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We derive an expression for the drag rate (i.e., interlayer momentum transfer rate) for carri-
ers in two coupled two-dimensional gases to lowest nonvanishing order in the screened interlayer
electron-electron interaction, valid for arbitrary intralayer scattering mechanisms, using the Boltz-
mann transport equation. We calculate the drag rate for experimentally relevant parameters, and
show that for moderately high temperatures (T & 0.2', where T+ is the Fermi temperature) the
dynamical screening of the interlayer results in a large enhancement of the drag rate due to the
presence of coupled plasmon modes. This plasmon enhancement causes the scaled drag rate to have
a peak (i) as a function of temperature at T —0.5T~, and (ii) as a function of the ratio of densities
of the carriers in the two layers when their Fermi velocities are equal. We also show that the drag
rate can be significantly affected by the intralayer scattering mechanisms; in particular, the drag
rate changes approximately by a factor of 2 when the dopant-layer modulation doped structures are
moved in from 400 to 100 A.

I. INTRODUCTION

Coupled quantum wells fabricated by epitaxial growth
make up interesting systems for studying electron-
electron interactions in low-dimensional systems both ex-
perimentally and theoretically. In coupled wells placed
within tunneling distance, one can, for instance, study
Coulomb gaps in high magnetic Gelds. For wells sepa-
rated so that tunneling can be disregarded, the effect of
the mutual polarization may become important even at
zero magnetic Geld, and it has been suggested that the
interlayer correlations can drive a Wigner crystallization
when the coupled plasmon mode goes soft. This is,
however, only relevant for low-density systems and. has
so far not been observed experimentally to our knowl-
edge. At higher densities, coupled collective modes in
multilayer systems have been seen in inelastic light scat-
tering experiments. ' In this paper, we discuss another
probe of interlayer interactions and the possibility of ob-
serving the coupled plasmon modes in bilayer systems,
namely, by the so-called Coulomb drag effect, ' where a
current in one layer drives a current in the other layer
due to the momentum loss caused by interlayer electron-
electron scattering events. The Coulomb drag effect has
recently at tracted much experimental and theoretical
at tention.

Normally, the eKects of electron-electron collisions only
have indirect consequences for transport properties of
single isolated quantum wells, because they conserve mo-
mentum. The Coulomb drag effect is unique in that it
provides an opportunity to directly measure electron-
electron interaction through a transport measurement
where momentum is transferred from one layer to the

other. Since interlayer interactions depend strongly on
the many-body effects of the system it is therefore essen-
tial to include screening in the theoretical understand-
ing of the measurements. Recently, we have pointed
out that at intermediate temperatures on the scale of
the Fermi temperature the drag effect should in fact be
greatly enhanced by "antiscreening" due to coupled plas-
mon modes.

In this paper, we offer a more detailed study of the pre-
dicted plasmon enhancement effect in zero magnetic Geld.
We base our calculation on the random-phase approxi-
mation (RPA), which is generally believed to be valid for
not too low densities such as, e.g. , the experimental re-
alization fabricated by Gramila et al. However, for low-
density systems such as the electron-hole system studied
by Sivan, Solomon, and Shtrikman, the RPA approx-
imation is not able to account for the magnitude of the
observed drag effect. This discrepancy between theory
and experiment could be an indication of breakdown of
RPA due to correlation effects. The Sivan et al. system
is, however, not relevant for the plasmon enhancement ef-
fect studied here due to the large mismatch between the
Fermi velocities, as will be explained below.

The results obtained in this paper are based on the
Boltzmann equation. Quantum effects neglected by the
Boltzmann equation can be shown to be experimentally
negligible in the structures we consider. ' We derive
a generalized formula for the drag rate that is valid for
arbitrary intralayer scattering processes, which reduces
to the previously obtained results for the case of a
constant relaxation time approximation.

The role of intralayer carrier-carrier interactions has
not been studied so far to our knowledge. As mentioned
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above the intralayer interactions usually only have indi-
rect consequences for the transport properties. However,
it turns out that the plasmon part of the drag effect is
very sensitive to the details of the distribution function.
We have solved for the distribution function including
intralayer electron-electron interaction using parameters
for GaAs-Al Gaq As quantum wells and found that for
high-mobility samples where the distance to the b-doped
impurities is fairly large the distrubution is well described
by a shifted Fermi-Dirac distribution function and which
allows us to assume an energy-independent momentum
relaxation rate when calculating the drag rates. This is
the situation previously studied by several authors. '

However, for the case where the dopant is moved closer to
the two-dimensional electron gas the situation is changed
and we predict an enhancement of the drag rate because
of a larger plasmon contribution in this case. The rea-
son for this enhancement is that the distribution function
becomes skewed toward higher energies and the overlap
with the plasmon branch consequently becomes larger.

The paper is organized as follows. In Sec. II we dis-
cuss the general formula for the drag rate, and in Sec. III
we study the RPA approximation of the screening for a
coupled two-layer system. The drag rate for the case
of shifted Fermi-Dirac distributions, which is applica-
ble when the charged dopants are far &om the quan-
tum wells, is studied in Sec. IV. In Sec. V, we study the
case when distributions deviate from shifted Fermi-Dirac
functions, as when the dopants are close to the quantum
wells. Finally, a summary is given in Sec. VI. Technical
details are given in a number of appendixes.

II. BOLTZMANN EQUATION CALCULATION
OF THE DRAG RATE

By the Onsager relationship p~2 = p2~ .
In the case of isotropic parabolic bands, where one has

a well-defined effective mass m, one can define a drag
rate w&& through

CX CX m1
Ai e 72i

(2)

where n~ is the carrier density in layer 1. Physically, the
drag rate is the net average rate of momentum transferred
to each particle in layer 2, per unit drift momentum per
particle in layer 1, i.e.,

I (Bp2/Ot)
721

where p; is the momentum per particle in layer i, and
the overbar denotes an ensemble average. Note that by
this definition, the drag rate is not symmetric; i.e., rzz
7%2D]77l i A2 7 2i, which is important when layers 1 and
2 are not identical. We follow the convention of previous
authors by denoting 72i as 'TD.

The drag rate has previously been derived using a
Boltzmann equation approach ' assuming an energy-
independent intralayer momentum relaxation time, and
also using a memory functional method with a constant
relaxation time approximation. This result was recently
generalized, using the Kubo formalism, to include energy-
dependent impurity scattering rates. Here we shall fur-
ther generalize this result to arbitrary intralayer scat-
tering mechanism within the linear response Boltzmann
equation description.

In a drag experiment, two doped and independently
contacted quantum wells are placed. very close to each
other. We consider the case typical in experiments where
one applies electric field Ei causing a current of density
J~ to fIow in layer one. This sets up an induced electric
field E2 in layer two, where the current is set to zero.
(Throughout this paper we denote layer I as the driven
layer and layer 2 as the dragged layer. ) The transresis-
tivity tensor p2& is then defined as

A. Boltmmann equation for coupled quantum wells

We define the function @(k) that is related to the de-
viation of the distribution function &om equilibrium by

(4)

Pe) ) 21 Jl)n +2P.
n=x, y

where fo(k) is the equilibrium Fermi-Dirac distribution
function. With this definition, the linearized interlayer
electron-electron collision term is

dkg

(2') (e, k, q
— k, )f'(k. )f:(k2)[~ —f'(k1+ ~)ltI —f:(k2 —

&)~

x ]g, (k, ) + 4, (k, ) —@,(ki + q) —4 ~(k* —a)] & (~k, + ~k, —'k, +q
—'k, q)
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Here u)(q, ~) is the probability of a particle scattering
with change of momentum and energy of hq and Ru, re-
spectively. This rate is usually taken to be the Born ap-
proximation result v)(q, u) = 2mb ~W12(q, ~)~, where

W12(q, ~) is the dynamically screened interlayer Coulomb
interaction matrix element.

We assume that the interlayer interactions are weak,
so that these interactions are only kept to lowest order.
Then, within linear response to an external driving field
E1, the coupled Boltzmann equations for the system read

0

e181 '& H1 1 k1 (6.)

e2+2 '+
g

S 1) 2 0 k2 H2 2 k2

where e, is the carrier charge in layer i and H,. is the neg-
ative of the linearized intralayer collision operator. We
have used the assumption of weak interlayer interaction
to neglect the interlayer electron-electron collision term
in Eq. (6a) and to set @2(k2) = 0 in the interlayer colli-
sion term S in Eq. (6b), as these terms are higher order

in the interlayer interaction than the other terms in their
respective equations. For convenience, hereafter we shall
refer to S[@1,g2 ——0)(k2) simply as S(k2).

The formal solutions for @1(ki) and gq (k2) for K fields
in the x direction are

&f1
01(kl) el@1II1 V, 1 (kl)

OE'

We assume the electric field in layer 2 is adjusted so that
the current in layer 2 is zero, i.e. ,

dk2 0f20= —2e2k~T v2 $2(k2) = 0, (8)

which implies, by substitution of Eq. (7b) into Eq. (8),

0
4'2(b2) —&2E2H2 V,2( ~ ) (b2)+EI2 (Sj(b2) ~ (7b)

dk2 0f2 -, Bf22kaTe2E2 2 V2 ~ H2 V2, (k2) = n2e2p&, 2E2
t9e

= —2e2k~T 2 v~ 2 H2 S k2 . (9)

The equivalence in Eq. (9) comes from Eq. (A3) in Appendix A, and the p|, z is the mobility of layer 2 in the absence
of interlayer coupling.

Substituting Eq. (5) [with $2(k2) = 0] into Eq. (9), and using the identities

b(~b +~b —~b —eb )
= hf d~ b(eb —eb q

—M)8(eb —eb +M),

f'(si) [1 —f'(s2)1 = If'(") —f'(si)ln~(si —s.)

(10a)

(10b)

one obtains

dq
n2e2pi 2E2 ———4e2hkgyT

27r 2
d~ v)(q, (u) n~(hcu) n~( —Ru)

x '2 1k1 — 1kl+q 1 k1 —
1 k1+q 8ek -ek

g 0
x

2 vx, 2 H2 2 k2 2 k2 'q ~ ek ek q+

To write Eq. (11) in a more tractable form, we define the transport relaxation time of layer i, v;. (k;), for arbitrary
intralayer scattering by

(12)

in analogy with the case of impurity-dominated scattering (see Appendix A). Then, from Eq. (7a) and the definition
in Eq. (12), the term in the large square brackets in Eq. (11) (i.e. , involving integration over ki) is equal to
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, [@i(ki) —4i(ki+ q))[fi'(ki) —fi'(ki+ q)]~(&k, —&k, +q
—h )

eiEi
kgT [vx, l(ki + q)71(kl + q) vx, l(kl)rl(kl)][fi (ki) fi (kl + q))~(&k ek +q ~).

Note that this quantity is odd with respect to u.
Furthermore, using the fact that H2 is Hermitian (see Appendix A) and Eq. (12), the term in Eq. (11) in the

large curly braces (i.e. , involving integration over k2) can be rewritten as

(f2 (k2) f2 (k2 q)) ~(ek, —ek, q + ~)v. , 2(k)r2(&)

dk'
2 k2+q ~k —~k —~ v, 2 k', +q 7-2 k', +q

+8(ek —ek + Ru)v~ 2(k, )~2(k, ) . (14)

For the last equality in Eq. (14), we have symmetrized by dividing into two equal parts and performing the variable
changes: k2 ——k2 + q in the erst term and k2 ———k2 in the second term and using inversion symmetry in k space.
Inserting Eqs. (13) and (14) into Eq. (11),and performing a variable change u ~ —u in the second term in the square
brackets of Eq. (14) [which gives an overall minus sign because of the oddness of Eq. (13) with respect to u] gives the
following symmetric form for the transresistivity tensor:

p~ E2
niei pt, i@i 2' ei e2nin2k~T

I~»(q ~)l'FP(q ~)]&2 (q ~)
(2~) 2

o sinh (Ru/[2k~T])
(15)

Here, we have used 4n~(Ru)n~( —Ru) = —sinh (hcuP/2) and we have defined the function

2me dkE (q, ~) = [f (k) —fo(k+q)] b(e(k) —e(k+q) —Ru)[v (k+q)~(k+ q) —v (k)~(k)].
hp, , (2m. )2

As required by the Onsager relation, pzz
—— pzi in

Eq. (15). Y'(& ~) = 2, (f'(e(k)) —f'(e(k+ q))k
2' dk

B. Drag rate for isotropic parabolic bands

We concentrate on the case where the bands are
isotropic and parabolic, as in the case of the electrons
or low-energy holes in GaAs, generally the material of
choice so far in performing drag experiments. In this
case, when one has a well-defined mass, the mobility can
be written in terms of the transport time

engr

This transport time is the time that enters the conductiv-
ity, o = ne 7t, /m One can write I." (q, u) = q Y(q, tu),
where

(k~;(e(k)) —(k + q)~;(e(k + q)))

x h'(e(k) —e(k + q) —~)

Hence, using Eq. (2) and Eq. (15), the drag rate for
isotropic parabolic bands can be written as

CXO CX)

7D 72] dg g dQJ
8min~k~Tm p p

lwi2(q, ru)l Yj(q, ~)Y2(q, (u)

sinh (Ru/[2k~T])

When w;(k) is independent of k the function Y reduces
to the usual imaginary part of the polarization function,
Im[y], and the drag rate formula in Eq. (19) reduces the
result of Refs. 8, 10, and 12. lVe emphasize that results
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in Eq (15) and Eq. (19) hold for arbitrary intralayer
scattering mechanism. However, in order to compute the
drag rate for a given system one must obtain r(k) by
first solving for the linear-response distribution function
for each layer in the absence of interlayer coupling.

In this paper, we study the drag efFect at interme-
diate temperatures where phonon scattering provides
an important contribution to the scattering rates and
hence one may expect that the solution of the Boltz-
mann equation does give a nonconstant w;(Ie). On the
other hand, electron-electron interactions tend to pull
the distribution function back to a shifted Fermi-Dirac
distribution. We have performed a numerical calcula-
tion of the distribution function in GaAs-based quantum
wells with dopants placed approximately. 700 A. away,
as in previous experiments (e.g. , in Refs. 8 and 10) and
found that the distribution functions in these cases can,
to a very good approximation, be described by a con-
stant scattering time. Details of the method and
calculation are given elsewhere. The characteristic
time scale for electron-electron scattering is given by
7 (h/E~) (E~/k~T) . For GaAs doped at 1.5 x 1011
cm at 10 K, w~, = 10 s, as compared to the impu-
rity and phonon scattering times, which are typically of
order 1'

p ph 10 s. The relation w, « 7'
p ph ex-

plains why the shifted Fermi-Dirac distribution function
is a good approximation to the actual solution of the
Boltzmann equation.

Therefore, in Sec. IV we shall restrict ourselves to the
case where the Y fuiiction in Eq. (18) can be replaced by
the imaginary part of the polarizability, '

—1
D

h2 OO OO

dg g8min2k~T~ 0 0

W» (q, a) I Immi (q, ~)lmy2 (q, (u)

sinh (Ru/[2kiiT])
(20)

However, we show in Sec. V that in the case when the
impurities in the modulation-doped samples are moved
in closer to the quantum wells, the momentum relax-
ation times r(k) become significantly dependent on k,
and there are fairly large difFerences between the drag
rates evaluated by Eq. (19) and Eq. (20).

III. COUPLED PLASMON MODES IN THE
RANDOM PHASE APPROXIMATION

To calculate the drag rate, one needs to evaluate
the dynamically screened Coulomb interaction W(q, w),
which we do using the RPA. The RPA equations for the
coupled two-layer system read

Uii ~I I( Vll
I

I( VllXl V12X2
I

I( Ull
I (21)

U21 ) E V21 ) 4 V21X1 V22~2 ) k U21 )

where the matrix V;~ defines the unscreened Coulomb
int raction given by V;i = E;iV(q). Here, V(q)
2xe /(eoq) = 27T'fy'qz y/(k&q) and I";z are the form fac-
tars, for which we use the farm for square wells (see, e.g. ,
Ref. 12),

3z + 8~ /z 327r2[l —exp( —z)]
z2+ 47r2 z2(z + 47r2)

64vr4 sinh (z/2)
z (z2+ 47r )

(22a)

(22b)

where z = qL, L is the width of the quantum wells (equal
widths are assumed), and d is the center-to-center well
separation. The solution for the screened interlayer in-
teraction thus becomes

U12(q, u)) = V12(q)

e(q, ~) ' (23)

where

(q, (u) = [1 —Vji(q)&1(q, ~)][1—V22(q)&2(q, ~)]
—[V»(q)]'»(q ~)»(q ~) (24)

e(q, (u) = (1 —e ")[y(q, ~) —y+(q)]
x Ix(q, ~) —~-(q)]P'(q))' (25)

where

x+(q) = c+(q)
V(q)

'

c+(q) = 1+ e—&"' (26b)

From this it is clear that the dispersion of the two col-

The collective modes of the coupled electron gas are
given by the zeros of the dielectric function. There are
two such modes, one where the electron densities in the
two layers oscillate in phase, which we call the optic
mode, and one where the oscillations are out of phase,
referred to as the acoustic mode. At zero temperature
U12(q, tu) has two poles on the real cu axis, giving h-

function peaks. At finite temperatures these poles move
ofF the real u axis, which implies that they will gain finite
widths. In calculating the plasmon dispersions at Rnite
T, we search for the solutions of Re[e(q, w(q))] = 0; so
long as the damping is small and the poles are not too
far from the real axis, this criterion accurately gives the
position of the pole.

While there are simple analytic expressions for
Im[y(q, u)] and Re[y(q, cu)] at T = 0, none exists at fi-
nite temperatures. Since it is necessary to evaluate the
y at finite temperature (using the T = 0 expressions for
y does not give the required plasmon enhancement, as
explained later), we have developed an eKcient way of
calculating the finite-temperature y, which is elucidated
in Appendix B.

In order to gain insight into the structure of the collec-
tive mode dispersions, we take in the following simplify-
ing limit, which allows us to obtain an analytic solution
of the dispersion relation of the poles at T = 0.

In the case when ql « 1, one can to a good approxi-
mation set z = qL = 0 in Eq. (22b) and the form factors
reduce simply to Ell ——1 and E12 ——exp( —qd). Then, the
dielectric function for two identical layers can be written
as
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lective modes is given by the conditions y(q, a~(q)) =
y~(q). The zero-temperature real part of y is given by2s

&(q)x'(q ~) =, I

— &+ —'+
(27)

where we have defined ay = ~/v~q 6 q/2kF, and used
the notation y = y'+ iy". We then find for the plasmon
solutions

0) at zero temperature.
In the next section, however, we will see that the plas-

mon contribution to the drag rate is in fact given by q
values in the intermediate range, and thus in order to
get a quantitative theory of the collective mode enhance-
ment, use of the small-q expansion is not suFicient, and
it is necessary to perform a full numerical calculation.

IV. THE DRAG RATE FOR THE SHIFTED
FERMI-DIRAC DISTRIBUTION

b~ gl + 4/A~
~~(q) = qvp

2

q q
b~ = c~

qry k~ k~
q' ( qc+ &

A~ =2c~
~

1+
qT'y'k~ l 2q~~ j

(28a)

(28b)

(28c)

As mentioned previously, when the dopants are far
enough away from the quantum well (+ 400 A), the distri-
bution functions are to a very good approximation shifted
Fermi-Dirac functions, and one can use Eq. (20) to eval-
uate 7D . We do so in this section.

The small-q behaviors of the plasmon solutions are

cd+(q) ~ +qqT~vp'&

1+ qg Fd
(q) = qvp 1+ 2qTyd

(29a)

(29b)

in agreement with Ref. 27. Thus the optical mode has
the familiar square-root behavior while the acoustic mode
is linear in q. Because the latter is lower in energy, it
gives the dominant contribution to the drag rate at small
temperatures, as we show later.

Figure 1 shows the dispersion relation of the plasmons
as given by Eq. (28a), for two difFerent values of layer
sepation d. Also shown is the part of the q-u plane where
particle-hole excitations are allowed (i.e. , Im[y(q, w)] g

A. Plasmon-pole approximation

l~(q ~)l = 2&(q)e '"IP~(q)[~ —~+(q)]+ i~"(q ~~)l
(30a)

dx'(q, ~)p+q = (30b)

Inserting the approximate dielectric function into
Eq. (20) and assuming that the imaginary part of y is
small, we approximate the Lorenzian by b functions and
obtain

First, we develop a pole approximation for the plasmon
contribition to the drag rate and compare it with the full
numerical solution. For frequencies near the zeros of the
real part of the dynamical dielectric function we may
approximate e(q, ~) = e'+ i,e" in Eq. (25) as

Ui2(q)
e(q, (u) 41m[~(q ~)]IP+(q) I

~(~ —~+(q)) (31)

which leads to the following two-plasmon contributions
to the drag rate:

3 1m[X(q, ~+(q) )]dqq ~ 2 4

8men2mikT p 4]P~(q)
~

»nh [~+(q)P/2]
(32)

0

FIC. 1. Plasmon dispersions at zero temperature for two
identical wells based on Eq. (28a). The dispersions are shown
for two diferent values of the layer separation k&d = 4 (solid
lines) and k~d = 12 (dashed lines), and the hatched area is
the particle-hale continuum. The lower (upper-) lying branch
corresponds to charge-density oscillations in the two layers
being out of (in) phase. The modes are well defined only
at small q. At larger q, they disappear either by merging
together or Landau damping.

The parameter q in this expression defines the value of
q where the plasmon ceases to exist. Operationally, we
take q, ~ to be the wave vector at which the plasmon
dispersions disappear (i.e., there are no more solutions
Re[a(q, w)] = 0) in the finite-T RPA formalism. Inter-
estingly, the exponential dependence on the well sepa-
ration d has dropped out of the integrand in Eq. (32).
However, v~ is still d dependent, through the d depen-
dence of w~ (q), P~ (q), and q . As d is increased, the
slope of w (q) increases and q, decreases, as evidenced
in Fig. 1 (at finite temperatures, the acoustic and optic
plasmons merge when they come close, and the merg-
ing point gives q, ). Both these efFects tend to decrease
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the integrand and hence the drag rate. On the contrary,
the decrease of sr+(q) with increasing d tends to make

bigger, but this is generally a weaker effect. Hence,
as expected, &D decreases with increasing well separa-
tion. Obtaining a precise analytic functional dependence
of wD on d is diKcult, but we have shown numerically
that in the plasmon-dominated region ~D d where
n 3. Also note that Eq. (32) breaks down for large d
because in this limit, tv+(q) and cu (q) come so close to-
gether that the Lorenzians from both these lines overlap.
This contradicts the initial assumption that the Loren-
zians individually can be approximated by b functions.

From Eq. (32) we see that the plasmon contribution is
given an integral over, among other factors, the imag-
inary part of y for frequencies and wave vector cor-
responding to the plaslnon dispersions. Therefore a
nonzero Im[y] at co~(q), which is outside the T = 0
particle-hole continuum, is necessary to obtain any plas-
mon enhancement effect. Since the T = 0 form of
Im[y] is always zero at u~(q), it will never give a plas-
mon enhancement. One must therefore use the finite-
temperature form of y in the evaluation of the drag rate.

At small temperatures, Im[y] at w~(q) is small because
the carriers generally do not have sufhcient energy to be
excited very far above the Fermi surface. However, at in-
termediate temperatures (on the scale of the Fermi tem-
perature) there are enough thermally excited particles so
that Im[y] at sr~(q) is large and the plasmons actually
dominate the drag response.

In Fig. 2 we show the integrand of the Eq. (20), which
gives the drag rate at two different temperatures (for lay-
ers of zero width). There are pronounced peaks caused by
the presence of plasmons due to the dynamically screened
interlayer interaction. YVe also show the plasmon-pole

T = O. B TF

Oi
0.0 0.5

q/k, .
1.0

approximation to the integrand described above, which
indicates that this approximation is very good for tem-
peratures less than 0.5T~ for the relevant q's which con-
tribute significantly to the integral.

In Fig. 3 we show a contour plot of the integrand of
Eq. (20) for T = 0.3'. Note that the integrand has
significant weight at intermediate q and w values, i.e. , up
to q 0.8k~ and ~ 2E~, showing that small u and q
expansions are generally inadequate for calculating wD

at intermediate and high temperatures.

FIG. 3. Contour of the integrand of Eq. (20) for the
case of two identical Ga As quantum wells with densi-
ties n = 1.5 x 10 cm, and a well separation of
d = 3.75 k& ——375 A, well widths of 200 A, as in the ex-
periment by Gramila et al. (Ref. 8), at T = 18 K (=0.3 Tp)
Adjacent contours difFer by 10 Ep/h = 8 x 10 s, and the
rightmost contour line equal to 10 EJ;/5 The da. shed lines
are the plasmon-pole approximation dispersion curves.

B. Numerical evaluation: vD

5x10 4— T = 0.5TF

h~/Er
FIG. 2. Scattering rates [integrand of Eq. (20)] as a func-

tion of energy transfer Ro, for GaAs coupled quantum wells
with equal electron densities of n = 1.5 x 10 cm, well
separation d = 8 k& ——800 A. , q = 0.3 k~, and zero well
widths, at two different temperatures T = 0.5T~ and 0.8T~,
where T~ = 61 K. The dashed lines are the plasmon-pole
approximation to the plasmon peaks, which is used for cal-
culation the pole contributions in Fig. 4. Note how the poles
merge and are Landau damped at higher temperatures, im-

plying that the plasmon-pole approximation is not valid for
T&0.6T~ and higher.

We evaluated 7D for parameters corresponding to
high-mobility GaAs samples similar to those of Ref. 8.
We did this several different ways. First, we numerically
integrated Eq. (20), using the finite-temperature RPA
Im[y] obtained through the technique described in Ap-
pendix B.Figure 4 shows the result of this full numerical
integration of Eq. (20) (solid line). We also solved for the
temperature-dependent plasmon poles numerically and
used the plasmon-pole approximation described above to
obtain the plasmon contribution to the drag rate. One
can see that the approximate curves reproduce to a cer-
tain degree the enhancement seen in the full solution. At
low temperatures the upturn in the drag rate is caused
mainly by the acoustic mode, which is lower in energy
and hence easier to excite thermally, while at higher tem-
peratures both modes contribute. At even higher tem-
peratures (T + 0.6T~) the separation into plasmon and
nonplasmon contributions is not well defined because the
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peak at equal Fermi velocities (and hence matched den-
sities when the masses of the wells are equal) should be
the feature of the predicted plasmon enhancement which
is easiest to experimentally verify. Other signatures in-
clude the aforementioned d behavior and the upturn
in the temperature scan at approximately 0.2T~.

V. DRAG RATE AS A FUNCTION OF DOPANT
DISTANCE FROM QUANTUM WELL

Thus far, we have assumed that the r(k) is constant
(which is equivalent to assuming that the distribution
function is a shifted Fermi-Dirac function) and hence
Eq. (20) is valid. This is only true if the sum of the impu-
rity and phonon scattering rates is relatively energy in-
dependent and/or these rates are much smaller than the
intralayer electron-electron scattering rates, as is the case
when the dopants are placed approximately 700 A away
&om the quantum well. We find, however, that when
the impurities are moved closer into the wells, Eq. (20)
is no longer valid; in fact, when the impurities are placed
100 A. from the side of the well, it underestimates the
drag rate by approximately a factor of 2 when compared
to Eq. (19) because it neglects the energy dependence of
the moinentum relaxation time r(k).

To evaluate the drag rate in this case, one must be
able to calculate the momentum relaxation rate r(k) in
the presence of impurity, phonon, and electron-electron
scattering. We adapt the formalism used to study this in
three-dimensions to two-dimensions. We assume that
the impurities are charged and are in an uncorrelated b-

doped layer a distance 8 from the side of the quantum
well. We calculate r(k) including effects of the dynam-
ically screened intralayer electron-electron, screened re-
mote ionized impurity, and screened acoustic (both de-
formation potential and piezoelectric) phonon scatter-
ing. Our calculations indicate that r(k) is exceedingly
flat when s = 700 A. , but as the impurities are moved in
r(k) starts to show a significant positive slope at around
s = 300 A. This is because the charged impurity poten-
tial is long ranged, implying that it falls ofI' rapidly with
increasing momentum transfer, and hence the momen-
tum relaxation time increases with increasing momen-
tum. At large 8, the electron-electron scattering, which
drives the distribution to a shifted Fermi-Dirac function,
suppresses this positive slope. However, as the impuri-
ties are moved closer to the well, the impurity scattering
and electron-electron scattering rates become compara-
ble, and hence the positive slope in r(k) develops.

A positive slope in r(k) enhances the drag rate be-
cause it implies that there are relatively more carriers at
higher energies [see Eq. (12)j. These higher-energy car-
riers are able to carry more current, which consequently
causes increase in the drag rate. The enhancement is even
more pronounced when we include dynamical screening
because it is the high-energy particles that participate in
the plasmon-mediated interlayer Coulomb interaction. In
Fig. 6 we show the drag rate as a function of the charged
impurities from the side of the wells s (which we assume
is the same for both wells), for several difFerent tempera-
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tures, all other parameters being fixed. The figure shows
that one can obtain an enhancement in the drag rate of
approximately a factor of 2 by moving the impurities to
within 100 A of the side of the well, all this coming from
the momentum dependence of r(k). From the figure, one
can see the eKect of the plasmons again on &D in the fact
that the enhancement at small 8 is largest at T = 30 K
where the plasmon enhancement is the greatest, because
a larger number of high-energy particles can now partake
in the plasmon-enhanced interlayer scattering.

Finally, since we have studied the drag rate in the case
where the absolute magnitude of the impurity scattering
rate is large (because 8 is small) one could ask if the diffu-
sive form of the polarizability function ' at small q
and ~ has any efFect on our calculations at experimentally
relevant temperatures. We conclude it does not because
the crossover temperature below which the diffusive efI'ect
should be seen goes as s 0.1K exp[ —0.9(E/d) ]. Since
d is on the order of 400 A. , and. l, the mean free path, is
approximately 0.1 to 1 ILIm for s = 100 A, the crossover
temperature is extremely small and experimentally irrel-
evant.

VI. DISCUSSION AND SUMMARY

Using the Boltzmann equation, we have derived a for-
mula for the transresistivity of coupled two-dimensional
electron gases, valid for arbitrary intralayer scattering,
to lowest nonvanishing order in the interlayer interaction.

FIG. 6. The drag rate as a function of the distance of
the charged dopant layer, s, from the side of the well. The
solid (dashed) lines were calculated using full dynamic (static)
screening, and T = 15, 20, and 30 K. The parameters used
were n = 1.5 x 10 cm, d = 375 A, and well width of
100 A in GaAs. For s 400 A. , the distribution functions are
very close to shifted Fermi-Dirac functions. As s decreases,
the distribution functions deviate from shifted Fermi-Dirac
functions, and the drag rate increases markedly.
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While the Boltzmann equation does not include quantum
efFects such as weak localization, it has been shown
that these efFects for systems where k~1 && 1 are neg-
ligible. The transresistivity depends on the momentum
relaxation times r; (k) of both layers, which are given by
the linear-response solution of the distribution function
to an applied electric fieM.

For isotropic parabolic bands, one can define a drag
rate that is proportional to the transresistivity. In this
case, in the limit where r(k) is a constant, one regains
the previously obtained result, Eq. (20), from our result,
Eq. (19). A constant r(k) is equivalent to a shifted Fermi-
Dirac distribution function under application of a small
electric field. In experiments done previously, where the
dopant layer in the modulation-doped structures is rel-
atively far away from the quantum wells, r(k) is in fact
relatively constant over the relevant energy range (i.e. ,
within a few k~T from the chemical potential), because
the electron-electron scattering rate, which tends to drive
the distribution to a shifted Fermi-Dirac function, dom-
inates over all other scattering rates. Thus, for calcula-
tions involving these structures, we have used Eq. (20).

The interlayer coupling is given by the screened
Coulomb interaction. Due to the presence of plasmons,
both acoustic and optic, the interaction can be signifi-
cantly enhanced, as these plasmons serve to "antiscreen"
the interaction. At low temperatures, the plasmons are
"frozen out, " and hence they play no role. At higher tem-
peratures, however, the plasmons can enhance the drag
rate by almost an order of magnitude over interactions
that exclude dynamic effects of the coupled electron gas
system. We have shown that the maximum plasmon en-
hancement occurs around 30 K for GaAs when both wells
are doped at 1.5 x 10 cm . Furthermore, because the
plasmon enhancement is most efFective when the Fermi
velocities of the two electron gases are equal, one should
see a peak in the wD as the ratio of densities of the elec-
tron gases n2/ni is varied through 1.

We have also investigated the efFect of moving impu-

rities closer to the quantum wells, which gives 7.(k) a
positive slope. This increases the number of high-energy
(and hence large current carrying) particles and hence
also enhances the drag rate. The efFect is largest when
the plasmon efFect is the greatest. One obtains an en-
hancement of approximately a factor of 2 when impuri-
ties are moved in from s = 400 A. to s = 100 A. .
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APPENDIX A: BOLTZMAN EQUATION
FOK SINCLE LAYER.

In this appendix, we describe the formalism for the
Boltzmann equation in a single quantum well, which we
use in the main text.

1. Formalism for intralayer scattering

The linearized form of the Boltzmann equation for
(positively charged) carriers with an electric field E' is

eE —= eX v = —0 k (Al)

dk a(k) H[b](k) = dk b(k) H[a](k). (A2)

Therefore, the current in the P direction is given by
Eqs. (4) and (Al),

From the principle of detailed balance, one can show that
H is a Hermitian operator, i.e. , for arbitrary functions
a(k) and b(k),

gp =28 dIC
„vp Sf(k)

dk Bf2ekvT vp(k—) ( ) e)'(k)

= 2kvre )-E f",v, (k) .( )(k) fI 'v. ( ) (k)-
Ck

(A3)

where the factor of 2 is for spin, and p~ is mobility
tensor of the system.

2. Impurity scattering

linearized collision operator is given by

(A4)

We now examine a concrete example, an isotropic sys-
tem dominated by impurity scattering, in which case the

where r(k) is the transport lifetime. i The inverse of H
is trivial,
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g(k)~(k)
k T (Ofo/a. )(k)' (A5)

2m dk fo(k+ q/2) —fo(k —q/2)
x(q, ~) =

h2 (2vr) 2 k q —mu)/h —i0+~ )

eE e (k) v (k)
kIBT

(A6)

and hence the solution of Eq. (Al), for E in the x direc-
tion, is

(B1)

where f is the Fermi distribution. We define the follow-
ing nondimensional quantities

Q = q/ky, K = k/kF, 0 = hu)/Ey,

APPENDIX B: NUMERICAL EVALUATION OF
THE FINITE TEMPERATURE POLARIZATION

FUNCTION

kBT/EF~ p = P/EF) X 2)
1

x (B2)

Here we describe an e%cient technique for calculat-
ing the finite-temperature 2D-RPA y for an isotropic
parabolic band. The RPA y is given by

where k~ = (2am) ~ (n is the density), and E~
h2k+2/(2m). Note that y is normalized by the value of
y(q -+ 0, tu = 0; T = 0). In these units,

where

x(Q, ~) =-
27K

f'( * + Q/2 Kw) —f'(K* —Q/2 Ky)
K Q —0/2 —i0+ (B3)

(B4)

1. Imaginary part of y

The imaginary part of y is given by

Im[y(Q, 0)] =

(B5)

where

OO —1/2
W ~~22: = dy

~sr jo exp(y —x) + 1 (B6)

is the Fermi function of order —1/2. X zy2 is a well-known function, and many excellent approximation schemes
are available to evaluate it.

2. Real part of g

We use the expression by Maldague

X(q, ~;P, T) = dv' x(q, ~;I ', T = o)
4k~T cosh [(p, —y, ')/(2k~T)]

Letting a~ =
2 (q~ + Q) and using the known form for y(q, u; T = 0), we obtain
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Re[y(Q, 0)] =— 1 sgn(a+)1—
4t cosh [(P, —p')/(2t)) - Q

+ a —p ~a —p)
sgn(a )

a2+ —P,' 0(a+ —P')

where

sgn(a+) M (
2

)
sg ( —) M (

2
)exp( —P,/t) + 1 Q Q

(B8)

M, (*) = dIJ 2 (~ —I') ' .
4t o h ([~'-~(t)l/(2t))

APPENDIX C: THE LARGE TEMPERATURE
LIMIT T && TF

In the case of very large temperature, the Coulomb
interactions are basically unscreened because the typical
wave-vector transfers are much larger than the Debye
screening wave number, qD = 2ne n/(eok~T), and one
can assume that the interlayer interaction is the bare
unscreened interaction. Then, under further assumptions
that the carriers are nondegenerate and the intralayer
momentum scattering rate is constant, we show that the
drag rate goes as 7D oc T ~ . Since 7D oc T for small
T, the drag rate must peak at some temperature.

The polarization function for a Maxwell-Boltzmann
distribution in the RPA is

q& i'~ ql
x(q ~) = &I =+ —

I

—&I = ——
I

2tq (2q 2) q2q 2 j (C1)

where Z is the plasma dispersion function. Here as be-
fore, y = y/[m/(A2vr)] and t = T/E~, whereas the other
variables with tildes are defined as being normalized with
respect to temperature,

q = nq/+2mk~r,

k~T'
d = d/2mk~Th (C2)

The classical limit (q « 1) of the polarization function

For any given temperature, this function Mq(2:) need only
be evaluated once, and then a polynomial, Pade, or a
spline fit can be made to it. Then, Re[y(q, u)] can be
evaluated with this fitted function, using Eq. (B8). Cau-
tion, however, should be exercised when Q « 1 and 0/Q
is not small. Then, the terms +Q M, (a~) in Zq. (B8)
are large and approximately cancel, leading to large nu-
merical uncertainly. We got around this problem by using
the well-known asymptotic form Re[y(Q, 0)] = 2Q /0,
which can be derived from Eq. (B8). This form should be
used in the regions when numerical inaccuracies plague
the form given in Eq. (B8).

Note that this technique for calculating the RPA-y is
not restricted to equilibrium situations. For a nonequi-
librium isotropic distribution function f(k), one need
only replace f in Eq. (B5) and 1/4k~T cosh [(p-
p')/(2k~T)] in Eq. (B7) by f and Of/Os, respectively.

y, i [which is valid here because the q integration is cut
off at small q; see below] only depends on the ratio u/q,

x.i(~/q) = —&'
I =

I

~

2t (2q j (C3)

The imaginary part is given by

(u ~vr
Im[y. )((u/q)] = — exp I—

2tq ( 4q p
(C4)

From Eq. (20), the drag rate for identical layers is

2
Aq~ / 27re m

d 3
nm E Eo rr 5 qy' )

exp( —2qd) ~~z (
d~ 2 exp

I

— I. C5
q2 sinh'(ur/2) 4t'q' ( 2q2 p

Having nonidentical layers simply leads to a change in
the prefactor. Defining fD as &D divided by the non-
temperature-dependent prefactor in the curly braces in
the above equation yields

7r
dq q exp( —2qd)

4~

~2 exp[ —~2/(2q2)]
sinh (~2/2)

(c6)

7~' = vrt ' dq q
' d~ exp[—~'/(2q')],

0 0

7r
dq exp( —2qd),

2

= (-) ' ; (C7)

Since t oc T and d oc T /, this shows that the tempera-
ture dependence of the drag rate in the large-temperature

Since d oc T /, for large T the integrals are cut oR'

at small q. The presence of the Gaussian term in the w

integral implies that this integral is also cut o6' at small
values, and hence an expansion sinh (u/2) = u2/4 can
be made. This gives
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limit, given an energy-independent intralayer momentum
relaxation rate, is

In actual fact, this asymptotic behavior is reached very
slowly. Our numerical eva1uation of the drag rate indi-
cates that for the experimental parameters of Ref. 8, this
behavior of 7D occurs only when T )) 10TF, and hence
is not experimentally observable for these parameters.
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