PHYSICAL REVIEW B

VOLUME 52, NUMBER 20

Theory of carbon nanotube growth

A. Maiti, C. J. Brabec, C. Roland, and J. Bernholc
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695
(Received 5 July 1995)

The kinetics of carbon nanotube growth under arc discharge conditions were investigated over
different length and time scales using complementary numerical techniques. Relaxation by ab initio
molecular dynamics (Car-Parrinello method) shows that large electric fields present at the tube tips are
not the critical factor responsible for the open-ended growth observed experimentally. Classical
molecular-dynamics simulations using realistic many-body carbon-carbon potentials show that wide
tubes that are initially open can continue to grow straight and maintain an all-hexagonal structure.
However, tubes narrower than a critical diameter, estimated to be about ~3 nm, readily nucleate
curved, pentagonal structures that lead to tube closure with further addition of atoms. Very narrow
tubes can be grown, however, if a small metal particle prevents tube closure. This effect was simulated
explicitly by kinetic Monte Carlo methods. Monte Carlo simulations were also used to study nanotube
growth over longer time scales. The resulting structures are in agreement with the above growth
scenario, and provide an estimate for the lowest tube tip temperature necessary for the growth of nano-
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tubes.

I. INTRODUCTION

Carbon is a rare element that possesses the ability to
form a wide variety of networklike sp 2_bonded structures,
generically termed fullerenes. These structures can be
looked upon as graphitic sheets that have been curved in
order to eliminate the dangling bonds. After the initial
discovery of Cg,! and particularly following the syn-
thesis of C4, in macroscopic quantities in an arc
discharge,? fullerene research has gained considerable
momentum. A large number of different networklike
structures have since been discovered. These include sin-
gle carbon cages other than Cg,* > multishell ful-
lerenes,®” and carbon nanotubes.? ™10 Recently, the field
of nanotubes has been the subject of intense research, in
anticipation of novel technological applications. The
high length-to-diameter ratio over which the nanotubes
maintain a perfect hexagonal atomic arrangement makes
them ideal candidates as superstrong fibers. The tubes
also display unusual structural and electronic properties
as a function of diameter and helicity, showing substan-
tial promise as composites, catalysts, molecular wires,
and molecular switches. ! 714

Carbon nanotubes consist of concentric cylinders of a
hexagonal (graphitic) network arranged around each oth-
er with a helical twist. In a carbon arc discharge ap-
paratus, bundles of coaxial nanotubes of diameters rang-
ing between 2 and 20 nm form at the negative elec-
trode.®® Single-shell nanotubes of diameters between 1
and 3 nm have also been synthesized by using metal cata-
lysts'> and through the plasma decomposition of ben-
zene. !¢

If carbon nanotubes are ever to fulfill their technologi-
cal promise, one must be able to fabricate them in bulk
quantities. An understanding of their growth kinetics is
therefore crucial. This is a problem of considerable com-
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plexity, since nanotubes form under highly nonequilibri-
um conditions. While it was initially believed that nano-
tube growth takes place through the addition of adatoms
to the tips of closed tubes,!” experiments show that the
tube remains open during growth.!® This is surprising,
because the large number of dangling bonds definitely
favors energetically a saturated, and therefore closed, sp2
geometry. Moreover, the closed growth model cannot
explain the growth of the inner shells of a multishell tube,
because the supply of atomic deposits to the inner shells
should be cut off by the closed cap of the outer shell.
Thus the key question is, what keeps the carbon nanotube
open during growth?

A number of possibilities have been conjectured to ex-
plain open-ended nanotube growth. Temporary satura-
tion of dangling bonds by hydrogen is a possibility. How-
ever, hydrogen is almost completely excluded in the arc
discharge experiments producing the nanotubes.’ A
large thermal gradient at the tube tip might also give rise
to nonequilibrium forces that could favor the open
geometry. However, as argued by Smalley, '® at 500 Torr
of He pressure’ and a high temperature of 4000~5000 K
at the center of the arc, collisions will quickly establish
equilibrium between the electrons, the positive and neu-
tral carbon atoms, and the clusters. This precludes the
possibility of a temperature gradient large enough to
affect the strong carbon bonds at the tube tip. However,
as discussed in the next section, nanotubes in an arc
discharge form in a region with large electric fields. Be-
cause of the large aspect ratio, metallic nanotubes
effectively behave as sharp antennas, and can further in-
tensify the field at their tips. It has therefore been postu-
lated that large electric fields at the tips of growing nano-
tubes (of the order of 1 V/A) are responsible for keeping
them open. '8

In this paper, we present the results of an extensive
theoretical study of the growth of carbon nanotubes in an
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arc discharge, using a variety of complementary numeri-
cal methods. Our ab initio molecular-dynamics (MD)
calculations show that, surprisingly, the electric field
alone cannot stabilize an open-ended structure, even for
very narrow tubes. This naturally leads to a study of the
kinetics of nanotube growth, which we have investigated
with classical MD simulations. Because of the inherent
mismatch between accessible simulation times for classi-
cal MD simulations (nanoseconds) and the long experi-
mental growth times (milliseconds), it is not possible at
present to simulate the large-scale growth of carbon
nanotubes directly, at least not without assuming unreal-
istically large deposition rates. Generally, such large
deposition rates lead to the formation of structural de-
fects that do not anneal out over the time scales of a MD
simulation, and therefore only yield a disordered tube
structure. Our approach has therefore been to use MD
simulations to study the microscopic aspects of tube
growth, i.e., MD simulations were used to identify and
classify all possible adatom structures, their annealing
times, and subsequent dynamics. The relevant growth
structures and their kinetics were then incorporated into
a kinetic Monte Carlo code, which was used to simulate
the growth of carbon nanotubes at rates approaching the
experimental time scales.

The organization of this paper is as follows. In Sec. II
we calculate and discuss the role of electric field in keep-
ing the nanotubes open during growth. In Sec. III we de-
scribe classical MD simulations of nanotube growth and
identify the key bond-switching and ring migration pro-
cesses. In Sec. IV we discuss the implementation of the
kinetic Monte Carlo formalism, the results of these simu-
lations, and give an estimate of the minimum tempera-
ture necessary for nanotube growth. We also simulate
the effect of small metal particles in facilitating the
growth of narrow tubes. We conclude with a summary in
the final Sec. V.

II. ROLE OF ELECTRIC FIELD

To assess the role of the electric field E, we first solve
for the field present at the tips of open and closed nano-
tubes in an arc discharge. The effect of such a field on the
energies of both open and closed tubes is then studied
with ab initio MD simulations. Surprisingly, an unreal-
istically long tube length is required before the electric
field alone can stabilize the growth of an open tube.

To solve for the appropriate electric field, it is first
necessary to analyze the experimental setup in which the
nanotubes are formed. The arc discharge apparatus con-
sists of a carbon arc with a potential drop of 20-30 V
across a 1-mm gap between two rod-shaped graphite elec-
trodes, each with a diameter of several millimeters. The
reaction vessel confining the arc is filled with an inert gas,
usually He, at a pressure of 100-500 Torr. A plasma
sheath, primarily consisting of carbon ions, forms adja-
cent to the graphite cathode, on which the nanotubes
grow.!® The thickness of the sheath is about 100 nm, and
the potential drop across it is equal to the ionization po-
tential of carbon, roughly 10 V. The growing nanotubes
are thus immersed in a uniform field of ~0.01 V/;\, lead-
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ing to a geometry depicted in Fig. 1.

In order to calculate the electric field at and around the
tube tip, we integrated Laplace’s equation for the arc
discharge geometry described above (see also Fig. 1), with
the tubes modeled as continuous metallic rods. The
closed tube of length L and radius R consists of a
cylinder of length (L —R) capped by a hemisphere of ra-
dius R. The open tube is represented by two cylinders of
radii (R —§) and (R +8) and a common length (L —3&),
with their rims joined by a half torus of radius § [Fig.
1(b)]. The thickness 28 of an open tube is taken to be 1
A, independent of the tube length and radius. The
boundary conditions consist of ¥=0 at all points of the
cathode and on the nanotube. V=10 V at all points on
the effective “anode” (corresponding to the top layer of
the plasma adjoining the cathode), and the horizontal
component of the electric field being zero at every point
of the axis of the nanotube. A variable-sized triangular
mesh was used for all calculations in order to ensure a
high numerical accuracy, particularly close to the tip.
For the above geometry, Laplace’s equation was solved
numerically in two-dimensional cylindrical coordinates
(because of the azimuthal symmetry around the tube

(a) =

(b)

FIG. 1. Cylindrical cross section of geometries used for the
calculation of the electric field distribution for (a) a closed tube
and (b) an open tube. The actual three-dimensional (3D)
geometry is obtained by rotating the figures about the tube axis.
The equipotential lines are indicated by solid lines.
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axis), using the finite difference program POISSON from
Los Alamos.?’ As shown by the equipotential lines in
Figs. 1(a) and 1(b), there is a considerable enhancement of
electric field at the tips of both the open and the closed
tubes, but more so for the open tubes. However, the elec-
trostatic potential distribution for the open and the
closed tubes of the same L and R differ only in the vicini-
ty of their tips and are practically identical a few radii
away from the tips. This is more apparent if one com-
pares the surface charge densities of an open and a closed
tube as a function of the vertical distance from the tube
tip (Fig. 2). Our calculated values for the electric fields at
the tips of closed and open tubes of various lengths and
diameters are well fitted by the formulas

L
Etip,closed =E0 0. 87? +4. 5
and
E, =E, |2.35R%6L 44 55
tip,open 0 . R .

where L and R are in nanometers. The above fits are val-
id within the ranges of 0.2 <R <10 nm, 20< L <60 nm,
and a ratio L /R >5. For a closed tube, L and R are the
only length scales of the problem, and thus E, cjosea de-
pends only on the ratio L /R. For an open tube, howev-
er, the tube width 28 (taken to be 1 A) provides an addi-
tional length scale and this results in an explicit depen-
dence of E;, o,en on L and R. One should note that for
both open and closed tubes of fixed length the electric
field at the tip decreases as the tube diameter increases,
and for a fixed diameter the electric field increases linear-
ly with the length of the tube. However, even for the nar-
rowest tube, with diameter 0.7 nm, the tube must grow to
a length of L ¢, ~ 30 nm before E;, becomes ~1 V/ A,
the estimated field strength required to influence a strong
chemical bond.

To obtain a more accurate estimate of L .., the

1.0 T ' E
Open Tube ——
Closed Tube ------

Surface Charge Density (normalized)

0.0 : ;
0.0 0.5 1.0 1.5

Vertical distance from tube-tip (nm)

FIG. 2. Comparison of the surface charge densities at the
tips of open and closed 0.7-nm-diam tubes.
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effects of the electric field on the tips of the nanotubes
were investigated by the ab initio molecular-dynamics
method of Car and Parrinello?! with the ions being
represented by a soft-core pseudopotential due to Li and
Rabii.?* The effect of the electric field was incorporated
through the addition of an electrostatic energy term in
both the electronic and ionic contributions to the total
energy expression in the local density formulation. An
energy cutoff of 26 Ry was used, corresponding to a basis
set of 36000 plane waves. The exchange-correlation
functional was taken to be of the form given by Perdew
and Zunger.?® Tips of both open and closed tubes with a
diameter of 0.7 nm were constructed. This small diame-
ter was deliberately chosen so as to maximize the effects
of the electric field and minimize the computational
effort. As mentioned before, the electrostatic potentials
for the open and the closed tubes differ only within a few
radii from the tube tip. Therefore only a few atomic lay-
ers containing the tip are sufficient for comparing the en-
ergetic stability of the two tubes. In view of large
memory requirements of the Car-Parrinello code, the
above result is important, as it allows the comparison to
be made with supercells of reasonable size. The open
tube tip was constructed from six atomic layers of an
armchair tube, known to be metallic, '*?* while the closed
tube was constructed by replacing the top three layers of
the open tip by a hemispherical C¢, cap. The supercell
with the tips included a vacuum region 0.7 nm wide in all
directions, so as to effectively isolate the tube tips from its
periodic images. The electric field potential was convo-
luted by a smooth switching function across the vacuum
region in order to preserve continuity with the periodic
boundary conditions used in the Car-Parrinello code.
Both tube tips were relaxed in the absence of any elec-
tric field. It was found that the presence of the dangling
bonds at the open tube tip favors the closed tube
geometry by 1.6 eV per dangling bond. As the electric
field is turned on, the energies of both the open and the
closed tubes decrease. In order to present the best possi-
ble case for the role of the electric field in enhancing
open-ended growth, we neglected the electrostatic energy
gain for the closed tube. We compared the energy of the
open tube, which was electronically and structurally re-
laxed in electric fields calculated for several different
lengths of the tube, with that of the closed tube at zero
field. The total energy of the open tube tip was found to
decrease linearly with a small quadratic component as a
function of the tube length L. The crossover in stability
from a closed to an open tube occurs at L g, ~49 nm
(Fig. 3), which corresponds to a field of ~1.7 V/A at the
tube tip. Since Ey;, for a given L decreases with increas-
ing tube diameter, one can expect that wider nanotubes
will have an even larger L ;.- A nanotube of any
reasonable diameter thus has to grow to an appreciable
length before the electric field starts playing any
significant role in keeping it open. Note that even if the
nanotube attains the critical length by some growth
mechanism, the electric field is still not likely to play a
major role because of thermionic and field emission,
which is expected to occur at field strengths smaller than
~1V/A." The crossover field of 1.7 V/A may therefore
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FIG. 3. The total energy of an open metallic tip of diameter
0.7 nm in the presence of an electric field as a function of tube
length. The energy is normalized per dangling bond and mea-
sured relative to a closed tube of the same length and diameter
in zero field. There is a stability crossover at a length ~49 nm.

not be attainable in practice.?> We can therefore con-

clude that the electric field cannot be the critical factor
responsible for keeping the tubes open during growth.

III. MOLECULAR-DYNAMICS SIMULATIONS
OF NANOTUBE GROWTH

From the previous two sections it is clear that argu-
ments based on temporary hydrogenation of dangling
bonds, or the presence of thermal or electric potential
gradients strong enough to favor an open tube geometry,
can be ruled out under typical experimental conditions.
Therefore it is natural to search for models based on the
stability of local structures formed during growth. We
have investigated the total energy of structures that form
during deposition, and their subsequent dynamics, by
means of classical MD simulations.

The carbon atoms in our MD simulations were
modeled by the many-body Tersoff-Brenner poten-
tial,?%?” which accurately reproduces the binding ener-
gies and elastic properties of a wide range of hydrocar-
bons and the bulk phases of carbon, i.e., diamond and
graphite. For our growth simulations, a number of open
tubes with varying diameters and helicities (n,,n,) were
constructed (Fig. 4). A basic time step of 0.5 fs was used
in a fifth-order Beeman-Verlet scheme to integrate the
equations of motion. A nanotube length of about 12 A
was used in all the simulations. The tube tip was kept at
the relatively high temperature of 3000 K, just below the
melting point of graphite, in order to facilitate the an-
nealing process. A linear temperature gradient was
maintained along the length of the tube, with the bottom
two layers being kept static. The temperature profile,
defined as the average kinetic energy in a given layer, was
maintained by a periodic renormalization of the atomic
velocities every 2500 time steps. The electric field at the
tube tip was assumed to focus the incoming carbon ions
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FIG. 4. Schematic illustration of the helicity notation used in
this paper. A tube with helicity (n,,n,) is generated by wrap-
ping a graphene sheet in such a fashion that the point P (n,n,)
coincides with the origin. The resulting tube axis is normal to
the line OP on the graphene sheet.

towards the tip of the growing nanotube. The energy of
these incident ions depends not only on the electric field
in the plasma but also on their state of ionization (i.e.,
singly or doubly charged) and the collisional patterns
along their trajectories through the plasma. This uncer-
tainty in the incident energy was modeled by aiming car-
bon atoms, dimers, and trimers randomly at different
parts of the open tube edge with initial kinetic energies
also varying randomly between 1 and 8 eV. As noted in
our earlier work,?®?° nanotube growth occurs by a net
addition of dimers at the regions where a row of hexa-
gons terminates at the tube tip, which we term the “step
edge,” as illustrated in Fig. 5.

Regardless of their initial energy, carbon atoms were
always found to insert into the nearest ring, or form a
pentagon at a step edge, for tubes wider than a critical di-
ameter (to be discussed below). Dimers and trimers
showed no unique pattern of deposition and their
behavior included the insertion of all atoms into the same
ring, the insertion of atoms into different rings, and start-
ing a new layer by creating a newly exposed step edge.
However, irrespective of the initially formed structures,
the microscopic ‘“‘annealing” processes involved bond
switching and ring migration mechanisms that were the
same in all cases. Therefore an analysis of the basic mi-
croscopic processes occurring at the nanotube tip based

FIG. 5. A schematic of step edges at the tip of a helical nano-
tube. The points 4 and B denote single and double steps, re-
spectively.
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on simulations involving only the deposition of carbon
atoms yields a comprehensive understanding of the nano-
tube growth kinetics.

Analysis of growth simulations on many different tubes
leads to different scenarios of adatom addition for tube
diameters larger and smaller than a critical value of ~3
nm. For the wider tubes, the incident atom always in-
serts into the nearest ring to form a larger ring or places
itself at the step edge to form a new pentagonal ring.
This insertion occurs within a few picoseconds at most,
irrespective of the initial energy of the adatom. If the
atom initially inserts into a hexagon (heptagon) away
from a step edge, it forms a heptagon (octagon). Octa-
gons are always energetically unstable and break up into
smaller rings (two heptagons, or a heptagon and a hexa-
gon if the octagon has a pentagon neighbor) by means of
a single bond switch. Pentagons and heptagons formed
at the tube tip migrate along a step by means of a series
of single bond switches,? a prototypical example of
which is shown in Fig. 6. They can also move to the ad-
joining step through single bond switches at the step
edge. All single bond switches described above occur
only at the tube tip and take place in a 10-100-ps time
scale at 3000 K. From our detailed simulations it is clear
that the initially formed heptagons and pentagons mi-
grate and anneal into an essentially all-hexagonal struc-
ture, with the possible exception of a few isolated penta-
gons that get converted to hexagons by subsequent depos-
its. In reviewing our simulations we were able to categor-
ize the various ways in which such annealing takes place
in a wide tube, thereby allowing for open-ended growth:
(a) a heptagon migrates to a step edge and breaks up into
a pentagon and a hexagon [Fig. 7(a)]; (b) a heptagon “an-
nihilates” with a pentagon to form a hexagon pair [Fig.
7(b)]; (c) a pentagon converts to a hexagon by the direct
insertion of a deposited atom [Fig. 7(c)]; and (d) a penta-
gon pair at a step edge ‘““fuses” together into a hexagon
[Fig. 7(d)]. Note that processes (a) and (d) can occur only
at a step edge, while processes (b) and (c) do not need the
presence of a step edge.

For tubes narrower than the critical diameter the situa-
tion is very different. Total energy calculations of possi-
ble adatom structures, which included atomic relaxation,
show that in these narrow tubes the hexagons at the step
edges are not as stable energetically as adjacent pentago-
nal rings (see Ref. 28 and Table I below). Furthermore,
pentagons separated by one or more hexagons are ener-
getically more stable than a pair of adjacent pentagons
(cf. the 565 or the 5665 configurations with the 55

FIG. 6. A typical ring migration mechanism observed in MD
simulations, illustrated here by the migration of a pentagon by a
single bond switch at the tube tip.
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FIG. 7. The various ways in which heptagons and pentagons
“anneal” to result in defect-free growth: (a) A heptagon at a
step edge breaks up into a pentagon and a hexagon; (b) a hepta-
gon “annihilates” with a pentagon to form a hexagon pair; (c) a
pentagon converts to a hexagon by a direct insertion of a depos-
ited atom; (d) a pair of adjacent pentagons at a step edge “fuses”
together into a single hexagon.

configuration in Table I). Thus, once a hexagon at a step
edge is converted to a pentagon pair (the configuration
55), the pentagons move away from each other and
spread out over the tube edge. A large number of well-
distributed pentagons at the tube tip gives rise to a
curved geometry in which any additional deposited atom
leads to the formation of a new ring, rather than inserting
into an existing ring. These rings result in the formation
of a cap that leads to tube closure with additional depos-
its. We tested the idea that a closed tube might grow by
the addition of atoms and smaller clusters to the closed
cap!” by direct simulation. This only led to the formation
of a disordered cap structure at the end of the tube, full
of heptagonal and pentagonal defects. These defects do
not anneal out within our simulation time.?° We there-
fore conclude that nanotube growth can only occur for
open-ended tubes wider than a critical diameter, estimat-
ed to be ~3 nm. This result is in agreement with the ex-
perimental observations of Iijima, Ajayan, and
Ichihashi'® and it also explains the conspicuous absence
of tubes narrower than 2.2 nm in arc discharge experi-
ments.

So far, we have presented a consistent model for the
growth and closure of a single-walled nanotube, while in
general multiwalled tubes are formed in an arc discharge.
However, once a single nanotube is formed, the next shell
can readily grow using the surface as a template. If the



52 THEORY OF CARBON NANOTUBE GROWTH

14 855

TABLE 1. Energies (in eV) of basic adatom structures that form on the tip of the tube during
growth. The energies of even structures are given relative to “6” and of odd configurations relative to
““5”. See text for an explanation of structure notation.

Structures 1.0 nm (11,3) 2.0 nm (22,5) 3.0 nm (35,5) 4.0 nm (48,6) 6.0 nm (72,6)
Even configurations

6 0.000 0.000 0.000 0.000 0.000

55 —0.437 —0.164 0.011 0.116 0.174
565 —0.677 —0.404 —0.204 —0.091 —0.001
5665 —0.711 —0.444 —0.305 —0.141 —0.087
75 0.719 0.773 0.775 0.803 0.789
57 0.503 0.601 0.622 0.661 0.645
576 0.676 0.862 0.903 0.946 0.946
756 0.716 0.783 0.799 0.830 0.813
765 1.041 1.231 1.303 1.339 1.320
567 0.782 1.086 1.186 1.269 1.284

Odd configurations

5 0.000 0.000 0.000 0.000 0.000

56 —0.050 0.011 0.047 0.087 0.102
566 0.009 0.078 0.123 0.167 0.211
5666 —0.029 0.097 0.150 0.175 0.195
7 1.350 1.469 1.505 1.529 1.538

76 1.498 1.676 1.751 1.812 1.566
766 1.457 1.646 1.732 1.795 1.833
7666 1.555 1.655 1.722 1.780 1.841

carbon flux is sufficiently high and the rate of diffusion is
high enough, the growth of the outer shells will keep pace
with the growth of the inner ones, leading to the forma-
tion of a multishelled tube without the need for bond for-
mation between the adjacent shells of the growing tube.*°
This scenerio is supported by the apparent independence
of the lengths of the various shells of multishelled tubes
synthesized in an arc discharge,’! as well as by the vary-
ing number of shells per nanotube. Note that for a com-
plete description of the growth, the initial nucleation
stages of the growth still need to be addressed. At this
point it is not clear whether growth in the arc discharge
is initiated by single- or multiwalled tube fragments.

IV. KINETIC MONTE CARLO SIMULATIONS

The analysis of Sec. III provides an atomistic picture of
why wider tubes should grow and narrower ones should
close. However, because of the small time step of our
MD simulations (0.5 fs) the total simulation time is limit-
ed to only several tens of nanoseconds. This makes the
growth simulation of even a single layer of a nanotube
wider than 3 nm very demanding computationally, even
at a relatively high temperature of 3000 K, and simula-
tions at lower temperatures (<2000 K) are presently un-
feasible.

In order to extend the total simulation time by four to
six orders of magnitude it is necessary to use a method
with a basic time step that is several orders of magnitude
larger than the MD time step. We found from the MD
simulations that the basic microscopic processes leading
to nanotube growth or closure involve bond switching
that occurs on a time scale of 10—-100 ps at the tip tem-
perature of 3000 K. We therefore developed a Monte
Carlo (MC) procedure to study the various ring migra-

tion processes occurring at the tube tip that involve a
series of bond switches. The basis of this formalism is the
recognition that at any stage of growth a nanotube con-
sists of only hexagonal rings in the “bulk” layers, and
mostly hexagonal rings along with a few pentagonal and
heptagonal ‘“‘defect” rings in the ‘“‘surface” layer at the
tip. All the bond-switching action takes place at the sur-
face layer, and thus the problem scales with the diameter
of the tube as (n;+n,), where (n,,n,) is the tube helici-
ty, and not with the total number of atoms included in
the simulation. We exploit the one-to-one correspon-
dence between the number of dangling bonds (the chemi-
cally “active” sites) and the number of rings in the sur-
face layer, and treat the rings as the basic units in the MC
transitions. The hexagonal rings are thus considered to
be the sites with an occupation number of 0, while the
pentagons and heptagons are considered to be sites with
occupation numbers —1 and +1, respectively. The for-
mation of octagons (occupation number of +2) by the in-
sertion of an adatom into an existing heptagon is allowed
in our simulations, although these immediately break up
into smaller rings. In this representation, a single bond
switch involves a “flow” of occupation from one ring to
its neighbor, with the flow probability governed by the
Metropolis algorithm. The total occupation in a single
MC step remains constant unless (a) there is an addition
of an atom; (b) a new ring is formed at a step edge; or (c)
an existing ring is annihilated at a step edge. The energy
difference between any two neighboring configurations,
involved in a MC move, is expressed as the difference be-
tween two appropriate energy variables among the 15
variables listed in the first column of Table I. The nota-
tion is in terms or ring sizes, with the rightmost ring at a
step edge. Thus “6” denotes an all-hexagonal ring, “57”
a pentagon-heptagon pair with the heptagon at a step
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edge, “766” a heptagon that is two hexagons away from a
step edge, “5” an isolated pentagon at a step edge, and so
on. The energies are measured with respect to the all-
hexagonal structures for the even configurations, and an
isolated pentagon at a step edge for the odd
configurations. Note that the “55” configuration changes
sign as a function of tube diameter. This occurs at ~3.0
nm, which determines the critical diameter separating
tubes that do and do not grow. A general configuration
at the tube tip is expressed as a linear combination of the
configurations shown in Table I. In the simulations, the
structure of the growing nanotube is relaxed by the con-
jugate gradient method every ten MC steps.

The top views of the resulting tubes of various helici-
ties and diameters are shown in Fig. 8. These structures
were obtained after annealing for 5000 MC steps, which
roughly corresponds to a total growth time of 250 ns.
Narrow tubes clearly start forming caps and close with
subsequent deposits. A growth sequence of a (35,5) tube
(diameter ~3 nm) is shown in Fig. 9. Note that at
different stages of growth the pentagons and heptagons
vary in number. However, for all the tubes we have con-
sidered (up to a diameter of 6 nm), the numbers of penta-
gons and heptagons are very low at all times of growth.
The number of pentagons rarely exceeds 6 and the num-
ber of heptagons almost never exceeds 2. Therefore the
wider tubes always remain straight and grow with a net
addition of hexagonal rings at the step edges.

The ability to carry out long simulations with MC al-
lows us to estimate the minimum temperature needed for
nanotube growth. For this, one first needs to calculate
the fastest growth rate as a function of temperature. As-
suming Arrhenius behavior, the average time 7, in
which a bond switching occurs at a temperature T is
given by the formula 7., =T7oexp(A/kpT), where 7 is
the average time scale of the attempt of a single bond

FIG. 8. Top view of tubes of various diameters annealed by
5000 MC time steps at 3000 K. Narrow tubes are clearly going
to close.
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FIG. 9. A growth sequence of a 3-nm-wide tube of helicity
(35,5): (a) the initial all-hexagonal tube; (b) after the addition of
200 atoms; (c) after 400 atoms; and (d) after 600 atoms. The
number of pentagons and heptagons are 3 and 1 in (b), 5 and 1
in (c), and 1 and 1 in (d), respectively. Their positions are high
lighted by the lighter atoms at the tube tips.

switch, A is a typical barrier encountered in a
bond switch, and kz is the Boltzmann constant. If a
minimum of Ny local bond switches is required for
full annealing of defects, an interval of at least
Tmin— N mcToeXp(A 7k T) is mandated between successive
deposits at the same site of the tube tip, in order to en-
sure defect-free growth. The fastest growth rate y at a
temperature 7 is thus estimated by the formula

¥ =8layer/ Trmin = Olayer( NmcTo) ~ 'exp(—A/kgT) , (1

where 8, is the average height of a nanotube layer
~1.0 A. From MD simulations at 3000 K we obtain
To~0.1 ps, Tewiteh ~ 50 ps, and A~1.55 eV. From exten-
sive MC simulations we obtain Ny-~50. The resulting
values of y for various temperatures are shown in Table
II. Considering that experimental growth rates lie in the

TABLE II. Fastest growth rate of a nanotube as a function of

temperature. Experimental rates are between 1 and 500 A/ms.
See text.

Temperature (K) Fastest growth rate (A/ms)

3000 4.0%x10°
2500 1.2X10°
2000 1.9 10*
1500 8.2X10?
1000 1.6 X 10°
500 «<1,0
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FIG. 10. Plot of the cylindrically symmetric repulsive poten-
tial used to represent the catalytic metal particle, as a function
of the radlal distance from the tube ax1s The radius of the hard
core is 3 A and the tube radius is 5 A.

range 1-500 A/ms, %32 2 minimum temperature of
~1000 K is mandated by our tube growth mechanism.
Although it is difficult to estimate experimental tempera-
tures at the tube tip, this value seems to be consistent
with all arc discharge experiments.

As described above, growth simulations by both molec-
ular dynamics and Monte Carlo on tubes narrower than a
critical diameter ~3 nm lead to the closure of the tube
and cessation of growth. However, very recently, nano-
tubes of diameter as small as ~0.8 nm have been grown
in arc discharge in the presence of transition metal cata-

lysts. ' In order to shed some light on the growth mech-
anism of these very narrow tubes, we have performed MC
simulations of their growth in the presence of metal parti-
cles inside the tube. The presence of a metal catalyst was
represented by a coaxial hard shell with a radial repulsive
potential ¥, of the Yukawa form:

—Mr—r.)]
r—r,

v (n=v, P

forr>r,, (2)

where r is the radial distance from the tube center, r, is
the radius of the hard shell (~2 A less than the tube ra-
dius), A is the inverse of the screening length, and ¥, sets
the energy scale for the potential. We have carried out
MC simulations on a 1.0-nm-diam tube in the presence of
such a potential with V,=1.0 eVA, A=2.0 A7}, and

=3.0 A, which corresponds to a potential of only 10
meV at the tube radius (Fig. 10). The resulting tubes an-
nealed by MC without and width this potential are shown
in Fig. 11. The tube remains straight and defect-free in
the presence of the potential, while the tip curves up im-
mediately if no potential is present.

While this picture of metal catalytic growth is some-
what simplistic, the results clearly show that small metal
particles can indeed prevent the closure of narrow carbon
nanotubes and lead to growth. A more detailed investi-
gation of the formation of nanotubes on metal particles is
currently underway.
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FIG. 11. Top view of a 1.0-nm-diam tube in the absence (a)
and presence (b) of a metal particle. The tube (a) closes while
tube (b) grows.

V. SUMMARY

In summary, we have studied the kinetics of carbon
nanotube growth in a standard arc discharge geometry
with a variety of complementary numerical techniques.
An accurate calculation of the electric field present at the
tips of both open and closed tubes followed by ab initio
MD simulation shows that the electric field cannot be the
critical factor responsible for open-ended growth. The
mechanism of growth was therefore investigated further
by classical MD and kinetic MC simulations, using realis-
tic, many-body potentials. Wide, helical tubes are found
to grow by the net addition of hexagons at the step edges.
This addition occurs when various nonhexagonal ring
structures (pentagons, heptagons, and octagons), which
may form initially upon the deposition of atoms or small
clusters, combine and annihilate into hexagons. All-
hexagonal structures, once formed, are quite stable
against bond-switching processes even at high tempera-
tures. The pentagons and heptagons are always few in
number and well distributed after annealing. However,
adjacent pentagonal structures nucleate quite readily on
the narrow tubes, resulting in structures that are highly
curved and lead to tube closure with further addition of
atoms. Our attempts to grow an already closed tube by
depositing atoms onto its cap result only in the formation
of a disordered tip. The above results are in agreement
with the open-ended growth model'® and also explain the
absence of narrow tubes under conditions of noncatalytic
growth.® Once an open-ended tube forms and grows,
other shells are expected to form, using the surface of the



14 858

nanotube as a template. This readily leads to the forma-
tion of multishelled tubes in the arc discharge apparatus.
Finally, the growth of very narrow tubes in the presence
of a metal particle!® was simulated by modeling the parti-
cle with a repulsive hard core coaxial with the tube. For
a tube of diameter 1.0 nm, we have shown that even a po-
tential as small as 10 meV at the position of tube atoms is
strong enough to “straighten” the tube that would other-
wise curve and eventually close. The resultant tube
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behaves just like a wide tube in noncatalytic growth and
can grow straight and defect-free.
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FIG. 11. Top view of a 1.0-nm-diam tube in the absence (a)
and presence (b) of a metal particle. The tube (a) closes while
tube (b) grows.
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