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We consider electron tunneling in a parallel magnetic field taking into account the electron-electron
interaction. It is shown that a self-consistent treatment of the dynamical electron-electron interac-
tion in resonant tunneling can lead to the proposed plasmon assisted resonant tunneling. Such
magnetoplasmon assisted resonant tunneling gives rise to satellite peaks or shoulders in the tunnel-
ing current. At low temperatures, only magnetoplasmon emission processes contribute and satellites
only appear on the high bias side of the main resonance. The mechanism proposed here may be
used to study the magnetotunneling in high mobility systems where disorder is at minimum.

I. INTRODUCTION

Double-barrier = resonant tunneling  structures
(DBRTS’s) represent interesting physical systems with
which several fundamental properties related to quantum
transport in small structures can be studied. Some well
known phenomena in DBRTS’s are negative differential
resistance,b? intrinsic bistability,3® and tristabilities.5”
These phenomena, together with the fast response time
in DBRTS’s, make these structures a promising class of
materials for the next generation electronic devices. Re-
cently, an electron tunneling mechanism in DBRTS’s was
observed and reported.® When an asymmetric DBRTS is
biased in such a way that large charge accumulation oc-
curs in the resonant well, an additional tunneling channel
can become available, which is classified as plasmon as-
sisted resonant tunneling (PAT). PAT occurs when, near
the resonant tunneling, an incoming electron lowers its
energy to the resonant level by emitting a quantum-well
plasmon. Due to the nature of quantum-well plasmon
dispersion, such processes can occur near the main res-
onance, as long as the difference between the incoming
energy and the resonant level is smaller than the maxi-
mum plasmon energy. As a result, a satellite is observed
in the tunneling I-V characteristics. If one further in-
cludes the static level shift and treats both level shift
and PAT self-consistently ( via nap ~ I, where I is the
tunneling current), the resulting I-V curve exhibits mul-
tiple stabilities.

When a magnetic field parallel to the tunneling cur-
rent is applied to the system, more interesting tunneling
phenomena can occur.® On the high bias side of the main
resonance peak, a series of side resonances will appear.
The spacing between the successive resonance is roughly
the same for fixed magnetic field and increases approx-
imately linearly with the magnetic field strength. This
phenomenon is commonly understood within the picture
of inter-Landau-level elastic scattering. This elastic scat-
tering process can be described as

’
€+ En=¢€, +Epn,
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where €, and ¢, are, respectively, the energy in the
tunneling direction and the Landau-level energy in the
plane perpendicular to the tunneling direction. There-
fore, one may observe many side resonances at energy
€: + (n — n')hw,, where w, is the cyclotron frequency.
This elastic scattering mechanism can successfully ex-
plain the observed side resonances. Here, we would like to
comment on two points concerning this elastic scattering
mechanism. (1) For this mechanism to work, one needs
to assume the existence inside the resonant well of a large
scatterer concentration. Such an assumption is usually
justified for realistic systems considering unavoidable dis-
orders and interface roughness in these structures. How-
ever, one should pay special attention when this mecha-
nism is applied to high mobility samples, where disorder
is at minimum. (2) It is not understood why there is no
side resonance at all on the low bias side of the main peak
especially considering that the scattering cross sections
for (n — n 1) are roughly the same. [It is understood
that the process (n — n — 1) is forbidden if only the
lowest Landau level in the emitter is occupied.]

In this paper, we shall propose a different type of reso-
nant tunneling in the presence of a parallel magnetic field
(B||I). We consider a tunneling process that involves
emission and absorption of magnetoplasmons. When the
tunneling electron reaches the center well, it is hot and
in nonequilibrium. Due to the strong coupling of the
tunneling electron with the Fermi sea in the well (if it is
charged) or in the emitter (always charged), it can excite
a magnetoplasmon and change its energy to match the
resonant condition. A schematic diagram of this process
is shown in Fig. 1. The mechanism proposed here does
not assume any additional scatterers in the well or at the
interface. At low temperature, the plasmon population
is negligible and only plasmon emission is possible. As
a result, one only observes side resonances on the high
bias side of the main resonance. If coherence breaking
processes are negligible, the spacing between the side res-
onances will be approximately the same and will depend
approximately linearly on the magnetic field. However,
it should be pointed out that due to the nature of magne-
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FIG. 1. Schematic diagram for magnetoplasmon assisted
resonant tunneling in a double-barrier resonant tunneling
structure.

toplasmon dispersion, the spacing is always nonlinear. In
this work, we shall assume that the charge accumulation
in the well is negligible (such as the case of a symmet-
ric DBRTS or an asymmetric DBRTS of thicker emitter
barrier) and shall only consider plasmon excitation in the
emitter. The tunneling rate presented below is also valid
for the case where plasmon excitation occurs in the cen-
ter well. However, in case of a charged well, one has to
include the dynamical resonance level shift, which causes
the tipover of the resonant curve.®1°

II. CALCULATION OF THE TUNNELING RATE

Let us consider a typical DBRTS (symmetric or asym-
metric). The model Hamiltonian can be written as

H = Hy + Hj, (1)

where Hp is the one-body Hamiltonian describing the
single particle energy, including elastic coupling with the
static barriers,

=Y e ] e I
Ho= encn,kvcﬂyky + €paprap,v
n,k

41

+ 3 Voulahuenn, +ch i apu), (2)

pv

In the above equation, p = (n,ky,k;), € = €. + (n +

n

1/2)hw,, with €. the energy of quasibound states in the

well and n the Landau level (LL) index. cl,kv (cn,k,) is
the creation (annihilation) operator for electrons in the
resonant well with the LL index n and center coordinate
zo = ky/eB. Similarly, € = €} + €}, with v = [(r) for

the left lead (right lead). a;r, (ap) is the creation (annihila-
tion) operator for electrons in the leads. V}) is the elastic
coupling between the electrons and the static barrier.
When considering the electron-electron interaction, we
shall consider that (i) the only important interaction is
the interaction between the tunneling electron (after it
leaves the emitter) with those electrons in the emitter
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and the charge concentration in the emitter is taken to
be constant. (ii) The interaction among electrons in the
emitter is constant if the electron concentration in the
emitter is considered to be constant. Such a constant
energy shift is unimportant in the present model. (iii)
There is no charge accumulation in the well. Now the
interaction Hamiltonian is given as

HI = Z UqC’n’n' (q)cl,kv—l—qva;l;',k;—qva‘n,k;cn,kv,
nn',kyky,q

3)

where v, = is the Fourier coefficient of Coulomb inter-
action between the tunneling electron in the well and
electrons in the emitter. The form factor is given azs
(for n> 1), Com(g) = (n't/nl) X"~ =X [L77™ (X)] ,
where X = ¢?/2eB and LT is an associated Laguerre
polynomial.

The calculation of transmission through a DBRTS is
carried out within the so-called S-matrix formalism.1714
Let T(p,p’) be the transmission matrix describing the
probability per unit final longitudinal momentum k.,
that a particle incident with energy e, will be transmit-
ted with energy €p/. The total transmission probability
T:(p) with initial momentum p can be written as a sum
(or integral) of the transmission matrix T'(p, p’) over the
final momentum p’,

T:(p) = / dp'T(p,p'). (4)

The transmission matrix can be written as

Oeyr drdsdt i
T(p,p") =Ti(p)T'~(p") 6kp’ /WCXP{l[(fp

—€p' )T + €pit — €ps][A}G o o (T, 5,1). (5)

Here, p(p’) is for the left (right) lead, & = (n,ky) and
Jdp — ¥, [ dk. [ dk,. The elastic resonant width is

Ti(p) = 2m Y |Vpr u|26(a, 0")d(ep — €bun), (6)

P

with a similar expression for I',.(p’). The interacting two-
body Green’s function is defined as

Goor (7, 8,1) = 8(3)8(t){ca(r — 8)ch, (T)ca (t)ck (0)).
(7)

The leading terms in a perturbation expansion of G4 q
are given by those up to the second order of the electron-
electron interaction. The one-body Green’s function is
simply G (t) = —i0(t) exp[— (i€, + T'/2)t/A]. In the in-
teraction picture, the two-body Green’s function is given
as
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with U(t,t0) the time evolution operator,

Gao (T, 5,t) = 0(8)9(t)<éa(7’ —sUt(r
U(t, to) = Z T I:—Z/; dtlﬁint(t’)] /m'. (9)
—8)el, (M)ea (DU R, o>el(0)>, (8) ™o ’

To the second order, it can be written as

fo;cvnk, (1, ,t) = 6(s)0(t) <cnky('r—s)( / dt' Hipy (¢ )) g, (T)Ent iy (2) (—z / dtht(t'))‘ k,(0)>
=0(s)(t) > / ds' / dt'vg, Vg, Cnyny (41)Crany (42)

ng )'"' kv- ,ky. yqi

><<cn ky (T — 8)€ Il,kyl+q,,1( s')a nl,kvl—q” (3')?171’1,k;,1 (s')
G s ()28 i, () ()21 (t)al (¥)ng g (F)ema ey ()21 4, (0)
xcnlskvl (S )cn',k; (T cn',k’y cnz,ky3+qyz a’n'z,k;z~—qv2 a’":xkyz na,ky2 n,ky

—0(0() 3 / ds' / 040, Ugy iy (41) Crnyr (02)

n; vn; Ty vky; 3qi

.t R ., R
x <an;,k;ﬂ,l(s')an;,k;l ()], -y (F)mg b (1)
x <C" ky (T - S)Cnl’ y1+qy1( )c"hkvl (S )cn’ k!, (T)c"' k, (t)c’ng, ky2+aqy2 (t )an, ky2 (t ) n,ky (0)>

= 0(3)9(t) Z [_is dSI A dt, <Tp(q17 s’)p(q27 tl)) Vg qu5(Q1 + q2)Fn1ni (ql)F‘n-‘;n’2 (‘Z2)

! !
ni,ng,kyi,kys,q

it i

x <én,ky (T - S)Cnl yky1+ay1 (s’)énl sky1 (SI)éIlrk;; (T)én"k;l (t)élz yky2t+gy2 (t,)6"3’ky2 (tl)énikv (0)> )

In the above equation, we have used the following definition for the density operator:

plg,7) = Z Fan (g nk +qy (T)ent i, (7),

nn'k,y,

where Fy,,/(q) is related to Cpni(g) via Cpn(g) = [Fnn(g)|?. In the following, we shall assume that the emitter is also
a pure two-dimensional system. In this case v, = (2me?/q)e™9¢, where d is the separation between the emitter and
the resonant well.

Now we note that {(p(g,s')p(—gq,t')) depends only on the difference between s’ and ¢/, that is (p(g, s')p(—g,t')) =
{p(g,s8' — t')p(—q,0)). The density-density correlation function can be related to the dielectric function of the electron
gas via the fluctuation and dissipation theorem,!®

—q *° —wu 1 1
(Tubla, 0p(=0,00) = 5t [ dweor o | 2], (10)

e(gq,w)

We note that 1/(1 — e ) = N(—w) = 1 + N(w), where N(w) is the boson distribution function. The second order
Green’s function can now be written as

0(s)0(t 2me? _ = _t
G?),(1,5,8) = (8) 2D g ¢ Fani (41) Py (qZ)/ duft + Ny(w)ltm [f(q w)]
ay,aaz,ah - 7

T t
’ 1 /A Py A IAT PN ~ A I\ A —w(s' —t'
x [ ast [ at (zalr - s)el, (@)e0s ()L (e )2, ()2 ()L @)) €7, (11)
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where ay = (n1,ky1), o) = (n1, ky1 + qy), a2 = (n2, ky2), ah = (n2, ky2 — gy). The last factor in Eq. (12) including the
s’ and the ¢’ integration can be evaluated. The (&’'s) term can be arranged into three combinations of four Green’s
functions [given by Figs. 2(b)-2(d)]. The integration is then completed after expanding these Green’s functions in
the wide band limit.

G(t,s,t) —(w— -
1 _ al\T) S, 1A, (8—8) ,—ww,, . (T—s Ww—AB,nr)s Hwo—Bnnr)t _

Ga('T,S,t) = me ( )e w ( )(e (w 8 1)(6 1)’ (12)

—t(w+A, )t _
, ~ . ot e ? nn 1 13
Ga(Tv S,t) - Ga(T’ $ t) {w — Annl + (w + Ann’)2 ’ ( )

_ WwtB,ar)s g
\ o . 28 e ’ 14
Ga('T, S, t) GQ(T) 8, ) w — Ann, + (w + Annl)2 ( )

where Ap,: = (n—n')hw.. Now we can apply exponential resummation G (7, 5,t) = G3(7, 5,t) exp[(G*+G%+G3)/G°)
to obtain

r.r o0 -T 2e2 _
Ten(en) = 2 | daexp[ 27 afen, — o+ 3 e MU (a)
— 00 qnl

[ v [ (= T mer 1)] ’ =

If the dynamics of the electron-electron interaction is ignored, Im(1/¢(g,0)) = 0, we immediately recover the well
known resonant tunneling result,

I'.Tr
(62 —€c)2 +T2/4°

Tiot =

The term proportional to e?Im(1/e(g,w)) contains all contributions to the total tunneling rate, due to electronic
excitations of the system. In the plasmon pole approximation, Im(1/e(gq,w)) « §(w + wy), where w,, is the plasma
frequency, we recover our previous result of plasmon assisted tunneling.® The effect of plasmon excitation on resonant
tunneling was treated in Ref. 8 by introducing an additional set of boson coordinates. The derivation presented
here shows that such electronic excitation assisted tunneling can be studied within the framework of an elementary
electron-electron interaction. The boson coordinates describing the collective excitation are completely redundant.

The dielectric function appearing in the above equation depends on the magnetic field. For an infinitely sharp LL,
Im([1/€] only contains contributions from magnetoplasmons, i.e.,

1 bw?
me—(rw) = W&(Ree(q,w)) =7 (1 - ; m)

bm - 4””3 4( € E ] m’(‘()] [J"n' J""' '”"] ’

where X = (gh)2/(2eB), and r, = me?/kp is the plasma parameter and f,, is the Fermi distribution function. In
general, there are countably infinite collective modes. However, the coupling to the higher mode decreases as 1 /m
and we shall only include the first few modes in our model calculation below. Furthermore, we shall assume that the
mixing of different modes is negligible, i.e., the mth mode is given as

wz(,m:t) = tweV by + m2.

Therefore, the total tunneling rate can be written as

T oo —Tlo 2me? bmw2 344
Tiot (an) = LF B / do exp [—z_ll + ek, — €c)o + Z q C""'(q) wz(,m+) e ™
—o0

q,n',m

x {[1 + N F(q,wf™) + N(wi™)F(q, w,(,’"")}] ; (16)
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FIG. 2. A class of diagrams, which contribute to the sec- 05 10 5 2 25 """" 30
ond order two-body Green’s functions. Here, a straight line aV(meV)
with index a represents the single particle Green’s function
Ga and a wavy line represents the electron-electron inter- FIG. 3. Plot of tunneling current as a function of bias V'

action Voo = v4Cphn1(g), a bubble represents the density-
density response.

where
—(w{mt —A, ) 1
(22 e P
Fq’w(m-f-) = +
@) T T h) @~ A
(17)
In Eq. (16), two terms inside the curly bracket have

direct physical meaning. The first term, which is pro-
portional to [1 4+ N(w)], represents the tunneling process
assisted by emission of magnetoplasmons, while the sec-
ond term, which is proportional to N (w), represents the
tunneling process assisted by magnetoplasmon absorp-
tion. At low temperature, N < 1 and the absorption
process can be neglected.
The current is then given as

I=e)Y Tiot(en)gnlfe(ep) — folep +€V)], (18)

where g, is the level degeneracy and f.(f.) is the Fermi
distribution function of the emitter (collector).

III. RESULTS AND DISCUSSIONS

We have calculated the tunneling current, with the use
of Egs. (16) and (18). The parameters used in our cal-
culation are Er = 5 meV, d = 100 A, I' = 1 meV, and
€2 — €c|bias=0 = 15 meV. The result is plotted in Fig. 3.
Only the first two magnetoplasmon modes are included.
The resonant tunneling with plasmon emission can be
clearly seen. For B = 1.2 T, the first satellite at 16.7
meV corresponds to the emission of a w(!) plasmon, the
next satellite at 19.2 meV is due to emission of a w(®
plasmon. The emission of two w(1) plasmons can also be
seen at around 22.1 meV. All higher order processes are
too weak to see. As magnetic field increases, the mag-
netoplasmon satellites move towards the higher energy.

for different magnetic fields, B = 1.2 T (solid line, arrows
indicate those plasmon processes described in the text); B =
1.75 T (dotted line) and B = 2.3 T (broken line). Here,
d =100 A, T = 1 meV, aV is the portion of bias across the
emitting barrier, and a = 0.5 for a symmetric DBRTS.

In the meantime, the main resonances become stronger
and the satellites become weaker as the field strength is
increased. Therefore, applying a parallel magnetic field
will have two competing effects. On the one hand, the
plasmon frequency is enhanced and the satellites become
better resolved; on other hand, the real strength of the
satellites is reduced. The spacing between the main res-
onance and the subsequent satellites is not proportional
to B, due to the inclusion of coherence breaking pro-
cesses, and more importantly, due to the ¢ dependence
of w,. If one neglects these coherence breaking processes
(n # n'), the spacing will be close to linear in B, espe-
cially at large B. For a system with large emitter-well
separation or large electron concentration in the emit-
ter, the main contribution to the g-dependent part of
wp is from the small g regime. In this case, the spacing
will also show close to linear behavior. Figure 4 shows
the same calculation, but with a thicker emitter barrier,
d =200 A and T = 0.2 meV. As d is increased, the
electron-plasmon coupling becomes weaker. The magne-
toplasmon assisted tunneling, which gives rise to addi-
tional satellites in Fig. 3, now only shows some weak
shoulder structure in this case. The ratio of the main
resonance to the first plasmon satellite in Fig. 3 is about
4 and in Fig. 4 is about 15. This rapid increase is mainly
because the main resonance becomes much sharper as
I" decreases. The electron-electron interaction is also re-
duced. However, this reduction is less important, because
the dominant contribution comes from the small-¢ regime
and the main effect of €79 is to cut off the contribution
from the large-q regime.

Now we compare briefly the magnetoplasmon emission
mechanism with the elastic scattering mechanism. From
this work, it is evident that due to the electron-electron
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interaction, magnetoplasmon excitation can open an ad-
ditional channel for electron resonant tunneling through
a DBRTS. However, unlike the case of inter-Landau-level
elastic scattering, where a series of almost equal strength
satellites were expected and observed,® here only the sin-
gle plasmon emission gives rise to a distinct satellite reso-
nance (if the electron-plasmon coupling is strong enough
as in the case of Fig. 3) and all higher order plasmon ex-
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citations only give rise to weak shoulders to the tunneling
current. This is mainly due to the fact that the magne-
toplasmon energy is strongly dependent on the wave vec-
tor ¢ and magnetoplasmon assisted tunneling contains all
contributions of different q processes. Therefore, for sam-
ples with realistic disorder concentration, such as those
studied in Ref. 9, the elastic scattering should still be the
plausible mechanism for understanding the magnetores-
onant tunneling (one does need to bear in mind that no
low bias satellite having been observed experimentally
requires further explanation). The magnetoplasmon as-
sisted tunneling may become a plausible mechanism in a
system where scatterers are negligible. We, therefore,
propose that magnetotunneling measurements be per-
formed in high mobility and low scattering samples.

In conclusion, we have studied a resonant tunneling
phenomenon in a parallel magnetic field. It is found
that due to electron magnetoplasmon coupling, side res-
onances or shoulders structures can appear on the high
bias side of the main resonance at low temperature.
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