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The longitudinal-optical (LO) phonon-assisted electron relaxation has been investigated in a two-
dimensional electron system in the quantum-Hall-effect geometry. The phonon emission rates versus
inter-Landau-level separations are calculated. One I 0- and two LO+LA-phonon emission processes
via polar optical and deformation acoustical interactions are considered. To obtain a 6nite relaxation
rate associated with one-phonon emission, the allowance for the Landau-level broadening or for the
LO-phonon dispersion is made. Below the LO-phonon energy cu&o within an energy range of the
order of hgus/r the one-phonon relaxation rate exceeds 1 ps . (Here r is the relaxation time
deduced from the mobility and u& is the cyclotron frequency. In GaAs/Al Gaz As heterostructure
with the mobility p, = 25 V s m this range makes up 0.7 MeV. ) The two-phonon emission has
a signi6cant contribution to the relaxation above cui, o. At energy separations of the order of ca&
(c is the sound velocity and as is the magnetic length) the LO+LA-phonon emission provides
a mechanism of subpicosecond relaxation while in a wide energy range of the order of Ru& the
subnanosecond relaxation can be achieved.

I. INTRODUCTION

In recent years there has been much success in using
electron-optical phonon interaction to probe the various
electronic properties of a two-dimensional electron sys-
tem (2DES) (see Ref. 1 and references cited therein).
The electron-longitudinal-optical (LO) phonon scatter-
ing rates in the 2DES have been calculated both for
usual bulk LO phonons and bulklike confined LO,
interface surface optical (SO) modes. ~ ~ If a mag-
netic Geld is applied normal to the electron layer, the
electron motion is fully quantized. In this quantum-
Hall-efFect (QHE) geometry, there has been consider-
able experimental and theoretical interests in the (reso-
nant) two-dimensional (2D) magnetopolarons, cyclotron
resonances, ' 2D electron-phonon bound states,
cyclotron-phonon resonances, magnetophonon,
and energy loss effects. Phonon emission is the ba-
sic mechanism that ensures electron relaxation in various
experiments of light radiation ' or Auger processes,
etc. , where electrons are erst created in higher Landau
states. However, in such effectively OD systems with
rather thin electron layers and subjected to rather strong
magnetic 6elds, a large separation between Landau levels
cannot be covered by an acoustical LA phonon ~ so that
the multiphonon 2LA-phonon emission processes become
more eKcient. An optical-phonon emission requires a
precise resonance Llu~ ——up~, Ll = 1, 2, 3, . . . , in this
regime (sr~ and uLo are cyclotron- and LO-phonon fre-
quencies). As far as it moves ofF from the resonance,
the eKciency of this process sharply falls so that out of
resonance the LO-phonon emission will be possible by
accompaniment of the LA-phonon emission via the two-
phonon emission mechanism. Possibly for this reason,
except for the work, calculations of the electron-optical-

phonon relaxation rates have been restricted thus far to
the zero magnetic 6eld case where the LO-phonon emis-
sion is the dominant relaxation mechanism with subpi-
cosecond emission time. In Ref. 33, the direct calcula-
tion of the electron-phonon scattering rates have been
carried out for a quantum-well structure with infinitely
high confining wells. It has been obtained, however, that
in the case of the polar optical (PO)-phonon scattering,
the relaxation rate diverges. This divergence has been
physically attributed to the complete quantization of the
electron spectrum although it does not make clear why
the relaxation rate diverges only for the polar interaction.
We suppose that this divergence can be caused by use of
the momentum-conservation approximation4 in the ex-
treme quantum limit, while this approximation fails in
this limit. It may be seen later that calculations with-
out the use of the momentum-conservation approxima-
tion allow us to avoid this divergence.

Recently, to estimate the intensity of infrared cy-
clotron radiation from 2D electron gas in a double-barrier
quantum-weH structure, the LA, 2LA phonon, photon
emission, and Auger processes happening in the QHE ge-
ometry have been analyzed. The LO+LA-phonon emis-
sion processes have not been considered. Although, one
may expect that in some experimental situations the elec-
tron relaxation &om a higher Landau level directly into
the lowest one can turn out crucial either due to the LO-
phonon emission or, if it is far from the resonance, due
to the LO+LA-phonon emission.

The LO-phonon-assisted electron relaxation has been
studied in quantum dots. ' The multiphonon relax-
ation rate calculation in a GaAs quantum dot has in-
dicated the significance of LO+LA processes in an effec-
tively OD system, which create a window of rapid sub-
nanosecond relaxation. Up to now, however, the study
of the LO-phonon-assisted multiphonon processes in the
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@HE geometry is missing &om the literature.
The aim of the present work is to study theoretically

the polar PO-phonon-assisted electron relaxation in the
QHE geometry. The calculations incorporate one- (Sec.
II) and two-phonon (Sec. III) emission processes for the
electron relaxation between bulk Landau states. To ob-
tain a finite relaxation rate in the case of the one-phonon
processes, the Landau-level broadening or the dispersion
of PO phonons has been taken into account. The electron
interaction with bulk PO and interface SO phonons are
considered. In a quantizing magnetic Beld, the emission
of a LA phonon via piezoelectric interaction is suppressed
in comparison with deformation interaction. Therefore
calculations of the LO+LA-phonon emission have been
carried out for the deformation potential of DA phonons
and for the Frolich coupling of PO phonons. Particu-
lar attention is given to the comparison of the electron
relaxation in two ways: the relaxation in two emission
acts (a PO-phonon emission with a subsequent LA- or
2LA-phonon emission) with the two-phonon relaxation
via PO+DA-phonon emission mechanism between the
same Landau levels. Especially the emission processes
in magnetic Belds up to 10 T are considered. On the one
hand in such fields the resonance Alu~ ——~po can be
achieved for small values of Ll = 1, 2, 3. On the other
hand, the acoustical-phonon emission at electron transi-
tions between such distant Landau levels is still a rather
eKcient effect ' ' observable in experiment. Nu-
merical results are illustrated by consideration of the PO-
phonon-assisted relaxation between Landau levels l = 3
and l = 0. Section IV contains concluding remarks.

Mnlkmn'I'k' —+ (q)Qll' (qJ )inn& ( qe)~ k', k—q» & (2)

where the modulus squared of the form factor Qll is given
b 39

Q2 ( ) = ltl l—(Ll, l (t))2,

Here LI is the Laguerre polynomial and a~ is the mag-
netic length. One can see that Qllj does not depend on
momenta A: and k' apart but depends only on q~, which
is bound up with the axial symmetry of the magnetic
Beld. In the case of n = n' = 0 using the model wave
function

(4)

The electron eigenstate Inlk) is labeled by a subband in-
dex n corresponding to the quantization of electron mo-
tion in the z direction, by a Landau index l, and an
electron momentum x-component k. In the case of the
bulk Landau states, the eigenenergy c ~ does not depend
on the quantum number A:, which counts the degener-
acy of a Landau level. The frequency of a phonon in a
given mode is u, (q). Because corresponding wave func-
tions lnlk) are factored into a subband function ln) and
a Landau oscillator function Ilk), the matrix element is
represented in the form

II. ONE-PHONON EMISSION

The 2DES embedded in an elastic medium of a sin-
gle heterostructure and subjected to a quantizing mag-
netic Geld in z direction normal to the electron layer
is considered here. The scattering probability at which
one phonon of a given mode s and a 3D wave vector
q = (q~, q, ) is emitted by an electron of the 2DES is
given by Fermi's golden rule as

nlk +n~l~k« —T I -nlk —+n'l'g '
I I: nl n'l' (q)l .

for the subband part of the matrix element, one can ob-
tain the following explicit forms:

(5)

where d is the length scale of the 2DES in the z direction.
It is assumed that d is the smallest parameter of the
problem so that the electron relaxation between Landau
levels of the lowest subband should be considered.

In Eq. (2), the factors B'(q) characterize the electron-
phonon interaction and are given by

B1/2
BDA (q) zq /2 DA

L3/2 '
~DA

3 ~~2 3
ppo ppo 1

~h2c 2~hpc2 4 ps
'

B1/2
~PO( )

PO
~q L3/2 '

mBpp 1= 2o.powpo ——

ppo 0.14 ps'

Bl/2 mBso
h3pso

so~so 1

&Po&PO 'TPO

(0.50 ps) for x = 0.3
(0.34 ps) for x = 1.
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2

O.'so = ) Vs= )
KSOvSO m (7)

where KSO has the form

Here L is the normalization length, m is the electron ef-
fective mass, c is the sound velocity, and hp, = /2mku, .
The constants BDA, Bpo (Ref. 41), and Bso are bound
up, respectively, with the deformation potential constant
:-, the usual Frolich constant o.po, and the electron-SO-
phonon coupling o.so. The constant o.so for interface
modes in a single heterostructure is defined on the anal-
ogy of the Frolich constant

il' (7) (t 2) (I 2 2)3

2 d
xb [b.l(ugy —(vapo(q)], p = 2

Gg

The PO-phonon emission is governed by the density of
final states of a two-particle system: an electron at the
level I,

' and a PO phonon. Both particles have an infinite
mass so that this system does not have a continuous spec-
trum. Therefore, to obtain the finite relaxation rate, the
Landau-level broadening or the PO-phonon dispersion is
to be taken into account.

KSO =
2 2

(d —(dSO POv TQv

i (~so ~To&)
(8) 1. A/torrance for the Landau level -broadening

Here upo„and ~To„are the frequencies of the longitu-
dinal and transverse phonons, respectively, and the high-
&equency dielectric constant is K „. Index v = 1, 2 de-
notes the diferent media in contact at a heteroface. The
&equency of the interface SO phonon is the root of the
following equation:

For actual calculations of the scattering rate (10), we
have to smear the b function in Eq. (11). Replacing the h

function by a Lorentzian characterized by the total width
h/r, where r is the relaxation time deduced &om the
mobility (e.g. , p = 25 V s m2=~ = 10 ps), it is easy
to obtain

2
4J —Cd) e~((d) = 0, t~((d) = K~~

v=1 ~TOv

D~~, ( l) = , di~ (~)
1 + T (ldpo —Gild~)

(12)

A. The PO-phonon scattering

The scattering rate of an electron between two Landau
levels l and 1' interacting with the PO phonon can be
represented in the form

1
po = ).~nlk~n'I'k'
l-+l' ~ g, i

r

) .—,qr'~ («)
q

x (!Ioo(q.) ('b[&i~a —~po(q)]
Q~B~PO DPo( )

&PO
(10)

where the overlap integral Dg, (p) is given as

where e„ is the dielectric function of the medium v.
Taking for physical parameters of a GaAs/Al Gai As
heterojunction uLQ1 = 36.62 MeV, ~TQ1 = 33.3 MeV,
K~1 ——10.9, and ~LQ2 = 49.8 MeV& ~TQ2 = 45.1 MeV,
K~2 ——12.0 if x = 0 3 or (dLO2 = 50.0 MeV, 4)TO2 44 9
MeV, K 2 ——8.5 if x = 1, one can obtain from Eqs. (7)—
(9) iso = 34.4 MeV and crso = 0.31npo if z = 0.3 and

so = 34.62 MeV and o.so = 0.43'.po if x = 1, which
allow us to have the numerical values cited in Eq. (6).

In Eq. (6) instead of the constants B, the nominal
times r, (Ref. 41) are defined, which give a visual view of
scattering rates. It can be seen that iso is 2.5—3.5 times
larger than &PQ, i.e., generally speaking, the interaction
with interface modes should be weaker than with bulk
modes.

(14)

One may see that x t 1, i.e. , q q~ a&,
have the main contribution to the integral (11). This
isotropic distribution in momenta of emitted phonons is
conditioned by the long-range nature of the polar interac-
tion. It forces the scattering time to be governed by the
minimum size in the momentum space: min(a&, d
Recall that in the case of the DA-phonon scattering, the
phonon emission is anisotropic in the momentum space:

1 )p q ~
—1 38,43,44

In magnetic fields below 10 T using d = 3 nm as a
typical value for a GaAs/Al Gai As heterostructure,
we have p (( 1. Therefore in rough estimates the value
of de), at p = 0 can be used.

The result of numerical calculations according to Eqs.
(10) and (14) at p g 0 and w = 10 ps is shown in Fig.
1. The diagram of the scattering rate dependence on
the inter-Landau-level separation for E = 3 and l' = 0
represents a narrow peak at the PO-phonon energy with
peak value exceeding 10 ps . One may see that for
detuning 0.2 MeV, the scattering time r~~o increases by
an order.

Note that in the case of the relaxation between Landau
levels L = 1 and I' = 0, the scattering-rate dependence on
the interlevel spacing is also represented as a Lorentzian
with approximately the same width and with the peak
value 1.17 times larger than that of the relaxation be-
tween levels L = 3 and l' = 0.
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FIG. 1. Calculated Landau-level broadening contribution
to the PO-phonon emission rate versus the interlevel spacing
Alu~ for the electron transitions between l = 3 and l' = 0
levels in the vicinity of the PO-phonon energy ~po.

FIG. 2. The PO-phonon dispersion contribution to the
PO-phonon emission rate evaluated numerically as a function
of the interlevel spacing Alu~ for the electron transitions be-
tween l = 3 and l' = 0 levels.

2. Allowance for the PO phonon -dispersion

2
In this case taking ~po (q) = (vapo (1 —z~, ) with (dpo =

36.62 MeV and qe
——0.185 nm the overlap integral (11)

can be reduced to a one-dimensional integral of the form

l l' w+z +
(t + )(1 +

t+ z2
xb

~

Alcugy —(vapo + 2 (upo
2xo j

a Q)g (v)
~PO Ale)~ 0 (1 + 62z2)s '

x(') ——qoa~/2, y = a'(1 —x'),
= (1 —+I~a/a'po)qoaa ~ = a 'Y

which is evaluated numerically for the electron transi-
tions between l = 3 and l' = 0 Landau levels (Fig. 2).
Because of the energy conservation the electron relax-
ation via this mechanism is possible only on the low mag-
netic field side, 3m~ ( upo. The scattering rate has a
sharp and strongly asymmetric peak immediately below
&po with the peak value exceeding 1 fs . It can be seen
from Eqs. (10) and (15) that the scattering rate decreases
exponentially for energies below the peak value while it
drops more strongly for energies above the peak value
(Fig. 2). As following from the comparison of diagrams
of Figs. 1 and 2, the PO-phonon dispersion contribution
is greater by an order at the relaxation peak than the
Landau-level broadening contribution. The former re-
mains significant even for samples of exceptional quality
(p ) 100 V s m ). On the other hand, the allowance
for the Landau-level broadening gives rise to a symmetric
peak at upo thereby providing the one-phonon relaxation

on the upper side of the resonance.
Note that the electron-PO-phonon relaxation rate cal-

culated in a GaAs quantum dot as a function of a dot
diameter or, that is the same, of an interlevel spacing
has an approximately 3—4 times narrow peak than the
peak of the PO-phonon dispersion contribution obtained
here in the @HE geometry. Both have approximately the
same peak value exceeding 1 fs

B. The SO-phonon scattering

In the case of a single heterostructure, the interface
SO phonons do not exhibit dispersion. Therefore for SO
phonons, we consider only the Landau-level broadening
contribution to the relaxation. To obtain the scattering
rate, we have to replace all indexes PO by SO and to
take the overlap integral D&&, in the form

'T SO
1+r (iso Ala~) , A~ h')

dso «%&~ (t)
dn (~) = «~(,
„so ~(2~ —1)"

Lo
2&it

Dt& ('7) = (i6)

Note that t 1, i.e., q~ a& have contributed heavily
to both integrals in Eqs. (14) and (18). It is clear that the
SO-phonon relaxation peak is shifted on the low-energy
side by ~po —~so = 2 MeV. Taking; d = 3 nm and
B = 7 T, it is easy to obtain d&0

——0.023 and d3o
0.1. Therefore at the relaxation peak the PO-phonon
scattering rate is to SO-phonon scattering rate as
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SO
max 3~0

PO
3mo

7SQ 4)PQ d30
PO

&PO ~SO ~3p
159 if x = Oe3

10.8 if x = 1. (19)

Thus the SO-phonon relaxation at least by an order is
weaker than the relaxation via PO-phonon emission.

III. TWO-PHONON PROCESSES

To calculate the transition probability due to the two-
phonon emission, the quasiparticle approach has been

exploited. Therefore, the two-phonon contribution to
the electron relaxation in the first order of the pertur-
bation theory arising from the interaction Hamiltonian
expanded up to second order in the phonon displacement
operators can be neglected. The second-order contribu-
tion to the probability of an electron transition from a
bulk Landau state I/k) into a state I/'k') of the same
lowest subband (for brevity the subband index will be
omitted), at which one PO phonon with a 3D wave vec-
tor q and one DA phonon with a 3D wave vector q' are
emitted, is given by

+q +qI 2x BPOBDA q'
(k-+l'Iq' 4 S 2 ~&', &—q —q' /i(+/(dB (dpO C(/ )q2 & a

x (i &'l exp( —i qr)l )ii(rlkl exp( —iqr)lii) e( i lieex(—piqr)lK)( lieiexp( iq'r)liie) —

)+
(/ /)(dB (dpO (/ —/)(d B —c(/'

(20)

The PO+DA-phonon emission rate at electron transi-
tions between Landau levels l and l' can be obtained
after summing up over the phonon and the anal electron
momenta: q, q', and k' &PO+DA 4'TP0 &DA cPPQ

where a nominal relaxation time is introduced

(24)

PO+DA / ""
LA: —+l'A, " '

l +l' A. ",q,q'
(21)

IQ( i (v~) —Q«(~~) I

Qii (~~)

&& Iloo(q. ) I'I Io(ov.') I' (22)

which again can be reduced to a one-dimensional integral
of the form

1
PO+DA
l —+l

2

d(Pio(p) dt' exp( —t')
PO+DA CAPO 0

[L (t') —L (t')1'
x

QP2 ti[1 + +2(P2 ti)]3
6(tCOgy

—CdPO oBi

Note that after summation over k' the result cannot de-
pend on gauge noninvariant quantum number k. The ex-
plicit calculation of the emission rate can be carried out
by considering separately the following two situations:
(6/(dB —(dPQ) « (dB, (dpo and (6/(dB (dPQ) B(d& p(d&0
where the relaxation is qualitatively diferent.

(a) (b, /(dB —(dpO) « (d B, (dpO. In this energy range the
main contribution to the sum over intermediate states l
in Eq. (20) has the state / = /' in the first term and the
state l = l in the second term. Therefore, the emission
rate can be rewritten as

1 27( BPQBDA ) /) (4/(dB —(dpO —c(/ )

1 16(/ —/') p (dB PO
(I''r, 15 rpo+DA capo

(26)

The essential part of the magnetic field dependence in
this range is given by

depending only on heterojunction parameters. For a
GaAs/Al Gai As heterojunction with d = 3 nm, we
have fPQ+DA 2.9 ps.

Actually in this energy range of Ll~~ the electron
transitions take place in the following two ways. (i) Re-
maining on the level l an electron emits a DA phonon
thereby the electron-phonon system is forced to transit
into a virtual intermediate state. After the electron emits
a second PO phonon, the electron-phonon system turns
out in the final state with the real electron on the Landau
level /' and with two real DA and PO phonons. (ii) In
the second way an electron first emits a PO phonon and
simultaneously makes a transition to the level l'. By the
emission of a second DA phonon, this virtual interme-
diate state is forced to transit into the same final state.
In both cases, 3D wave vectors of emitted PO and DA
phonons are not correlated. The 3D wave vectors of emit-
ted PO phonons have the same isotropic distribution in
the momentum space as in the one-phonon emission case.
While the momentum distribution of the emitted DA
phonons is diferent in different ranges of Llu~. Immedi-
ately above the PO-phonon energy /i(dB so that P (& 1 [it
corresponds to energies for which (4/(dB —(dpo) &( c/uB],
electrons emit DA phonons with q& q' a& . In this
case the following asymptotic expression is obtained for
the emission rate:



14 786 S. M. BADALIAN

1 5
PG+DA
l + l'

(26)

1
PO+DA
l ~l'

du (~). ( 7)
rpG+DA P(1 + 7 P ) capo

The essential part of the magnetic field dependence is
given by

1
po+DA m (B—Br).t) )

l + l'
(28)

i.e. , the relaxation is enhanced as a fifth power of B—B~l
with increase in magnetic Geld. Here B~l is the magnetic
Geld for which Ll~~ ——~Po takes place.

In the opposite limiting case of P )) 1, actually for
energies c/d & (AluB —vapo) &( ~B,wpG, electrons emit
DA phonons with q& a& (& q' d, i.e., the DA-
phonon emission is heavily concentrated in a narrow cone
around the magnetic field. In this case for the emission
rate we obtain

increases as a fifth power in the magnetic Geld achieving
the peak value exceeding 1 ps . At high magnetic fields
the peak decreases much slower, linearly in B —B~l, so
that the PO+DA-phonon emission mechanism gives rise
to a rather broad peak than the PO-phonon emission
peak.

(b) (AlaB —cupG) cuB, apG. As it follows from the
energy conservation the energy of an emitted DA phonon
is cq' wB so that q' uB/c )) aB . On the other hand,
electrons in the states with Landau indexes l 1 have
momenta of the order of a& . Therefore at more impor-
tant electron transitions with l, l' 1 the momentum
transmission to the phonon system is also of the same
order of a& . Hence in this range electrons should emit
phonons with almost oppositely directed momenta of ap-
proximately equal absolute values to avoid an additional
suppression of the two-phonon emission. The large mo-
mentum transferred to each phonon results in the large
Landau index l for intermediate states in Eq. (20). As
far as the quasiclassic description takes place for l )) 1,
the intermediate state energies are

i.e., in this range the relaxation becomes linearly weaker
with an increase in the magnetic Geld.

The results of numerical evaluation of the emission
rate as a function of the inter-Landau-level separation
b, lwB in the whole energy range (a) are illustrated for
transitions between Landau levels l = 3 and l' = 0
(Fig. 3). So far as the two-phonon processes contain the
small electron-phonon couplings in the second order, the
PO+DA emission gives rise to a peak that is lower than
that for the one-phonon emission. The PO+DA relax-
ation has a sharp onset at low magnetic fields correspond-
ing to energies immediately above hcupo, where the peak

(AlaB —aPO)
l(d~ )) l(dI3, 4)PO, cq2mc2 (29)

Therefore for the emission rate in the range (b) we obtain

1
PO+DA
l m l'

3 (2mc'/5) '~B 1

2&PO+DA (AlldB —RPO)' PPOd

The magnetic Geld dependence is given by

1
PO+DA
3mQ

Because in the range (b) B is of the order of Br) I one
can replace B —B~l by B~l so that the emission rate
dependence on the magnetic Geld is weak in a rather wide

. energy range above vapo.
It is interesting also to compare the PO+DA-phonon

emission rate for transitions between Landau levels l = 3
and l' = 0 with the 2LA-phonon emission rate at tran-
sitions between levels l = 1 and l' = 0. Using the result
obtained in Ref. 32, it is easy to obtain

12 1 ~DA ~pG (2mc'/h) 1
PO+DA ~ (3~ ~ )s ~2DA '=8
3mO PO H PO i~O

(32)

10

38 40 41 42

FIG. 3. The PO+DA-phonon emission rate versus the
inter-Landau-level separation Alu~ for the electron transi-
tions between / = 3 and l' = 0 levels in the energy range
(3~B ~po) (( ~B)~po ~

Taking B = 8.4 T and d = 3 nm for a GaAs/Al Gaq As
heterojunction, we have 2m, e2 0.02 MeV and ~~
2cupG/5 14.65 MeV. So as it follows f'rom Eq. (30)
at transitions between Landau levels l = 3 and l' = 0
one can use 73~Q ——100 ns as a characteristic relax-PO+DA ~ ~

ation time in the range (b). Under the same conditions
at transitions between levels l = 1 and l' = 0 for the
I.A- and 2LA-phonon emission times we have, respec-
tively, rP 0

——5.4 ps (Ref. 31) and w~ o = 15.6&s
Thus comparison of these times shows the importance
of the PO+DA-emission processes in the QHE geome-
try. In some experimental arrangements the PO+DA-
phonon emission mechanism is much more eKcient than
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the relaxation in two consecutive emission acts: the PO-
phonon emission (even under the sharp resonance) + ei-
ther LA- or 2LA-phonon emission.

IV. SUMMARY

In conclusion, the PO-phonon-assisted electron relax-
ation is calculated as a function of the inter-Landau-level
spacing in the 2DES in the QHE geometry. The PO-,
SO-, and PO+DA-phonon emission processes via polar
optical and deformation acoustical interactions are con-
sidered. The interface SO-phonon relaxation is at least
by an order weaker than the relaxation via PO-phonon
emission. To obtain a finite relaxation rate associated
with one-phonon emission, the allowance for the Landau-
level broadening and PO-phonon dispersion is made. Im-
mediately below the phonon energy ~po the PO-phonon
dispersion contribution gives rise to a sharp peak with
the peak value approximately 0.17 fs . The Landau-
level broadening contribution has a rather broad peak
with relatively lower peak value. Below upo within an
energy range of the order of hgu~/w, the one-phonon
relaxation rate exceeds 1 ps (v is the relaxation time
deduced from the mobility). In a GaAs/Al Gai As het-
erostructure with the mobility p = 25 V s m this
range makes up 0.7 MeV.

The two-phonon emission is a controlling relaxation
mechanism above Lupo. For Llw~ immediately above
Lapp~ the PO+DA-phonon relaxation has a sharp onset.

The relaxation rate increases as a fifth power in the mag-
netic field achieving to the peak value exceeding 1 ps at
energy separations of the order of c/a~ [in GaAs at B = 7
T we have h(c/a~) —0.4 MeV]. At higher magnetic fields
in the energy range ca& & Alw~ —upo & cd [in
GaAs with d = 3 nm we have h(c/d) 1.2 MeV] the
two-phonon peak decreases linearly in the magnetic field.
Above cup~ within the wide energy range (in GaAs this
range makes up 5 MeV) the magnetic field dependence of
the relaxation rate is rather weak and the subnanosecond
relaxation between Landau-levels t = 3 and I' = 0 can be
achieved via two-phonon emission mechanism.

Our analysis demonstrates also that in some experi-
mental situations the PO+DA-phonon emission mecha-
nism is more eFicient than the relaxation in two consecu-
tive emission acts: the PO-phonon emission (even under
the sharp resonance) with the subsequent emission of ei-
ther the LA or 2LA phonon.
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