger size of the errors in
d ]2 that occur when d&3 is allowed to vary. The d &z vari-
ances can also be seen to be larger when d23 is identified
as an unknown structural parameter than when dz3 is as-
sumed to be known.

The estimation errors and covariances calculated here
indicate that the presence of uncorrelated Gaussian mea-
surement noise does not suf5ce to explain the differences
between the structures determined by Davis and Noonan
and by Mayer et al. Correlated measurement errors

TABLE IV. Values of d» and d23, which minimize Rg and
their standard deviations obtained from the covariance matrix.

Structure 0 0.05 I,„0.25 I„0.5 I„
Davis % Noonan d» (A) 1.7876

d23 (A) 1.8382
OI2(A)
cr23 (A)

&2, 23 (A)
d)2 (A) 1.7695
d23 (A) 1.8156
, 2 (A)
o» (A)

12, 23

1.7880
1.8262
0.0004
0.0010
0.0004
1.7699
1.8139
0.0004
0.0010
0.0004

1.7899
1.8265
0.0020
0.0049
0.0021
1.7718
1.8048
0.0020
0.0048
0.0021

1.7923
1.8145
0.0041
0.0100
0.0045
1.7738
1.7944
0.0041
0.0094
0.0043

and/or deficiencies in the model are likely explanations
for the discrepancy between the two structures. The
small data set at off-normal incidence of Mayer et al.
presumably interacted with model deficiencies differently
than did the large data set at normal incidence of Davis
and Noonan. In addition, the structural estimate of
Davis and Noonan is an average of structural estimates
calculated from single beam data sets. As single-beam
data sets have di%culty selecting the best among local R-
factor minima, equivalent beam estimates often have
large correlated errors which displace the average struc-
ture from the global R-factor minimum.

IV. DISCUSSION

Quantitative error analysis is a complex topic. '
Many variants exist in various specialties associated with
the structure determination of solids, especially X-ray
diffraction ' ' and LEED. Our purpose in this sec-
tion is to provide a compact overview of the essential in-

gredients of these methods and to compare them to the
one proposed above.

To achieve this goal, the section is organized into four
parts. In Sec. IVA, we sketch the derivation of the
present method from the dual assumptions of linearity of
outputs (intensity variations) with inputs (structural pa-
rameter variations) and of uncorrelated Gaussian noise in

the measurement of the intensities as the sole source of
uncertainty in the analysis. This subsection provides the
concepts and nomenclature needed to compare our
method with others. In Sec. IVB, we note that the
present methodology is remarkably similar, but not iden-
tical, to several others, including a few commonly used to
analyze LEED intensity data. In Sec. IVC, we expand
our scope to include those analyses used in x-ray crystal-
lography and in certain heuristic analyses of LEED in-

tensities. Then, having developed the requisite concepts
and mathematics in Secs. IV A —IV C, in Sec. IV D we

give a concise comparison of our methodology with oth-
ers commonly used in LEED. Presentation of the essen-
tial requisite details is relegated to the appendixes.

Mayer et al.

Davis and Noonan d» (A)
d23 (A)
dl2 (A)
d23 (A)

1.7876 1.7879
1.8382 1.8294
1.7695 1.7683
1.8156 1.8241

1.7899 1.7923
1.8228 1.8145
1.7697 1.7690
1.8236 1.8236

A. Derivation of the methodology

In this subsection, we indicate how the twin assump-
tions of linearity and uncorrelated Gaussian measure-
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[IexP cIth(a) ]T[IexP cI (a) ]
1

(18)

rather than by direct inversion. The normalization fac-
tor, F (equal to the number of data points less the number
of parameters being estimated including a scale factor), is
selected so as to make R a measure of the mean-square
deviation of the theory/data intensity difference. The pa-
rameter error covariance is related to the covariance of
the data residuals, d, via'

[cov a]=M[cov d]M (19)

In the case of uncorrelated measurement errors of con-
stant variance, [cov d] is a diagonal matrix of equal ma-
trix elements o., and Eq. (19) becomes

[cov a]=cr, [G G] (20)

Within the region of parameter space where the data re-
sidual d is linearly related to parameter variations
(d =Gm, m =a —ao), Rg(a) can be represented as a
second-order Taylor series expansion about its minimum
R (ao),

BR
R (a) =R (ao)+ [a —ao] — [a —ao],

BR p

(21)

and the jk elements of the Hessian matrix, 9 R /Ba,
may be expressed in the simple form

R 1 ad; ad; & al, .'" M,.'"

2 BaJBak F,. Baz Oak F,. Baz Oak
(22)

(Note that the expression for the Hessian loses its simpli-
city if the data-model relationship is nonlinear. ) From
Eq. (22), it follows that (Appendix A)

F BR =G G
BS p

(23)

ment noise lead to the methodology specified in Sec. II.
The purpose of this discussion is to permit the compar-
ison of this methodology with others proposed for the
same purpose.

Symbolically, a linear LEED theory (e.g. , the linear
tensor LEED approximation ) relates intensity
differences, I'"(a) I'"—(ao), to the structural model, a
(specifically, the variation, m =a —ao, of the structure
from a reference model, ao), via a linear mapping, G.
The inverse mapping, M, can be defined in such a way as
to yield the least-squares solution,
a =ao+M[I'" cI'"(ao—)], M=(G G) 'G when ap-
plied to the data residual. If the theory is perfect, then a
may be determined by minimizing the least-squares R
factor (Appendix A),

1

[cov a]= F Ba2 p

(25)

B. Closely related analysis methods

Variations of the analysis described here admit the use
of alternative, though closely related, R factors. In the
case of uncorrelated measurement errors of known vari-
ance (not necessarily constant), statistically significant pa-
rameter estimation covariances can be calculated for
structures determined using an R factor, which is a
weighted sum of squares with weights chosen to be the
inverse of the data variance, w; = 1/o;, in which case the
residuals are effectively normalized by the standard devi-
ation, o.;. The data/model relationship is rewritten as
d'= G'm, where d'= Ad, G'= AG, and 3 is a diagonal
normalization matrix with elements 1/o;. (Note that d is
now being used to represent the data, not the residual. )

The least-squares R factor becomes
Rs=(1/I')[d' —G'm] [d' —G'm], the least-squares in-
verse, M, becomes M'=(G' G') 'G', and the covari-
ance becomes

which is Eq. (12b). Use of a least-squares R-factor leads,
therefore, to an expression for the parameter estimation
error covariance in which the data variance, o „and the
inverse mapping matrix, M, [both of which appear explic-
itly in the general expression, Eq. (19)] are replaced by
the R factor and its second partial derivatives at the R-
factor minimum. Thus, in the presence of a perfect theory,
the eQect of Gaussian measurement noise on parameter es
timation can be determined without explicit knowledge of
the data error level and without calculating the
data/model mapping matrix, G =[BI/Ba]0, let alone its
inverse, M, provided that the structure is determined using
the least squar-es Gaussian R factor, Rs.

The error analysis, like the structure analysis itself,
uses the intensities directly, without any preprocessing
other than perhaps averaging of equivalent I(E)
profiles. ' This procedure contrasts with common prac-
tice in bulk crystallography where significant data reduc-
tion (peak integration, background subtraction, and scal-
ing to compensate for geometry and polarization effects)
is performed prior to initiating structure searches and
where parameter error covariances are calculated from
the covariances of the reduced data. Thus, while the
bulk structure estimation problem (from X-ray data) is
free of the modeling imperfections that complicate
surface-structure determination by LEED, the analysis of
parameter uncertainties in surface structures determined
by LEED data is facilitated by the absence of data
preprocessing, which typically complicates an error
analysis.

and hence from Eq. (20)

(j2R
[cov a]=

Ba' p
(24) or

FaR
[cov a]=M'M' =[G' G']

BR p

(26a)

As described in Sec. II, if the theory is perfect, R p is an
estimate of o., and the expression is rewritten as

1 BR
[cov a]=

BS p

(26b)
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for they R factor

R =FRg = [d' —G'm] [d' —G'm] =g [d —Gm],
1

l i

(26c)

eR2= (» (30)

This R factor is labeled R z because of its similarity to the
previously introduced Rz, which uses constant (beam in-

dependent) weights and a single scale factor.
The matrix being inverted in Eq. (26b) is referred to as
the curvature matrix. The particularly simple form of
Eq. (26b) follows from the fact that the covariance matrix
of the normalized data is an identity matrix.

If only the relative measurement error variances are
known and the R factor, R", is a weighted sum of
squares with weights inversely proportional to the data
variance w; =k /o;, k arbitrary, the residuals are
efFectively normalized by Qk/cr, . In this case, the vari-
ance of the normalized data is k and, if, as we are assum-
ing, the theory is perfect, k is estimated by R" (assuming
that R" includes a 1/F factor). The parameter estima-
tion error covariance assumes the familiar form,

2R" 8 R"
[cov a]= (27)

Ba2 0

Any R factor that differs from R" by a constant factor
(for instance, the R factor identical to R ",but with a nor-
malization different from 1/F) not only leads to the same
surface structure but also can be, used in Eq. (27) to cal-
culate the error covariance. Similarly, any R factor that
differs from R by a constant factor not only leads to the
same surface structure as that obtained by minimizing
Rg, but also can be used in Eq. (25) to calculate the error
covariance. One such alternative is the R factor,

y[IexP cIt (a)]2/g(IexP)2 (28)

[IexP cIt ( )]
R'=C R 2V a, hk, i

(IexP )2

a, hk, i

(29a)

(IexP )2

a, hk, i

(29b)

where R, F =N —M —1, and c are as in Eq. (7a) —(7e).
Since R z differs from R by a rnultiplicative constant, C,
its rninirnization leads to the same structure as does
minimization by R, and it can be used in Eq. (27) to cal-
culate the error covariance. While R is an estimate of
the variance, cr„of the residual, I'" cI'"(a),R2 is an-
estimate of the data variance in units of mean-squared in-
tensity,

with c defined as in Eq. (7c)—(7e). This R factor (which
treats all data points equivalently) is a variation of the R
factor known as R2, ' the latter [see Eq. (44a)] weighs in-
dividual beam R factors, R2 zk, according to the beam's
energy range.

A closely related R factor is the alternatively normal-
ized

C. Characteristics of alternative error analysis methods

[cov a ]= [GTWG] (31b)

If the data are assumed to be uncorrelated, the covari-
ance matrix and weight matrices become diagonal with
diagonal elements cr;, and 1/0, , respectively, so the
analysis becomes the same as that described by Eqs.
(26b), (26c). The structure search requires estimated
standard deviations, o.;, for each of the reduced data
points as inputs. Various schemes ' are used to deter-
mine the o. s involving the assessment of the contribut-
ing errors, comparisons of symmetrically equivalent
beams, or examination of residuals in preliminary calcu-
lations. A fundamental difference between LEED analy-
ses of the surface structure and bulk structure analyses,
which use x ray and neutron data, is that the latter make
use of scaled integrated peak intensities rather than the
intensity measurements themselves. This is true for both
monoenergetic experiments, which require intensity in-
tegrations over solid angles (or one dimensional integra-
tions with geometrical scaling) and diffuse diffraction ex-
periments, in which intensities are integrated over energy
in order to determine the area of each Bragg peak. Be-
cause of the weakness of the scattering processes involved
in bulk structure experiments, the diffraction process
functions as a physical realization of a Fourier transform
of the crystal structure with each integrated intensity cor-
responds to the real part of a Fourier coefficient. The in-
tegrated intensities corrected for background, emission,
and polarization effects are thus the fundamental observ-
ables.

Within the field of surface crystallography, covariance
analysis is uncommon. The most widely used methods
use R-factor surface curvature to calculate parameter
variations from R-factor variations. ' ' ' ' In such
methods, a deterministic mapping of specific variations is
reinterpreted as a mapping appropriate for statistical
quantities, i.e., variances and standard deviations.
Specifically, the variation with a given parameter, a, of
the R factor in the vicinity of its minimum, Ro =R (a„,),
is described quadratically as

Least-squares R factors and covariance analyses are
used by x-ray crystallographers to determine bulk crystal
structures and parameter estimation error levels.
X-ray R factors are typically weighted sums of squares ei-
ther of the form defined by Eq. (13), which are not useful
for covariance analysis, or with weights, 8' correspond-
ing to the inverse of the data variance, i.e.,

R =[d —Gm] W[d —Gm],

in which case the covariances can be calculated as
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1 BRR (a)=RD+ —
~

(ba)
Ba o

(32)

The square of the parameter change, Aa =a —a„„can
thus be written in terms of the corresponding change in
the R factor, b.R =R (a) —Ro,

1 BR(ba) =
Ba 0

AR . (33)

While this relation is typically established by eye using an
R-factor plot (see, e.g., the discussion of Fig. 2 in Ref.
17), as illustrated in Fig. 7, Eq. (33) provides the analyti-
cal description. The specific variations b,a (or, more fre-
quently, 2ha) and b,R are then interpreted as being
analogous to standard deviations and the above relation
is invoked as mapping the standard deviation of the R
factor (a.z, sometimes mistakenly referred to as the vari-
ance) to the variance, o „ofthe parameter error distribu-
tion,

1/2
&varR 2

&R, ) F (35)

R-factor
IE

I h, R

26a

FIG. 7. R factor plot, illustrating the generation of an uncer-
tainty Aa in a structural parameter in terms of a range, AR, of
R factor values from its minimum.

1 BR
0

a o

Unfortunately, this seemingly natural relationship is not
correct. If the R-factor minimum can be construed as
having a y distribution with F degrees of freedom (as
would be the case if the R factor is a sum of squares of iY
zero-mean random variables with Gaussian distributions
of constant variance, subject to M constraints, such that
F =X—M), then the ratio of the standard deviation of
Ro to its mean, (Ro ), is

Assuming that the mean, (Ro), can be approximated by
a given realization, Ro, Eq. (34) becomes

1 BR 2
(36)

For comparison, the correct expression for parameter es-
timation error variance/covariance in the presence of in-
tensity errors [Eq. (Sb) for the variance of a single vari-
able parameter] is rewritten here in terms of the y R fac-
tor, R =FRg = [d —Gm] [d —Gm], which is an unscaled
sum of squares of Gaussianly distributed errors with a
constant variance, as

2 1 d2R
0

da

—1

Ro
F (37)

The 1/F factor in the properly derived expression is seen
to be replaced by (2/F)'~ in the commonly used Eq. (36).
Thus, reinterpretation of the b,R, (b,a) relation in Eq.
(33) as a mapping of statistical parameters characterizing
distributions leads to an incorrect relation even in the
simplest case of a single variable parameter.

Another error analysis reported in the literature con-
sists of calculating standard deviations for estimation er-
ror in a given parameter by inverting and scaling the cor-
responding diagonal element of the curvature matrix.
We refer to this as a one-dimensional variance calcula-
tion. When the system being modeled has only one un-
known parameter (and the curvature matrix consists of a
single element), this is correct. If there is more than one
unknown parameter, however, the curvature matrix in-
version required for proper calculation of the parameter
error variances [diagonal elements of the covariance ma-
trix, see Eq. (12b)] is poorly approximated by inversion of
the diagonal elements alone, unless the off-diagonal ele-
ments of the curvature matrix are all negligible. As the
latter condition is satisfied infrequently in the case of two
unknown parameters and almost never when the number
of parameters is three or more, approximation of the full
variance calculation with one-dimensional in versions
leads to a misrepresentation of the errors.

An alternative to inverting the full covariance matrix
directly is to diagonalize it, i.e., identify the linear com-
binations of parameter errors that are uncorrelated and
transform the curvature matrix into this basis of indepen-
dent parameter errors. The variances of these linear
combinations of parameter errors can then be calculated
one at a time from their own curvatures. Determination
of the variances of the original parameter estimates re-
quires back transformation to the original basis, hence,
for a given parameter, involves combining the variances
of all the independent basis elements that include that pa-
rameter. Such a procedure is equivalent to the method
being advocated here in terms of both the results and the
level of effort required.

This alternative procedure is sometimes described in
geometric rather than analytic terms. Diagonalization
of the curvature matrix is equivalent to identifying the
principle axes of an ellipsoid in parameter space corre-
sponding to a surface of constant R~, where Rg is within
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a few percent of R o. The curvatures along the principle
axes are the same as the diagonal elements of the diago-
nalized curvature matrix, and thus can be inverted indi-
vidually. Again, determination of the variances of the
original parameter estimates requires back transforma-
tion of the curvatures to the original basis.

D. Comparison with other I.EED/I, EPD error analyses

1/2

(38)

For each parameter estimate, an error bar is assigned
whose magnitude (illustrated geometrically in Fig. 2 of
Ref. 17) is the full width at R =R~+(T~ of the R-factor

P
curve as a function of the parameter of interest, i.e., 2b,a
where b,a is as defined above (b,a =a —a„,) and (ha) is
as specified by Eq. (33). As indicated following Eq. (37),
the deterministic relation described by Eq. (33) is not ap-
propriate for mapping statistical moments and yields re-
sults which differ from those calculated with proper sta-
tistical relations. Furthermore, its frequent application
to multiparameter structural estimation problems suffers
from neglect of correlation among parameter estimation
errors. As discussed above, parameter variance calcula-
tions based on inversion of individual diagonal elements,
[() R/()a ];;, of the full Hessian matrix [Eq. (12c)] yield
variances which are typically poor approximations to the
true variances. " Only if R-factor curvature with respect
to a given parameter, a;, is calculated from an R-factor
curve which is evaluated by optimizing all other parame-
ters a at each value of a;, does individual element inver-
sion yield a statistically meaningful estimate of the pa-
rameter variances.

In contrast to the nonstatistically based methods,
which neglect the effects of correlations, the error
analysis method of Adams and co-workers,
bears great structural similarity to the methods
developed here. Parameter estimation error variances are
calculated using the relation

c,;;R
ai (39)

Having indicated the general principles of parameter
estimation error variance analysis, we can now relate our
methodology to some of the analysis methods currently
in use. One of the most widely used procedures for es-
timating errors is that introduced by Pendry. ' Parame-
ter error variances are calculated from an R-factor stan-
dard deviation by means of a mapping, which is based on
the relationship [Eq. (33)] between changes in the R fac-
tor and changes in individual structural parameters, as
embodied in the R-factor curvature. Under the assump-
tion that peaks in the I(E}curves are well separated, the
Pendry R factor is hypothesized to exhibit y statistics
with X degrees of freedom corresponding to 1V Lorentzi-
an intensity peaks (see Appendix C), such that the stan-
dard deviation of its minimum value, Rz, can be ex-
pressed in terms of its mean, (R~). Thus, if the latter is
approximated by a given realization ((Rz) =Rp), the
standard deviation of Rz is trivially calculated from Rz
itself as

where c;; is a diagonal element of the inverse of the Hes-
sian matrix,

BR
()a

(40)

where c;; is a diagonal element of the inverse of the cur-
vature matrix,

)BR 2

E"=
a

(41b)

and R 2 is the g R factor defined in Eq. (26c). The ex-
' x

pression for the parameter estimation error variance
given by Eqs. (41) is identical to that of the diagonal ele-
ments of the full covariance matrix described above in
Eq. (26b) and is the relation appropriate for a sum of
squares R factor with each squared residual weighted by
its variance. As shown in Sec. IV B, Eq. (39), with an ap-
propriate choice of R factor, is also a statistically valid
expression if c. and I' are properly defined. Unfortunately
Adams' definition (see above) of the error matrix,
differs by a factor of 2 from that of the original refer-
ence, and this error persists in the analyses that follow.
More troublesome, however, is the practice of employing
Eq. (39) with R factors for which it is not designed.
While Adams et al. in their original presentation recog-
nized the statistical importance of using y -type R factors
with a constant scale factor, c, in the calculation of pa-
rameter estimation errors, later works embodied other R
factors with implications that need to be made explicit.

One important R factor commonly used ' ' to-
gether with the above analysis is P2 defined by

1
~2 XNhkR2, hk

N„k
(42a}

where N&k is the number of data points in the hk beam, X
is the total number of data points,

N =QNhk,
hk

and R z &k is the individual beam R factor,

R 2 hk QWhk (Ihk; Chk
—Ihk i

)—

(42b)

(42c)

with weights (constant for a given beam)

(42d)

and scale factors

chk —QIhk, l QIhk i (42e)

and F is the number of degrees of freedom, equal to the
number of data points less the number of variable param-
eters. Equation (39) is a variation of the relation found in
the reference cited by Adams, which is

(41a)
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[Reference 35 gives an expression for the single-beain R
factor [Eq. (42c)], in which the wkk are squared. This is
in contrast to the usual definition and, as it would lead to
an R factor with units corresponding to those of (intensi-
ty), presumably is a notational error. ] Rz is a version
of the R2 R factor introduced by Van Hove, Tong, and
Elconin' and used, for example, by Davis and Noonan.
It can be rewritten as

R2= Qwhk(ihk i chkihk;)
hk, i

(43a)

where the sum is now over all intensities in all beams,

&hk
Whk

N(X;IkP ) N(I )
(43b)

1

+hk
(44)

in order for Eq. (39) to be valid. While such an assump-
tion may be plausible, it is debatable, and needs to be
made explicit. The statistical implications of including
beam-specific scale factors, chk, also is not clear. Thus,
while the introduction of curvature matrix inversion to
the LEED error analysis methodology has greatly im-
proved the treatment of parameter estimation error
correlation, the specific analyses reported in the literature
incorporate elements of covariance analysis methodology
in a less than rigorous fashion.

A procedure analogous to that used for R 2 by Adams
et al. was applied to R „defined

R i
= 2 cI,'k (E, ) ikk'«; )I—

hk, i
(45)

by Kleinle and co-workers ' ' to define an R factor, Rzz,
suitable for use in fast automated structural searches.
RDz was proposed because of its insensitivity to the spac-
ing between energy values (E, ) along an intensity profile
for a given beam. Like R2, however, RDz is a beam-by-
beam normalized R factor, whose weights are not pur-
ported to be inverses of the data variances. While we
agree with the general philosophy of data selection arti-

and (Ikk ) is the mean-squared intensity of a given beam.
Unfortunately, use of P2 does not automatically lead

to a consistent statistically significant error analysis. As
described in Sec. IVB, simple expressions such as those
in Eqs. (25)—(27), (39), and (40) exist for parameter error
variance when either (1) the residual errors are uncorre-
lated and have constant variance and the R factor is an
unweighted sum of squared residuals or (2) the matrix
[see Eq. (31) or Ref. 39] used to weight residuals in the
R-factor sum is the inverse of the covariance, which de-
scribes residual errors. The beam specific weights in Eq.
(43) preclude a simple form on the basis of the first set of
conditions. For Eq. (39) (corrected for the missing factor
of 2) to be valid, the R factor must weight each residual,
if not with the inverse of its variance, then with a weight
proportional to the inverse of its variance. Hence, an im-
plicit assumption of using P2 in Eq. (39) is that okk is
proportional to (Ikk ) such that

culated by Klein et aI., we selected R instead of RDz be-
cause of its connection with Gaussian error statistics
which provides the benefit of a well-defied statistical in-
terpretation of the error analysis defined in Sec. II.

V. SYNOPSIS

Our purposes in this paper have been to adapt a well
known' statistically significant error analysis procedure
to the case of structure determination via analysis of
LEED and LEPD intensity data; to demonstrate that this
adaptation produces sensible results compatible with its
promises in a specific case, i.e., Cu(100); and to compare
it with the myriad of alternatives proposed in the litera-
ture to illuminate its similarities and differences with
them. Specifically, we demonstrate that surface-structure
parameter estimation based on dynamical analyses of
LEED intensity data can be expressed as a well-defined
procedure that yields parameter estimates, whose errors
have magnitudes and correlations which are statistically
significant in the limit that measurement errors are the
sole source of uncertainty in surface-structure parameter
estimates. The quality of the parameter estimates is de-
scribed in terms of the distribution of the parameter es-
timation errors and is determined by the data error distri-
bution. The error analysis is facilitated by making the
additional assumptions that the measurement error distri-
butions are Gaussian and that the errors fall within a
range in which a linear LEED theory is adequate. These
assumptions are useful, because linear systems map zero-
mean Gaussian distributions to zero-mean Gaussian dis-
tributions, and hence lead to the result that parameter es-
timation errors will themselves be Gaussianly distributed.
An additional convenience of using Gaussian error mod-
els follows from the fact that Gaussian distributions are
fully characterized by their means and covariances; in the
zero-mean case, a valid expression for the parameter er-
ror covariance is sufficient to fully characterize the pa-
rameter estimation errors. We illustrated the analysis
methodology by defining a Cu(100) surface structure and
interaction model, calculating the intensities that are
determined by that model, adding Gaussian measurement
errors to the calculated intensities, and then attempting
to recover the surface structure from the simulated data,
while characterizing the error levels and correlations. Fi-
nally, we compared our analysis to others used for struc-
ture analysis via LEED, LEPD, and x-ray crystallogra-
phy to illuminate the similarities and differences between
the various procedures. We believe that the procedure
described in this paper affords a simple, meaningful as-
sessment of the uncertainties in the structural parameters
extracted from LEED and LEPD intensity data induced
by errors in the measured intensities. The procedure is
not perfect: it does not describe the consequences of sys-
tematic errors due to model imperfections. Nevertheless,
it does provide a procedure for LEED and LEPD struc-
ture determinations based on statistical error analysis
methods; it is simple; and it is at the current state-of-the-
art in relating the mathematics of statistical error
analysis to the craft of structure analysis via LEED and
LEPD.
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=d —Gm, (A8)

where m =a —ap. Evaluating the second partial deriva-
tives of FR with respect to the parameters a at the
minimum R p yields the matrix equation

APPENDIX A:
PARAMETER ESTIMATION ERROR COVARIANCE

F BR =G G.
BR p

(A9)

The linear covariance theory for parameter estimation
errors provides an expression for the covariance matrix
that describes parameter estimation errors that result
from least-squares estimation using data, d, which is
linearly related to the parameters of interest, m, and is
corrupted by random Gaussian errors, e, such that

d =Gm+e . (A 1)

gI th

G~
Bs ao

to yield a data/model parameter relationship,
d =Gm +e,

[Iexp Ith( )]
gr th

[a —ao]+e,
Ba

(A2)

whose least-squares solution, m =Md, M =(G G) 'G,
has an error covariance,

[cov m]=M[cov d]M (A3)

where [cov d] is the covariance of the Gaussian errors e.
Since the covariance of the whole value parameter esti-
mates, [cov a], is equivalent to the covariance of the pa-
rameter estimation error [cov m ],

[cov a] =M[cov d]M (A4)

For the case in which the data errors, e, are uncorrelated
and of constant variance, o.„that is

[cov G]=ET,I, (A5)

where I is an identity matrix, the covariance expression
simplifies to

In a region around an approximate structure, ap, the cal-
culation of LEED intensities, I, can be linearized

d~[I'"P I'"(ao )]-,
m~[a —ao],

The covariance expression can, therefore, be written as
—1

F BRg
[cov a]=cr,

Ba 0
(A10)

and, by substituting R p for o., as justified in Sec. II,
rewritten as

2Rp BR
[cov a] =

aa' (Al 1)

[IexP cIth(a)]T[IexP cI (a)]=1 (A12)

where F is now reduced by 1 since an additional parame-
ter is being estimated, and the linear relationship between
perturbations in the data and perturbations in the model
parameters becomes

di th
[I'"P—coI'"(ao ) ]=co [a —ao ]

+I'"(ao )(c —co)+e, (A13)

where cp is the R-factor minimizing scale factor defined
in Eq. (7) and c is the true ratio of noise-free experimental
intensities to intensities calculated by a perfect theory for
the correct structure.

The augmented vector of unknowns is

a —ap

C Cp

and the augmented G matrix is

dl th
G'= c Ith

da

Least-squares solution leads to the covariance expression,

In the absence of a theory of absolute intensities, a
scale factor c is included in the R factor

[cov a]=o,(G G) (A6) [cov a]=o, (G' G') (A14)

F times the Gaussian R factor, where F is the number
of data points less the number of parameters being es-
timated, FOR GiTG~

Bs
(A15)

analogous to Eq. (6). One half of the matrix of second
partial derivatives of FRg at the minimum R~p becomes

—[IexP Ith(a)]T[IexP Ith(a)]

can be expressed in terms of the residual

(A7) where a' represents an augmented vector that includes c,
and the covariance expression, therefore, retains the form
given by Eq. (A10), with a replaced by a',
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2R BR
[cov a']=

Ba' p

(A16)

Equation (A16) is the desired result: i.e., the explicit
derivation of Eqs. (12) in the text from the combined as-
sumptions of a linear response in I to small variations in
a in the vicinity of a„, and of uncorrelated Gaussian
noise in I.

APPENDIX B: FITTING THE R-FACTOR SURFACE
TO A QUADRATIC FORM

The curvature or Hessian matrix,

BR
Ba

(81)

with elements [H],J. =B R~/Ba;Ba used to calculate the
error covariance of the parameter estimates is determined
by fitting a set of R-factor values, R (al, ), for structures,
aI„ to a quadratic form

R (aI, )=R (a)+[aj, —a] VR (a)

+ —,'[a„—a] [H][al, —a], (82)

where a specifies the parameter values of an approximate
structure presumed close to the R-factor minimizing
structure, a„„and the gradient, V'Rg(a), is the vector of
derivatives BRs/Ba; at a. Since for each a& the parame-
ter perturbations, aJ, —a, (relative to the reference struc-
ture, a) and the R-factor values, R&(aj, ), [as well as the

reference value, R (a) ] can be simply calculated, the un-
knowns in the set of equations (82) are the elements of
the gradient vector, VRg(a), and of the partial derivative
matrix, H. The set of Eq. (82) can be recast as a set of
linear equations (one for each structure, al, ) in matrix
form in which a vector of R-factor variations are related
to a vector of unknown partial derivatives through a ma-
trix of parameter perturbations. Solution of the linear
equations yields values for both the gradient vector and
curvature matrix.

First the set of structures, a&, is specified. For an M
parameter problem, an M-dimensional grid of structures
in the vicinity of a is specified by identifying a step size,

and a range of parameter values, a, +k, ha, , for

k, =0, 1, . . . , k, ,„ for each variable parameter a;.
Rs(a& ) is calculated for each of the K =g,. (2k;,„+1)
structures, aI„on the specified grid. A vector of length E
with elements

Fl, =Rg (al, ) —R (a), (83)

is constructed and a vector C of length L =M(M+ 3)/2
is defined with elements corresponding to the unknowns,
i.e., the M elements of the gradient vector, VR~(a), and
the M (M + 1)/2 distinct elements of the symmetric par-
tial derivative matrix, H. A K XL matrix A of first- and
second-order parameter perturbations is formed with ele-
ments

(aI, t
—

a& ) if 1 + l ~ M

(a& —a )(a& —a ) if M+ 1 ~l M+M(M+1)/2, (84)

such that each row corresponds to a specific structure,
a&. The set of X equations in L unknowns displayed in
Eq. (82) is rewritten as

Y=AC. (85)

Since K is always greater than L by choice, Eq. (85) is an
o ver determined system of equations; its least-squares
solution, C (determined using the NAG library routine
F04AMF), specifies the values of the elements of the gra-
dient vector, VR (a), and the curvature matrix, H. The
number of points, IC =II; (2k;,„+1), in the grid (as
determined by the extent, 2k;,„, of the grid in each di-
mension, k = 1, . . . , M) must be chosen to be sufficiently
large relative to the number, L, of unknown derivatives
being estimated to force to a low level the errors in the
partial derivative estimates caused by roughness in the
R-factor surface, due to noise in the intensities. For data
with low noise, the R-factor surface can usually be fit us-
ing a grid of structures of length 3 in each dimension (i.e.,
k;,„=1 for each parameter, a, ); in this case, the num-

3M

L M(M+3)/2 (86)

is thus 9/5 for two variable parameters (one structural
parameter and one scaling parameter) and larger for anal-
yses that involve more variable parameters.

Once the curvature matrix and gradient have been
determined, the quality of the quadratic fit is evaluated
by calculating the root-mean-square deviation,

oz ="i/ oz, between the calculated R factors, Rg(a„),
and the fit R-factor function, where

o.z =g Rg(a&) —Rg(a)+ [al, —a] VRs(a)
k

+ —,'[aI —a] [H][ax —a] (87)

ber, J, , of points in the grid (i.e., the number of structures
for which the R factor is evaluated) is 3 . The ratio
which characterizes the extent of overdetermination
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VRs(a') =VRs(a)+ [H][a' —a] (BS)

at the R-factor minimizing structure, a„„ to equal 0.
Then, the correction is determined analytically

a„,—a= —[H] 'VR (a) (B9)

and can be added to the approximate structure, a, to
yield an improved estimate, a„„ofthe unknown structur-
al parameters. The intensities and the R factor are calcu-
lated for the refined structure. If the refined structure is
outside the range of the original grid, the calculated R

If the fit is adequate (o~ &&0.1max[R (ak) —R (a)]),
the curvature matrix can be inverted and used to calcu-
late the parameter estimation covariance as prescribed by
Eq. (12b). Furthermore, the R-factor function can be
used to determine the correction, a„,—a, to the approxi-
mate structure, a, by requiring the gradient

factor is compared with the value predicted by the R-
factor function in order to confirm the validity of the
quadratic form for the R factor in the region which in-
cludes not only the original grid points, but also the
refined structure, a„,.

As the primary function of the fitting procedure is to
determine the curvature matrix in order to calculate the
parameter estimation error covariance, it is preferable to
initiate the procedure with a reference structure, a, deter-
mined by a well-converged parameter search so as to en-
sure that a grid of modest extent around the reference
structure includes the R-factor minimizing structure.
"Modest extent" in this context means small relative to
the parameter perturbations whose signature in the inten-
sity domain can be adequately described by the first-order
perturbation theory. It is within such a range that the
curvature matrix can be expected to be constant and the
R-factor surface properly modeled by the quadratic ex-
pression presented in Eq. (B2).
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