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Aharonov-Bohm efFect induced by mutual inductance for an array of mesoscopic rings
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The effect of mutual inductance on the persistent currents in N mesoscopic rings placed period-
ically on a plane is investigated. The persistent currents for the situations with mutual inductance
between the nearest-neighbor rings are calculated in detail. We find that while the self-inductance
suppresses the persistent current, the effect of the mutual inductance is to enhance it. For example,
for a metal ring (Au or Cu) of length Io = 1 pm and cross section A = 0.02 x 0.02 pm, the
persistent current due to the self-inductance is Ig ——0.2Io where Io is the persistent current without
the self-inductance. For a pair of rings, the contribution of the persistent current due to the mutual
inductance is about 10'Fo. The results can be understood as entirely due to self-consistency of the
equilibrium properties in the nanostructure.

There has been a great deal of interest recently in the
phenomenon of the persistent equilibrium current occur-
ring in isolated mesoscopic normal rings penetrated by
an Aharonov-Bohm (AB) flux. A very interesting effect
in the realm of mesoscopic transport is the AB efFect.
For a one-dimensional ring, the existence of circulating
currents was proposed by Buttiker, Imry, and Landauer
and a more detailed quantitative analysis was given by
Cheung and co-workers. Since then a great deal of the-
oretical efFort has been devoted to the understanding
of this phenomena. In recent experiments, the persis-
tent currents have been detected in an ensemble of 10"
Cu rings, in three single gold rings, and in a single
ring of diameter 2.7 pm. In the experiment the mag-
netic response of a system of 10 isolated, identically
patterned copper rings has been shown to oscillate as
a function of the enclosed magnetic flux on the scale
of half a flux quantum. However, the measured result
for the persistent currents was two orders of magnitude
larger than what had been predicted theoretically. Am-
begaoker and Eckern presented a calculation of persis-
tent currents by taking into account the electron coher-
ence along time-reversed paths. Since then a lot of the-
oretical work has been done to understand this exper-
imental enhancement of the persistent current. For a
one-dimensional spinless model the theoretical calcula-
tions have indicated that no significant enhancement of
the persistent currents is yielded by considering the eKect
of electron-electron interactions. For a two-dimensional
spinless model9 or one-dimensional models with spins, ~

however, large enhancement of the persistent current is
found due to the electron-electron interaction. For the
experiment on two-dimensional, few-channel, quasibal-
listic semiconductor rings the measured persistent cur-
rent is in good agreement with the predictions of non-
interacting electron theory. More recently, Kirczenow

concentrated on the enhancement of persistent current
by analyzing the electron scattering due to grain bound-
aries through three-dimensional computer simulations,
and the result he obtained is in good agreement with
the experimental data.

In this paper we study the persistent currents of N
rings placed periodically on the same plane and the AB
fluctuations due to the presence of the mutual induc-
tance. Because of the mutual inductance between two

rings, the electric current in one ring would produce an
induced flux in another ring. When the system is at equi-
librium the currents in rings associated with the mutual
inductance among the rings may be observable. Quali-
tatively, if an electric current is made to pass through a
mesoscopic normal ring, it is well known that its mag-
nitude will oscillate as a function of the magnetic flux
threading the ring. %'e will analyze the eKect of the mu-

tual inductance among the rings on the energies as well

as the persistent currents in the rings. En the following
discussion, we will assume that the rings are weakly cou-
pled to each other and any coherence among the rings
will not be considered. Such a coherence effect will be
presented elsewhere.

I et us start generally to consider N ideally mesoscopic
rings of radii B; with i = 1, . . . , N, which are set in the
same plane and parallel to each other. Two rings are
separated with a distance r between their centers. Since
two rings are not contacted and there is no tunneling
of the electrons among the rings, the particles moving
in these rings are independent. The Hamiltonian of the
system can be presented in the form
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where ps, = i M—/88; and i = 1, . . . , N denotes
the rings. The exact solution of the stationary-state
Schrodinger equation H4 = f4 can then be written as

(2m) ~ II~
z exp (i n;8, ) with the energy eigen-

value being

mutual inductance of rings a and 6 and rings a and c
are opposite in sign. To calculate the mutual inductance
of two rings on a plane, we Grst consider a more gen-
eral situation where two current rings whose orientation
in space is Axed, but whose relative separation r can be
changed. It has been shown that the mutual induc-
tance Wq2(r) =

$& $& (1/r)dlqdl2 is the solution of the
Laplace equation,

V' Wi2(r) = 0,

where n, = 0, +1,+2, ..., which determines the energy
levels and 4s = hc/e. The characteristic feature of this
spectrum is that the levels are equidistant. The energy
levels E' and other related physical quantities are there-
fore periodic in 40. For a time-independent Aux 4, the
equilibrium currents (at T = 0) associated with the state

n; in ith ring is I„,= —(e. /27rR;)v ', = —c(M.„,. /84, ),
where v,. = M/hBk = (2mc/e)M/84, is the veloc-
ity of the state n;. The total current for each ring is the
sum over the contributions I ',. of all states weighted with

the appropriate occupation probability I~'& = P f„,I~',

and can be written as

Wg2(r, 0) = ) (Atr'+ Bir ' )P((coso),

where P~(cos &) is the Legendre polynomials of order /.
The coefficients A~ and B~ can be determined once a so-
lution of Eq. (4) is known. To get a special solution of
Eq. (4), we arrange two rings concentric and parallel to
each other and assume that the centers of two rings are
separated by a distance r (which corresponds to rings a
and 6 in Fig. 1). The mutual inductance of this configu-
ration is easy to calculate and has an analytic form,

() eh ~ ( 4 l
2xmR2 ™( *

C,o)

8' ( k2)
Wg2 ———QRgR2

(

1 ——
)
K —E

A:
(6)

where we have set the temperature T = 0. An important
condition for I„',. to be nonzero is that the wave functions
of the charged and spin carriers should stay coherent
along the circumference 2m'R, of the rings i = 1, . . . , N.
Note that the Hux 4; in Eq. (3) includes the external
Hux and the contributions &om the self-inductance and
the mutual inductance among rings.

In Fig. 1, we plot three rings a, 6, and c, where the erst
ring a carries a current I and the magnetic-field lines are
also plotted. The second ring 6 is arranged so that it is
concentric to the first ring. The third ring c is placed on
the same plane of the erst ring. Note that the magnetic-
6eld lines penetrating ring 6 and ring c are opposite in
direction. As a result, the induced currents are also op-
posite in sign. This means that the coefficients of the

where k = 4RqR2/[(Rq + R2) + r ], and K and E are
the Grst class and second class complete elliptic integrals,
respectively, given by

do!

/1 —k2 sin n
'

~/2
/1 —k2 sin ndn.

Since Eq. (6) is a solution (with 0 = 0 ) of Eq. (4), the
mutual inductance of two rings on the same plane (0 =
90'), which corresponds to rings a and c in Fig 1, can .be
calculated in terms of a power series of R/r For example. ,
when Ri ——R2 ——R and r & 2R, one obtains

rR)' 9 &R)'
Wg2(r) = —~ R 4E )

375 (R)'
+

/ /
+

current I "~ ~b B

FIG. 1. Three rings a, b, and c. The first ring a carries a
current I. The second ring b is arranged so that it is concentric
to t, he first ring. The third ring c is placed on the same plane
of the first ring. The magnetic-field lines generated by the
first ring are also shown.

where r is the distance between the centers of two rings.
As expected we obtained a negative coefficient of the mu-
tual inductance. The coefficient of mutual inductance
~Wq~~/R as a function of r/R is depicted in Fig. 2, Rom
which we see that ~Wq2~/R drops sharply as r becomes
larger. The coefficient of self-inductance L cannot be ob-
tained &om TVq2 by taking the limit r —+ 0. It has to
be calculated separately by assuming that the ring has
6nite width so that L will not diverge. For a thin ring of
wire having a radius R and radius Ro for the wire, the
coefficient of self-inductance L can be written as
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the rings, the total flux threading the ith ring is given by

C; = O;."'+ L—,I&'l + )-W;, I~'l,
c c

2

(10)
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FIG. 2. The magnitude of the coefBcient of the mutual
inductance of two rings ~W! 2~ as a function of their separation
r /R, where R is the radius of the ring.

where I; is the coefficient of the self-inductance for the
ith ring, TV;~ is the coefficient of the mutual inductance
between rings i and j, and 4," is the external flux for
the ith ring. By substituting 4'; into Eq. (3), the current
can be divided into two parts I(') = Ip' + IM, where

4vrec 5
X,

e2L;N, ' + 2(2') c mR.

and

L = 4vrR
i

ln
8R 7l

(9)
(~)

) W,,I~'l, (12)
e L;N ' + 2(2~)2c2mR2

where the magnetic susceptibility has been set to 1 and
the condition Rp &( B has been used in deriving the
above equation.

We now arrange N rings on the same plane. Because
of the self-inductance and the mutual inductance among

where N, ' is the number of electrons in ith ring, IM is
the correction contributed &om the mutual inductance,
and X, is given by

( @ext) N(~l i for
X; —) ~

A +
~ (C'o p N, ' ( ~

—2) for N(i)
odd,

even,
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The ratio IM /Io' is given by

hN(i) ) w;~, (13)2' mR2c@p
2 () ehN, L 3 ()

6m2mc@p (18)

where k~ is the Fermi wave vector and I p = 2vrR is the
circumference of the ring. Equation (14) can be written
as

and the persistent current IL' due to the self-inductance
can be calculated from Eq. (11) and is equal to

(i) ehNe L (i)
(i)

L 4 R2 @ 0 (14)

Ng kpA,

and the total number of electrons is

N, ~ kpLpNg)

or more accurately

IpA

Now we estimate the current contribution of the self-
inductance and the mutual inductance for a metal ring.
In most conceivable experiments the wires making the
ring have a 6nite cross section A. Thus, the number of
transverse states (across the wire) below the Fermi energy
E~ is on the order of

where L = L/R. Hence the persistent current due to
the self-inductance is proportional to the cross-section
area of the ring, the Fermi vector, and the coefficient
of the self-inductance. Similar expressions can be ob-
tained for the mutual inductance. For a metal ring
(k~ --1.2 x 10 m, e.g. , Au or Cu) of Lo ——1 pm
and A = 0.02 x 0.02 pm, one 6nds N, = 2.3 x 10~.
The coefficient of the self-inductance can be estimated
from Eq. (9), which gives L 39R. Finally, we ob-
tain the persistent current due to the self-inductance
IL ——0.2I0 where Ip is the persistent current without
the self-inductance and the mutual inductance. For the
contribution of the mutual inductance, we have I~
0.01 P (W;~/R)Io &om Eq. (13). In Fig. 3, we plot
~IM/Io~ as a function of the separation for a square array
of rings. We see that when two rings are close together,
i.e., r & 2.2R, the contribution &om the mutual induc-
tance is over 10%. However, when they are far apart, say,
r & 4R, the effect is small, i.e., about 1%. For the gold
ring studied in Ref. 5 the ring dimensions are the average
diameter 2R —3 pm, the ring line width 0.09 pm, and
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inductance of two identical rings where Eqs. (11)and (12)
can be written as
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FIG. 3. The ratio of the persistent current due to the
mutual inductance to the original persistent current II~/IoI
as a function of their separation r/R for a square array of
identical rings.

where B is the radius of the ring, I is the coeFicient of
self-inductance, and W is that of the mutual inductance.
The solution of the above two equations is given by

1 fLN, 2amR ) W¹
Il — +

( 2cCo eh ) c@o

the thickness of the ring, 0.06 pm. In this case, the co-
eFicient of self-inductance L = 50B and the contribution
due to the self-inductance is II, ——3.5IO, which is much
larger because of the larger cross-section area. Similarly,
we obtain the persistent current due to the mutual in-
ductance IM = 0.14 g. (W,~/R)Io. For an array of rings
with separation r = 3R (Ref. 4) we have IM 0.4Io.

To illustrate the self-consistent persistent currents in
the rings, we first examine the contribution of the mutual

and

(LN.'" 2~mR'

~
2ceo eh ) ce'o

(22)

where 4 is given by

2' mB'L'7l m N(1) N(2)

2vrmR2 N, f I+ —~W
eh c@o (2 )

4~'m'B'
e h
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where LN, = N, —N,(1) (2)

These expressions can be further simplified if, for ex-

ample, we consider when both N and N, are odd.(1) (2)

We then have

1 2vrmR N, (L l ¹
I1 ———— ——W

eh cOo ( 2 ) 4o

4mec h N(1)

e (L+ 2W)N, + 2(2~) c2mR

(24)

1 2vrmR2 N,( l
/ Ll N'
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4mec2h Ne ext

e2(I + 2W)N, + 2(2')2c2mR

where we have assumed LN &( N so that the term in-
volving b,N, in Eq. (22) can be neglected. Comparing
Eq. (23) with Eq. (11), we see that the presence of the

I

self-inductance suppresses the persistent current, which
is expected from Lenz's law. However, the mutual induc-
tance tends to enhance the persistent current (since W
is negative). Because W is much smaller than L the net
efFect of the self-inductance and the mutual inductance
is to reduce the persistent current. When both N, ) and
N are even, we get the same expression for persistent(2)

current except that 4'" /4o is replaced by C"" /@o —1/2.
For an array of N metal rings, since A; in Eq. (11)

is a periodic function of 4 ", the persistent current also
has period 40. If the number of electrons N, is kept
fixed but varies randomly &om one ring to the other, the
periodicity is halved for average magnetization. Finally
the energies for the particle in each ring can be expressed
as

(;i )- h t 4;"' 1 I, (,l
-2mR,'. (

'
Co 2ceo

~s
2

In addition, the energy of the system for the magnetic
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interaction is given by

(27)

partially via mutual inductance, threading the rings. Our
detailed calculations of the persistent currents indicate
that the self-inductance suppresses the persistent current
but the eKect of mutual inductance among rings is to
enhance it.

where W;; = I,. The total energy of the system is ex-
pressed as E+ = P,. Z(') + 8

In summary, we have proposed a model for induced AB
e6'ect by mutual inductance of an array of mesoscopic
rings. We evaluate the system in such a way that the
motion of the particles is left in each of the rings and the
cycle passage is coherent through the mutual inductance.
The equilibrium of system persists due to the total Aux,
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